1
|
Chmykh Y, Nadeau JL. The use of fluorescence lifetime imaging (FLIM) for in situ microbial detection in complex mineral substrates. J Microsc 2024; 294:36-51. [PMID: 38230460 DOI: 10.1111/jmi.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM enabled discrimination of SYTO 9 labelled cells from background, but that the lifetime of SYTO 9 was shorter in cells on minerals than in pure culture under our conditions. Photosynthetic microorganisms were easily observed using both FLIM and confocal. Unlabelled, nonpigmented bacteria showed weak signals that were difficult to distinguish from background when minerals were present, though cellular autofluorescence consistent with NAD(P)H could be seen in pure cultures, and phasor analysis permitted detection on rocks. Gypsum and marble samples showed similar autofluorescence profiles, with little autofluorescence in the yellow-to-red range. Lifetime or time-gated imaging may prove a useful tool for environmental microbiology. LAY DESCRIPTION: The standard method of bacterial enumeration is to label the cells with a fluorescent dye and count them under high-power fluorescence microscopy. However, this can be difficult when the cells are embedded in soil and rock due to fluorescence from the surrounding minerals and dye binding to ambiguous features of the substrate. The use of fluorescence lifetime imaging (FLIM) can disambiguate these signals and allow for improved detection of bacteria in environmental samples.
Collapse
Affiliation(s)
- Yekaterina Chmykh
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jay L Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| |
Collapse
|
2
|
Case N, Johnston N, Nadeau J. Fluorescence Microscopy with Deep UV, Near UV, and Visible Excitation for In Situ Detection of Microorganisms. ASTROBIOLOGY 2024; 24:300-317. [PMID: 38507693 PMCID: PMC10979697 DOI: 10.1089/ast.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/02/2024] [Indexed: 03/22/2024]
Abstract
We report a simple, inexpensive design of a fluorescence microscope with light-emitting diode (LED) excitation for detection of labeled and unlabeled microorganisms in mineral substrates. The use of deep UV (DUV) excitation with visible emission requires no specialized optics or slides and can be implemented easily and inexpensively using an oblique illumination geometry. DUV excitation (<280 nm) is preferable to near UV (365 nm) for avoidance of mineral autofluorescence. When excited with DUV, unpigmented bacteria show two emission peaks: one in the near UV ∼320 nm, corresponding to proteins, and another peak in the blue to green range, corresponding to flavins and/or reduced nicotinamide adenine dinucleotide (NADH). Many commonly used dyes also show secondary excitation peaks in the DUV, with identical emission spectra and quantum yields as their primary peak. However, DUV fails to excite key biosignature molecules, especially chlorophyll in cyanobacteria. Visible excitation (violet to blue) also results in less mineral autofluorescence than near UV, and most autofluorescence in the minerals seen here is green, so that red dyes and red autofluorescence of chlorophyll and porphyrins are readily distinguished. The pairing of DUV and near UV or visible excitation, with emission across the visible, represents the most thorough approach to detection of labeled and unlabeled bacteria in soil and rock.
Collapse
Affiliation(s)
- Noel Case
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Nikki Johnston
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jay Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| |
Collapse
|
3
|
Lima Â, Muzny CA, Cerca N. An Indirect Fluorescence Microscopy Method to Assess Vaginal Lactobacillus Concentrations. Microorganisms 2024; 12:114. [PMID: 38257941 PMCID: PMC10820742 DOI: 10.3390/microorganisms12010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Lactobacillus species are the main colonizers of the vaginal microbiota in healthy women. Their absolute quantification by culture-based methods is limited due to their fastidious growth. Flow cytometry can quantify the bacterial concentration of these bacteria but requires the acquisition of expensive equipment. More affordable non-culturable methods, such as fluorescence microscopy, are hampered by the small size of the bacteria. Herein, we developed an indirect fluorescence microscopy method to determine vaginal lactobacilli concentration by determining the correlation between surface area bacterial measurement and initial concentration of an easily cultivable bacterium (Escherichia coli) and applying it to lactobacilli fluorescence microscopy counts. In addition, vaginal lactobacilli were quantified by colony-forming units and flow cytometry in order to compare these results with the indirect method results. The colony-forming-unit values were lower than the results obtained from the other two techniques, while flow cytometry and fluorescence microscopy results agreed. Thus, our developed method was able to accurately quantify vaginal lactobacilli.
Collapse
Affiliation(s)
- Ângela Lima
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Priyadarsini M, Kushwaha J, Pandey KP, Rani J, Dhoble AS. Application of flow cytometry for rapid, high-throughput, multiparametric analysis of environmental microbiomes. J Microbiol Methods 2023; 214:106841. [PMID: 37832922 DOI: 10.1016/j.mimet.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Quantification of the abundance and understanding of the dynamics of the microbial communities is essential to establish a basis for microbiome characterization. The conventional techniques used for the quantification of microbes are complicated and time-consuming. With scientific advancement, many techniques evolved and came into account. Among them, flow cytometry is a robust, high-throughput technique through which microbial dynamics, morphology, microbial distribution, physiological characteristics, and many more attributes can be studied in a high-throughput manner with comparatively less time and resources. Flow cytometry, when combined with other omics-based methods, offers a rapid and efficient platform to analyze and understand the composition of microbiome at the cellular level. The microbial diversity observed through flow cytometry will not be equivalent to that obtained by sequencing methods, but this integrated approach holds great potential for high throughput characterization of microbiomes. Flow cytometry is regarded as an established characterization tool in haematology, oncology, immunology, and medical microbiology research; however, its application in environmental microbiology is yet to be explored. This comprehensive review aims to delve into the diverse environmental applications of flow cytometry across various domains, including but not limited to bioremediation, landfills, anaerobic digestion, industrial bioprocesses, water quality regulation, and soil quality regulation. By conducting an in-depth analysis, this article seeks to shed light on the potential benefits and challenges associated with the utilization of flow cytometry in addressing environmental concerns.
