1
|
Duša F, Šalplachta J, Horká M, Lunerová K, Čermáková V, Dřevínek M, Kubíček O. Isoelectric Focusing Fractionation Method for Signal Enhancement in Detection of Inactivated Biological Agents Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Electrophoresis 2025. [PMID: 39748447 DOI: 10.1002/elps.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Timely identification of highly pathogenic bacteria is crucial for efficient mitigation of the connected harmful health effects. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of intact cells enables fast identification of the microorganisms based on their mass spectrometry protein fingerprint profiles. However, the MALDI-TOF MS examination must be preceded by a time-demanding cultivation of the native bacteria to isolate representative cell samples to obtain indicative fingerprints. Isoelectric focusing (IEF) is capable of separating bacterial cells according to their isoelectric point while effectively removing other non-focusing compounds from sample matrix. In this work, we present a divergent-flow IEF chip (DF-IEF chip) fractionation as an alternative way for sample clean-up and concentration of bacterial cells to prepare samples usable for following MALDI-TOF MS analysis without the need of time-demanding cultivation. By means of DF-IEF chip method, we processed four species of highly pathogenic bacteria (Bacillus anthracis, Brucella abortus, Burkholderia mallei, and Yersinia pestis) inactivated with H2O2 vapors or by heat treatment at 62.5°C for 24 h. The DF-IEF chip method continually separated and concentrated the inactivated bacterial cells for subsequent detection using MALDI-TOF MS. The content of the inactivated bacteria in the DF-IEF chip fractions was evaluated with the MS analysis, where inactivated Y. pestis was found to be the most efficiently focusing species. Sensitivity analysis showed limits as low as 2 × 105 colony forming units per mL for inactivated B. anthracis.
Collapse
Affiliation(s)
- Filip Duša
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Šalplachta
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marie Horká
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Lunerová
- National Institute for Nuclear, Chemical and Biological Protection, Kamenna, Czech Republic
| | - Veronika Čermáková
- National Institute for Nuclear, Chemical and Biological Protection, Kamenna, Czech Republic
| | - Michal Dřevínek
- National Institute for Nuclear, Chemical and Biological Protection, Kamenna, Czech Republic
| | - Oldřich Kubíček
- National Institute for Nuclear, Chemical and Biological Protection, Kamenna, Czech Republic
| |
Collapse
|
2
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
3
|
Braun P, Rupprich N, Neif D, Grass G. Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies. Viruses 2021; 13:1462. [PMID: 34452328 PMCID: PMC8402711 DOI: 10.3390/v13081462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteriophage receptor binding proteins (RBPs) are employed by viruses to recognize specific surface structures on bacterial host cells. Recombinant RBPs have been utilized for detection of several pathogens, typically as fusions with reporter enzymes or fluorescent proteins. Identification of Bacillus anthracis, the etiological agent of anthrax, can be difficult because of the bacterium's close relationship with other species of the Bacillus cereussensu lato group. Here, we facilitated the identification of B. anthracis using two implementations of enzyme-linked phage receptor binding protein assays (ELPRA). We developed a single-tube centrifugation assay simplifying the rapid analysis of suspect colonies. A second assay enables identification of suspect colonies from mixed overgrown solid (agar) media derived from the complex matrix soil. Thus, these tests identified vegetative cells of B. anthracis with little processing time and may support or confirm pathogen detection by molecular methods such as polymerase chain reaction.
Collapse
Affiliation(s)
| | | | | | - Gregor Grass
- Department of Bacteriology and Toxinology, Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (P.B.); (N.R.); (D.N.)
| |
Collapse
|
4
|
Ayhan K, Coşansu S, Orhan-Yanıkan E, Gülseren G. Advance methods for the qualitative and quantitative determination of microorganisms. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Manzulli V, Rondinone V, Buchicchio A, Serrecchia L, Cipolletta D, Fasanella A, Parisi A, Difato L, Iatarola M, Aceti A, Poppa E, Tolve F, Pace L, Petruzzi F, Rovere ID, Raele DA, Del Sambro L, Giangrossi L, Galante D. Discrimination of Bacillus cereus Group Members by MALDI-TOF Mass Spectrometry. Microorganisms 2021; 9:microorganisms9061202. [PMID: 34199368 PMCID: PMC8228078 DOI: 10.3390/microorganisms9061202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022] Open
Abstract
Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry (MALDI-TOF MS) technology is currently increasingly used in diagnostic laboratories as a cost effective, rapid and reliable routine technique for the identification and typing of microorganisms. In this study, we used MALDI-TOF MS to analyze a collection of 160 strains belonging to the Bacillus cereus group (57 B. anthracis, 49 B. cereus, 1 B. mycoides, 18 B. wiedmannii, 27 B. thuringiensis, 7 B. toyonensis and 1 B. weihenstephanensis) and to detect specific biomarkers which would allow an unequivocal identification. The Main Spectra Profiles (MSPs) were added to an in-house reference library, expanding the current commercial library which does not include B. toyonensis and B. wiedmannii mass spectra. The obtained mass spectra were statistically compared by Principal Component Analysis (PCA) that revealed seven different clusters. Moreover, for the identification purpose, were generated dedicate algorithms for a rapid and automatic detection of characteristic ion peaks after the mass spectra acquisition. The presence of specific biomarkers can be used to differentiate strains within the B. cereus group and to make a reliable identification of Bacillus anthracis, etiologic agent of anthrax, which is the most pathogenic and feared bacterium of the group. This could offer a critical time advantage for the diagnosis and for the clinical management of human anthrax even in case of bioterror attacks.
Collapse
Affiliation(s)
- Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
- Correspondence: ; Tel.: +39-0881-786330
| | - Alessandro Buchicchio
- Bruker Italia s.r.l., Daltonics Division, Strada Cluentina, 26/R, 62100 Macerata, Italy;
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Dora Cipolletta
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Laura Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Michela Iatarola
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Angela Aceti
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Elena Poppa
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Francesco Tolve
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Lorenzo Pace
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Fiorenza Petruzzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Ines Della Rovere
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Donato Antonio Raele
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Luigi Giangrossi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| |
Collapse
|
6
|
Sabna S, Kamboj DV, Kumar RB, Babele P, Rajoria S, Gupta MK, Alam SI. Strategy for the enrichment of protein biomarkers from diverse bacterial select agents. Protein Pept Lett 2021; 28:1071-1082. [PMID: 33820508 DOI: 10.2174/0929866528666210405160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002. India