Collapse
Affiliation(s)
- Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Rouzie D, Lindensmith C, Nadeau J. Microscopic Object Classification through Passive Motion Observations with Holographic Microscopy. Life (Basel) 2021; 11:life11080793. [PMID: 34440537 PMCID: PMC8401815 DOI: 10.3390/life11080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
Digital holographic microscopy provides the ability to observe throughout a volume that is large compared to its resolution without the need to actively refocus to capture the entire volume. This enables simultaneous observations of large numbers of small objects within such a volume. We have constructed a microscope that can observe a volume of 0.4 µm × 0.4 µm × 1.0 µm with submicrometer resolution (in xy) and 2 µm resolution (in z) for observation of microorganisms and minerals in liquid environments on Earth and on potential planetary missions. Because environmental samples are likely to contain mixtures of inorganics and microorganisms of comparable sizes near the resolution limit of the instrument, discrimination between living and non-living objects may be difficult. The active motion of motile organisms can be used to readily distinguish them from non-motile objects (live or inorganic), but additional methods are required to distinguish non-motile organisms and inorganic objects that are of comparable size but different composition and structure. We demonstrate the use of passive motion to make this discrimination by evaluating diffusion and buoyancy characteristics of cells, styrene beads, alumina particles, and gas-filled vesicles of micron scale in the field of view.
Collapse
Affiliation(s)
- Devan Rouzie
- Department of Physics, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA;
| | - Christian Lindensmith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Jay Nadeau
- Department of Physics, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA;
- Correspondence: ; Tel.: +1-503-795-8929
| |
Collapse
|
6
|
Taddese R, Belzer C, Aalvink S, de Jonge MI, Nagtegaal ID, Dutilh BE, Boleij A. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J Microbiol Methods 2021; 184:106208. [PMID: 33766606 DOI: 10.1016/j.mimet.2021.106208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
There are many approaches available to produce inactive bacteria by termination of growth, each with a different efficacy, impact on cell integrity, and potential for application in standardized inactivation protocols. The aim of this study was to compare these approaches and develop a standardized protocol for generation of inactivated Gram-positive and Gram-negative bacteria, yielding cells that are metabolically dead with retained cellular integrity i.e., preserving the surface and limited leakage of intracellular proteins and DNA. These inactivated bacteria are required for various applications, for instance, when investigating receptor-triggered signaling or bacterial contact-dependent analysis of cell lines requiring long incubation times. We inactivated eight different bacterial strains of different species by treatment with beta-propiolactone, ethanol, formalin, sodium hydroxide, and pasteurization. Inactivation efficacy was determined by culturing, and cell wall integrity assessed by quantifying released DNA, bacterial membrane and intracellular DNA staining, and visualization by scanning electron microscopy. Based on these results, we discuss the bacterial inactivation methods, and their advantages and disadvantages to study host-microbe interactions with inactivated bacteria.
Collapse
Affiliation(s)
- Rahwa Taddese
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Steven Aalvink
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, the Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Soares JMD, Abreu REF, Costa MMD, Melo NFD, Oliveira HPD. Investigation of Lactobacillus paracasei encapsulation in electrospun fibers of Eudragit® L100. POLIMEROS 2020. [DOI: 10.1590/0104-1428.03020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Mateus Matiuzzi da Costa
- Universidade Federal Rural de Pernambuco, Brasil; Universidade Federal do Vale do São Francisco, Brasil
| | | | | |
Collapse
|
8
|
Min M, Mason SL, Bennett GN, Hussain MA, Bunt CR. Viability assessment of Bifidobacterium longum ATCC 15707 on non-dairy foods using quantitative fluorescence microscopy. J Microbiol Methods 2019; 167:105778. [PMID: 31733264 DOI: 10.1016/j.mimet.2019.105778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022]
Abstract
This study demonstrates an effective technique for separating and purifying viable bacteria from samples that interfere with viability staining. The viability of Bifidobacterium longum ATCC 15707 was assessed using Percoll Buoyant Density Gradient Centrifugation (PBDC) to separate bacteria from complex non-dairy food matrices and Quantitative Fluorescence Microscopy (QFM) to determine individual cells using LIVE/DEAD BacLight bacterial viability staining. Water agar (3%) was used to retain cells of B. longum and offered a lower fluorescence background with BacLight viability staining, compared with fixation on polycarbonate (PC) black membrane. The effect of drying temperatures and non-dairy foods on viability of B. longum was assessed. B. longum coated on oat, peanut or raisin was separated by filtration, low- and high-speed centrifugation, flotation and sedimentation buoyant density centrifugation. Purified cells were subsequently deposited on water agar for rehydration followed by LIVE/DEAD BacLight viability staining and enumeration. Conventional plate counting was also conducted to compare viability results. Finally, this method was applied to assess cell membrane damages of B. longum incorporated onto non-dairy foods during 24 h drying. Furthermore, viability assessment of B. longum coated onto oat, peanut, or raisin was much lower by plate counting compared to viability staining. Drying appeared to have a greater impact when viability was assessed by plate counting compared to viability staining. IMPORTANCE: Enumeration of viable beneficial bacteria from function foods presents a significant bottleneck for product development and quality control. Interference with microscopic and/or fluorescent techniques by ingredients, time required to incubate plated microbes, and the transient nature of the colony forming unit make rapid assessment of viable bacteria difficult. Viability assessment of Bifidobacterium longum ATCC 15707 by Percoll Buoyant Density Gradient Centrifugation with LIVE/DEAD BacLight viability staining on water agar (3%) was in agreement with serial dilution enumeration. Without the need for incubation viability assessment by staining provided a more rapid means to assess the impact of drying on the viability of B. longum coated onto oat, peanut or raisin.
Collapse
Affiliation(s)
- Min Min
- Department of Wine, Food and Molecular Biosciences, Lincoln University, New Zealand; BioBrew Ltd., PO, Box 10076, Rotorua, Mail Centre, 3046, New Zealand
| | - Susan L Mason
- Department of Wine, Food and Molecular Biosciences, Lincoln University, New Zealand
| | - Grant N Bennett
- Department of Science and Primary Industries, Ara Institute of Canterbury, New Zealand
| | - Malik A Hussain
- Department of Wine, Food and Molecular Biosciences, Lincoln University, New Zealand; Department of Health and Human Services, Australia
| | - Craig R Bunt
- Department of Agricultural Sciences, Lincoln University, New Zealand.
| |
Collapse
|
9
|
Development and validation of an alternative parameter for quantification of signals emitted by fluorescently labelled bacteria in microscopic images. J Microbiol Methods 2019; 166:105717. [PMID: 31505168 DOI: 10.1016/j.mimet.2019.105717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022]
Abstract
In this study, an alternative parameter for quantifying the signals of fluorescently labelled bacteria (e.g. propidium iodide, Cyanine 3, etc.) in microscopic images was investigated. Three common parameters (mean grey value (MGV), mean grey value which is corrected for the background (MGVcwB) and the signal to background ratio (SBR) per bacterial cell) are used as reference parameters. As an alternative, the coefficient of variation (CV) is defined as the ratio of the logarithm of the standard deviation and the logarithm of the mean grey value of a bacterial cell in a microscopic image. The actual fluorescence value was safeguarded by measuring commercially available fluorescence latex microspheres at regular time intervals within our study. The precision and the correlation of the respective values of MGV, MGVcwB, SBR and CV taken from identical images were measured and subsequently normalized in order to enhance the inter-parameter comparability. The average precision of CV was the highest (89% ± 14) with decreasing numbers for MGVcwB, SBR, and MGV (78% ± 25, 71% ± 32, and, 52% ± 22, respectively). Changes in operational parameters, e.g., microscope settings, protocol steps, etc., yielded good results for the CV but less precise results for MGV, MGVcwB, and SBR in the analyses of identical images. In conclusion, using the alternative parameter CV, changes in the composition of microbial ecosystems may thus be investigated at the highest precision level.
Collapse
|
10
|
Brown M, Hands C, Coello-Garcia T, Sani B, Ott A, Smith S, Davenport R. A flow cytometry method for bacterial quantification and biomass estimates in activated sludge. J Microbiol Methods 2019; 160:73-83. [DOI: 10.1016/j.mimet.2019.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
11
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
12
|
Hsieh K, Zec HC, Chen L, Kaushik AM, Mach KE, Liao JC, Wang TH. Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection. Anal Chem 2018; 90:9449-9456. [PMID: 29969556 DOI: 10.1021/acs.analchem.8b02096] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Simple, fast, and precise counting of viable bacteria is fundamental to a variety of microbiological applications such as food quality monitoring and clinical diagnosis. To this end, agar plating, microscopy, and emerging microfluidic devices for single bacteria detection have provided useful means for counting viable bacteria, but they also have their limitations ranging from complexity, time, and inaccuracy. We present herein our new method RAPiD (Resazurin-Amplified Picoarray Detection) for addressing this important problem. In RAPiD, we employ vacuum-assisted sample loading and oil-driven sample digitization to stochastically confine single bacteria in Picoarray, a microfluidic device with picoliter-sized isolation chambers (picochambers), in <30 s with only a few minutes of hands-on time. We add AlamarBlue, a resazurin-based fluorescent dye for bacterial growth, in our assay to accelerate the detection of "microcolonies" proliferated from single bacteria within picochambers. Detecting fluorescence in picochambers as an amplified surrogate for bacterial cells allows us to count hundreds of microcolonies with a single image taken via wide-field fluorescence microscopy. We have also expanded our method to practically test multiple titrations from a single bacterial sample in parallel. Using this expanded "multi-RAPiD" strategy, we can quantify viable cells in E. coli and S. aureus samples with precision in ∼3 h, illustrating RAPiD as a promising new method for counting viable bacteria for microbiological applications.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Helena C Zec
- Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Liben Chen
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Aniruddha M Kaushik
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kathleen E Mach
- Department of Urology , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Joseph C Liao
- Department of Urology , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States.,Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
13
|
Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog 2018; 10:30. [PMID: 30008809 PMCID: PMC6040060 DOI: 10.1186/s13099-018-0257-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) infections caused primarily by S. Enteritidis and S. Typhimurium particularly in immunocompromised hosts have accounted for a large percentage of fatalities in developed nations. Antibiotics have revolutionized the cure of enteric infections but have also led to the rapid emergence of pathogen resistance. New powerful therapeutics involving metabolic enzymes are expected to be potential targets for combating microbial infections and ensuring effective health management. Therefore, the need for new antimicrobials to fight such health emergencies is paramount. Enteric bacteria successfully evade the gut and colonize their hosts through specialized virulence strategies. An important player, alanine racemase is a key enzyme facilitating bacterial survival. RESULTS This study aims at understanding the contribution of alanine racemase genes alr, dadX and SEN3897 to Salmonella survival in vitro and in vivo. We have shown SEN3897 to function as a unique alanine racemase in S. Enteritidis which displayed essential alanine racemase activity. Interestingly, the sole presence of this gene in alr dadX double mutant showed a strict dependence on d-alanine supplementation both in vitro and in vivo. However, Alr complementation in d-alanine auxotrophic strain restored the alanine racemase deficiency. The Km and Vmax of SEN3897 was 89.15 ± 10.2 mM, 400 ± 25.6 µmol/(min mg) for l-alanine and 35 ± 6 mM, 132.5 ± 11.3 µmol/(min mg) for d-alanine, respectively. In vitro assays for invasion and survival as well as in vivo virulence assays involving SEN3897 mutant showed attenuated phenotypes. Further, this study also showed attenuation of d-alanine auxotrophic strain in vivo for the development of potential targets against Salmonella that can be investigated further. CONCLUSION This study identified a third alanine racemase gene unique in S. Enteritidis which had a potential effect on survival and pathogenesis in vitro and in vivo. Our results also confirmed that SEN3897 by itself wasn't able to rescue d-alanine auxotrophy in S. Enteritidis which further contributed to its virulence properties.
Collapse
Affiliation(s)
- Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | - Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| |
Collapse
|
14
|
Savio D, Stadler P, Reischer GH, Kirschner AK, Demeter K, Linke R, Blaschke AP, Sommer R, Szewzyk U, Wilhartitz IC, Mach RL, Stadler H, Farnleitner AH. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management. WIRES. WATER 2018; 5:e1282. [PMID: 29780584 PMCID: PMC5947618 DOI: 10.1002/wat2.1282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Over the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well-defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence. Apparently, hydrogeology has a strong impact on the concentration and size of the observed microbes, and total cell counts (TCC) were suggested as a useful means for spring type classification. Measurement of microbial activities at the NCA springs revealed extremely low microbial growth rates in the base flow component of the studied spring waters and indicated the importance of biofilm-associated microbial activities in sediments and on rock surfaces. Based on genetic analysis, the autochthonous microbial endokarst community (AMEC) versus transient microbial endokarst community (TMEC) concept was proposed for the NCA springs, and further details within this overview article are given to prompt its future evaluation. In this regard, it is well known that during high-discharge situations, surface-associated microbes and nutrients such as from soil habitats or human settlements-potentially containing fecal-associated pathogens as the most critical water-quality hazard-may be rapidly flushed into vulnerable karst aquifers. In this context, a framework for the comprehensive analysis of microbial pollution has been proposed for the NCA springs to support the sustainable management of drinking water safety in accordance with recent World Health Organization guidelines. Near-real-time online water quality monitoring, microbial source tracking (MST) and MST-guided quantitative microbial-risk assessment (QMRA) are examples of the proposed analytical tools. In this context, this overview article also provides a short introduction to recently emerging methodologies in microbiological diagnostics to support reading for the practitioner. Finally, the article highlights future research and development needs. This article is categorized under: 1Engineering Water > Water, Health, and Sanitation2Science of Water > Water Extremes3Water and Life > Nature of Freshwater Ecosystems.
Collapse
Affiliation(s)
- Domenico Savio
- Division Water Quality and HealthDepartment Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health SciencesKrems a. d. DonauAustria
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
| | - Philipp Stadler
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
- Institute for Water Quality, Resource and Waste ManagementTechnische Universität WienViennaAustria
| | - Georg H. Reischer
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
| | - Alexander K.T. Kirschner
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
- Unit Water Hygiene, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Katalin Demeter
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
| | - Rita Linke
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
| | - Alfred P. Blaschke
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
- Institute of Hydraulic Engineering and Water Resources ManagementTechnische Universität WienViennaAustria
| | - Regina Sommer
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
- Unit Water Hygiene, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Ulrich Szewzyk
- Department of Environmental TechnologyTechnical University of BerlinBerlinGermany
| | - Inés C. Wilhartitz
- Department of Environmental MicrobiologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Robert L. Mach
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
| | - Hermann Stadler
- Department for Water Resources Management and Environmental AnalyticsInstitute for Water, Energy and Sustainability, Joanneum Research, GrazAustria
| | - Andreas H. Farnleitner
- Division Water Quality and HealthDepartment Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health SciencesKrems a. d. DonauAustria
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
| |
Collapse
|
15
|
An Effective Surrogate Tracer Technique for S. aureus Bioaerosols in a Mechanically Ventilated Hospital Room Replica Using Dilute Aqueous Lithium Chloride. ATMOSPHERE 2017. [DOI: 10.3390/atmos8120238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Finding a non-pathogenic surrogate aerosol that represents the deposition of typical bioaerosols in healthcare settings is beneficial from the perspective of hospital facility testing, general infection control and outbreak analysis. This study considers aerosolization of dilute aqueous lithium chloride (LiCl) and sodium chloride (NaCl) solutions as surrogate tracers capable of representing Staphylococcus aureus bioaerosol deposition on surfaces in mechanically ventilated rooms. Tests were conducted in a biological test chamber set up as a replica hospital single patient room. Petri dishes on surfaces were used to collect the Li, Na and S. aureus aerosols separately after release. Biological samples were analyzed using cultivation techniques on solid media, and flame atomic absorption spectroscopy was used to measure Li and Na atom concentrations. Spatial deposition distribution of Li tracer correlated well with S. aureus aerosols (96% of pairs within a 95% confidence interval). In the patient hospital room replica, results show that the most contaminated areas were on surfaces 2 m away from the source. This indicates that the room’s airflow patterns play a significant role in bioaerosol transport. NaCl proved not to be sensitive to spatial deposition patterns. LiCl as a surrogate tracer for bioaerosol deposition was most reliable as it was robust to outliers, sensitive to spatial heterogeneity and found to require less replicates than the S. aureus counterpart to be in good spatial agreement with biological results.
Collapse
|
16
|
Morgalev YN, Lushchaeva IV, Morgaleva TG, Kolesnichenko LG, Loiko SV, Krickov IV, Lim A, Raudina TV, Volkova II, Shirokova LS, Morgalev SY, Vorobyev SN, Kirpotin SN, Pokrovsky OS. Bacteria primarily metabolize at the active layer/permafrost border in the peat core from a permafrost region in western Siberia. Polar Biol 2017. [DOI: 10.1007/s00300-017-2088-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Evaluating the Reliability of Counting Bacteria Using Epifluorescence Microscopy. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2017. [DOI: 10.3390/jmse5010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Heß S, Lüddeke F, Gallert C. Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1753-1763. [PMID: 27789876 DOI: 10.2166/wst.2016.304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.
Collapse
Affiliation(s)
- Stefanie Heß
- Faculty of Technology, Microbiology-Biotechnology, University of Applied Science Emden/Leer, Constantiaplatz 4, Emden 26723, Germany E-mail:
| | - Frauke Lüddeke
- Institute for Lake Research, State Institute for the Environment, Measurements and Conservation in Baden-Württemberg, Argenweg 50/1, Langenargen 88085, Germany
| | - Claudia Gallert
- Faculty of Technology, Microbiology-Biotechnology, University of Applied Science Emden/Leer, Constantiaplatz 4, Emden 26723, Germany E-mail:
| |
Collapse
|
19
|
Schiperski F, Zirlewagen J, Scheytt T. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8028-8035. [PMID: 27348254 DOI: 10.1021/acs.est.6b00335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although karst aquifers are far more susceptible to contamination than porous aquifers, with the transport of particulate matter being an important factor, little is known about the attenuation of solutes within karst aquifers and even less about the attenuation of particulate matter. These in situ investigations have therefore aimed to systematically identify the processes that influence the transport and attenuation of particles within a karst aquifer through multitracer testing, using four different types of 1 μm fluorescent particles and the fluorescent dye uranine. Each of the types of particles used were detected at the observed spring, which drains the investigated aquifer. However, the transport behavior varied significantly between the various particles and the uranine dye, with the breakthrough of particles occurring slightly earlier than that of uranine. Attenuation was determined from the tracer recovery and attributed to filtration processes. These processes were affected by the hydrophobicity and surface charge of the particles. Carboxylated polystyrene particles with a density and surface charge comparable to pathogenic microorganisms were found to be mobile in groundwater over a distance of about 3 km. No attenuation was observed for plain silica particles. Particles with these characteristics thus pose a major threat to karst spring water as they might occur as contaminants themselves or facilitate the transport of other contaminants.
Collapse
Affiliation(s)
- Ferry Schiperski
- Department of Applied Geosciences, Hydrogeology Research Group, Technische Universität Berlin , 10587 Berlin, Germany
| | - Johannes Zirlewagen
- Department of Applied Geosciences, Hydrogeology Research Group, Technische Universität Berlin , 10587 Berlin, Germany
| | - Traugott Scheytt
- Department of Applied Geosciences, Hydrogeology Research Group, Technische Universität Berlin , 10587 Berlin, Germany
| |
Collapse
|
20
|
Tamminga GG, Paulitsch-Fuchs AH, Jansen GJ, Euverink GJW. Different binarization processes validated against manual counts of fluorescent bacterial cells. J Microbiol Methods 2016; 128:118-124. [PMID: 27380963 DOI: 10.1016/j.mimet.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 12/01/2022]
Abstract
State of the art software methods (such as fixed value approaches or statistical approaches) to create a binary image of fluorescent bacterial cells are not as accurate and precise as they should be for counting bacteria and measuring their area. To overcome these bottlenecks, we introduce biological significance to obtain a binary image from a greyscale microscopic image. Using our biological significance approach we are able to automatically count about the same number of cells as an individual researcher would do by manual/visual counting. Using the fixed value or statistical approach to obtain a binary image leads to about 20% less cells in automatic counting. In our procedure we included the area measurements of the bacterial cells to determine the right parameters for background subtraction and threshold values. In an iterative process the threshold and background subtraction values were incremented until the number of particles smaller than a typical bacterial cell is less than the number of bacterial cells with a certain area. This research also shows that every image has a specific threshold with respect to the optical system, magnification and staining procedure as well as the exposure time. The biological significance approach shows that automatic counting can be performed with the same accuracy, precision and reproducibility as manual counting. The same approach can be used to count bacterial cells using different optical systems (Leica, Olympus and Navitar), magnification factors (200× and 400×), staining procedures (DNA (Propidium Iodide) and RNA (FISH)) and substrates (polycarbonate filter or glass).
Collapse
Affiliation(s)
- Gerrit G Tamminga
- Wetsus, European centre of excellence for sustainable water technology, Leeuwarden, Netherlands; Biotrack, Leeuwarden, Netherlands.
| | - Astrid H Paulitsch-Fuchs
- Wetsus, European centre of excellence for sustainable water technology, Leeuwarden, Netherlands; Medical University of Graz, Institute of Hygiene, Microbiology and Environmental Medicine, Graz, Austria
| | | | - Gert-Jan W Euverink
- Faculty of mathematics and natural sciences, products and processes for biotechnology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Modification of a High-Throughput Automatic Microbial Cell Enumeration System for Shipboard Analyses. Appl Environ Microbiol 2016; 82:3289-3296. [PMID: 27016562 DOI: 10.1128/aem.03931-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/18/2016] [Indexed: 01/17/2023] Open
Abstract
In the age of ever-increasing "-omics" studies, the accurate and statistically robust determination of microbial cell numbers within often-complex samples remains a key task in microbial ecology. Microscopic quantification is still the only method to enumerate specific subgroups of microbial clades within complex communities by, for example, fluorescence in situ hybridization (FISH). In this study, we improved an existing automatic image acquisition and cell enumeration system and adapted it for usage at high seas on board an oceanographic research ship. The system was evaluated by testing settings such as minimal pixel area and image exposure times ashore under stable laboratory conditions before being brought on board and tested under various wind and wave conditions. The system was robust enough to produce high-quality images even with ship heaves of up to 3 m and pitch and roll angles of up to 6.3°. On board the research ship, on average, 25% of the images acquired from plankton samples on filter membranes could be used for cell enumeration. Automated enumeration was highly correlated with manual counts (r(2) > 0.9). Even the smallest of microbial cells in the open ocean, members of the alphaproteobacterial SAR11 clade, could be confidently detected and enumerated. The automated image acquisition and cell enumeration system developed here enables an accurate and reproducible determination of microbial cell counts in planktonic samples and allows insight into the abundance and distribution of specific microorganisms already on board within a few hours.IMPORTANCE In this research article, we report on a new system and software pipeline, which allows for an easy and quick image acquisition and the subsequent enumeration of cells in the acquired images. We put this pipeline through vigorous testing and compared it to manual microscopy counts of microbial cells on membrane filters. Furthermore, we tested this system at sea on board a marine research vessel and counted bacteria on board within a few hours after the retrieval of water samples. The imaging and counting system described here has been successfully applied to a number of laboratory-based studies and allowed the quantification of thousands of samples and FISH preparations (see, e.g., H. Teeling, B. M. Fuchs, D. Becher, C. Klockow, A. Gardebrecht, C. M. Bennke, M. Kassabgy, S. Huang, A. J. Mann, J. Waldmann, M. Weber, A. Klindworth, A. Otto, J. Lange, J. Bernhardt, C. Reinsch, M. Hecker, J. Peplies, F. D. Bockelmann, U. Callies, G. Gerdts, A. Wichels, K. H. Wiltshire, F. O. Glöckner, T. Schweder, and R. Amann, Science 336:608-611, 2012, http://dx.doi.org/10.1126/science.1218344). We adjusted the standard image acquisition software to withstand ship movements. This system will allow for more targeted sampling of the microbial community, leading to a better understanding of the role of microorganisms in the global oceans.
Collapse
|
22
|
Atia A, Gomaa A, Fliss I, Beyssac E, Garrait G, Subirade M. A prebiotic matrix for encapsulation of probiotics: physicochemical and microbiological study. J Microencapsul 2016; 33:89-101. [PMID: 26805512 DOI: 10.3109/02652048.2015.1134688] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aims to develop an encapsulated oral-synbiotic supplement by studying the effect of adding inulin in alginate beads and observing its ability to protect three probiotic strains: Pediocucus acidilactici, Lactobacillus reuteri and Lactobacillus salivarius. Beads of different inulin concentrations 0%, 5%, 10%, 15% and 20% (w/v) in 2% (w/v) alginate solution were prepared by the extrusion/ionotropic gelation method. Polymer distribution within beads was characterised using confocal laser scanning microscopy. Interactions between alginate and inulin were monitored by Fourier transform infra-red spectroscopy (FTIR). Effect of encapsulation on viability, antimicrobial ability, acid tolerance and bile tolerance of probiotic strains were investigated. Antimicrobial and probiotic properties of bacterial strains were not affected by encapsulation. Bacterial protection against acidity was increased by adding inulin. Beads with 5% w/v inulin were the most effective in bacterial protection against bile-salts. To our knowledge, this work is the first to use such high concentrations of inulin.
Collapse
Affiliation(s)
- Abdelbasset Atia
- a Institute of Nutrition and Functional Foods (INAF), Laval University , Quebec , QC , Canada
| | - Ahmed Gomaa
- a Institute of Nutrition and Functional Foods (INAF), Laval University , Quebec , QC , Canada ;,b Food Science and Nutrition Department , National Research Center , Cairo , Egypt
| | - Ismail Fliss
- a Institute of Nutrition and Functional Foods (INAF), Laval University , Quebec , QC , Canada
| | - Eric Beyssac
- c Faculté De Pharmacie , Université D'auvergne , Clermont-Ferrand , France
| | - Ghislain Garrait
- c Faculté De Pharmacie , Université D'auvergne , Clermont-Ferrand , France
| | - Muriel Subirade
- a Institute of Nutrition and Functional Foods (INAF), Laval University , Quebec , QC , Canada
| |
Collapse
|
23
|
Gallo G, Renzone G, Palazzotto E, Monciardini P, Arena S, Faddetta T, Giardina A, Alduina R, Weber T, Sangiorgi F, Russo A, Spinelli G, Sosio M, Scaloni A, Puglia AM. Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024. BMC Genomics 2016; 17:42. [PMID: 26754974 PMCID: PMC4709908 DOI: 10.1186/s12864-016-2369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 01/06/2016] [Indexed: 11/24/2022] Open
Abstract
Background The filamentous actinomycete Microbispora ATCC-PTA-5024 produces the lantibiotic NAI-107, which is an antibiotic peptide effective against multidrug-resistant Gram-positive bacteria. In actinomycetes, antibiotic production is often associated with a physiological differentiation program controlled by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two-dimensional difference in gel electrophoresis, mass spectrometry and gene ontology approaches. Results Microbispora ATCC-PTA-5024 cultivations in a complex medium were characterized by stages of biomass accumulation (A) followed by biomass yield decline (D). NAI-107 production started at 90 h (A stage), reached a maximum at 140 h (D stage) and decreased thereafter. To reveal patterns of differentially represented proteins associated with NAI-107 production onset and maintenance, differential proteomic analyses were carried-out on biomass samples collected: i) before (66 h) and during (90 h) NAI-107 production at A stage; ii) during three time-points (117, 140, and 162 h) at D stage characterized by different profiles of NAI-107 yield accumulation (117 and 140 h) and decrement (162 h). Regulatory, metabolic and unknown-function proteins, were identified and functionally clustered, revealing that nutritional signals, regulatory cascades and primary metabolism shift-down trigger the accumulation of protein components involved in nitrogen and phosphate metabolism, cell wall biosynthesis/maturation, lipid metabolism, osmotic stress response, multi-drug resistance, and NAI-107 transport. The stimulating role on physiological differentiation of a TetR-like regulator, originally identified in this study, was confirmed by the construction of an over-expressing strain. Finally, the possible role of cellular response to membrane stability alterations and of multi-drug resistance ABC transporters as additional self-resistance mechanisms toward the lantibiotic was confirmed by proteomic and confocal microscopy experiments on a Microbispora ATCC-PTA-5024 lantibiotic-null producer strain which was exposed to an externally-added amount of NAI-107 during growth. Conclusion This study provides a net contribution to the elucidation of the regulatory, metabolic and molecular patterns controlling physiological differentiation in Microbispora ATCC-PTA-5024, supporting the relevance of proteomics in revealing protein players of antibiotic biosynthesis in actinomycetes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2369-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy.
| | - Giovanni Renzone
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Emilia Palazzotto
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | | | - Simona Arena
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Teresa Faddetta
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Anna Giardina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Rosa Alduina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.,German Center for Infection Research (DZIF) partner site Tübingen, 72074, Tübingen, Germany
| | - Fabio Sangiorgi
- Sistema Informativo di Ateneo (SIA), Area Servizi di Rete, University of Palermo, 90128, Palermo, Italy
| | - Alessandro Russo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Giovanni Spinelli
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | | | - Andrea Scaloni
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
24
|
van Elsland DM, Bos E, de Boer W, Overkleeft HS, Koster AJ, van Kasteren SI. Detection of bioorthogonal groups by correlative light and electron microscopy allows imaging of degraded bacteria in phagocytes. Chem Sci 2016; 7:752-758. [PMID: 28791116 PMCID: PMC5529995 DOI: 10.1039/c5sc02905h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/21/2015] [Indexed: 01/07/2023] Open
Abstract
The interaction between parasites and phagocytic immune cells is a key inter-species interaction in biology. Normally, phagocytosis results in the killing of invaders, but obligate intracellular parasites hijack the pathway to ensure their survival and replication. The in situ study of these parasites in the phagocytic pathway is very difficult, as genetic modification is often complicated and, if successful, only allows the tracking of pathogen phagocytosis up until the degradation of the engineered reporter constructs. Here we combine bioorthogonal chemistry with correlative light-electron microscopy (CLEM) to follow bacterial processing in the phagolysosomal system. Labelled bacteria are produced using bioorthogonal non-canonical amino tagging (BONCAT), precluding the need for any genetic modification. The bacterial proteome - even during degradation - was then visualised using a novel CLEM-based approach. This allowed us to obtain high resolution information about the subcellular location of the degrading bacteria, even after the proteolytic degradation of reporter constructs. To further explore the potential of CLEM-based imaging of bioorthogonal functionalities, azide-labelled glycans were imaged by this same approach, as well as active-subpopulations of enzymes using a 2-step activity-based protein profiling strategy.
Collapse
Affiliation(s)
- Daphne M van Elsland
- Division of Bio-organic Synthesis , Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands .
- Institute for Chemical Immunology , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands
| | - Erik Bos
- Department of Molecular Cell Biology , Section Electron Microscopy , Leiden University Medical Center , Leiden , The Netherlands .
| | - Wouter de Boer
- Division of Bio-organic Synthesis , Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands .
- Institute for Chemical Immunology , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands
| | - Herman S Overkleeft
- Division of Bio-organic Synthesis , Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands .
- Institute for Chemical Immunology , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology , Section Electron Microscopy , Leiden University Medical Center , Leiden , The Netherlands .
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis , Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands .
- Institute for Chemical Immunology , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands
| |
Collapse
|
25
|
Liu D, Zhang L, Xue W, Wang Y, Ju J, Zhao B. Knockout of the alanine racemase gene inAeromonas hydrophilaHBNUAh01 results in cell wall damage and enhanced membrane permeability. FEMS Microbiol Lett 2015; 362:fnv089. [DOI: 10.1093/femsle/fnv089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 11/14/2022] Open
|
26
|
Silva TP, Noyma NP, Duque TLA, Gamalier JP, Vidal LO, Lobão LM, Chiarini-Garcia H, Roland F, Melo RCN. Visualizing aquatic bacteria by light and transmission electron microscopy. Antonie van Leeuwenhoek 2013; 105:1-14. [PMID: 24132727 DOI: 10.1007/s10482-013-0047-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.
Collapse
Affiliation(s)
- Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Molecular studies neglect apparently gram-negative populations in the human gut microbiota. J Clin Microbiol 2013; 51:3286-93. [PMID: 23885002 DOI: 10.1128/jcm.00473-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studying the relationships between gut microbiota, human health, and diseases is a major challenge that generates contradictory results. Most studies draw conclusions about the gut repertoire using a single biased metagenomics approach. We analyzed 16 different stool samples collected from healthy subjects who were from different areas, had metabolic disorders, were immunocompromised, or were treated with antibiotics at the time of the stool collection. The analyses performed included Gram staining, flow cytometry, transmission electron microscopy (TEM), quantitative real-time PCR (qPCR) of the Bacteroidetes and Firmicutes phyla, and pyrosequencing of the 16S rRNA gene amplicons targeting the V6 region. We quantified 10(10) prokaryotes per gram of feces, which is less than was previously described. The Mann-Whitney test revealed that Gram-negative proportions of the prokaryotes obtained by Gram staining, TEM, and pyrosequencing differed according to the analysis used, with Gram-negative prokaryotes yielding median percentages of 70.6%, 31.0%, and 16.4%, respectively. A comparison of TEM and pyrosequencing analyses highlighted a difference of 14.6% in the identification of Gram-negative prokaryotes, and a Spearman test showed a tendency toward correlation, albeit not significant, in the Gram-negative/Gram-positive prokaryote ratio (ρ = 0.3282, P = 0.2146). In contrast, when comparing the qPCR and pyrosequencing results, a significant correlation was found for the Bacteroidetes/Firmicutes ratio (ρ = 0.6057, P = 0.0130). Our study showed that the entire diversity of the human gut microbiota remains unknown because different techniques generate extremely different results. We found that to assess the overall composition of bacterial communities, multiple techniques must be combined. The biases that exist for each technique may be useful in exploring the major discrepancies in molecular studies.
Collapse
|
29
|
Franklin RB, Campbell AH, Higgins CB, Barker MK, Brown BL. Enumerating bacterial cells on bioadhesive coated slides. J Microbiol Methods 2011; 87:154-60. [DOI: 10.1016/j.mimet.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/17/2011] [Accepted: 08/21/2011] [Indexed: 11/24/2022]
|
30
|
Zeder M, Kohler E, Zeder L, Pernthaler J. A novel algorithm for the determination of bacterial cell volumes that is unbiased by cell morphology. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:799-809. [PMID: 21910938 DOI: 10.1017/s1431927611012104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The determination of cell volumes and biomass offers a means of comparing the standing stocks of auto- and heterotrophic microbes of vastly different sizes for applications including the assessment of the flux of organic carbon within aquatic ecosystems. Conclusions about the importance of particular genotypes within microbial communities (e.g., of filamentous bacteria) may strongly depend on whether their contribution to total abundance or to biomass is regarded. Fluorescence microscopy and image analysis are suitable tools for determining bacterial biomass that moreover hold the potential to replace labor-intensive manual measurements by fully automated approaches. However, the current approaches to calculate bacterial cell volumes from digital images are intrinsically biased by the models that are used to approximate the morphology of the cells. Therefore, we developed a generic contour based algorithm to reconstruct the volumes of prokaryotic cells from two-dimensional representations (i.e., microscopic images) irrespective of their shape. Geometric models of commonly encountered bacterial morphotypes were used to verify the algorithm and to compare its performance with previously described approaches. The algorithm is embedded in a freely available computer program that is able to process both raw (8-bit grayscale) and thresholded (binary) images in a fully automated manner.
Collapse
Affiliation(s)
- M Zeder
- Max Planck Institute for Marine Microbiology, Department of Molecular Ecology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | |
Collapse
|
31
|
Novel model for multispecies biofilms that uses rigid gas-permeable lenses. Appl Environ Microbiol 2011; 77:3413-21. [PMID: 21421785 DOI: 10.1128/aem.00039-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.
Collapse
|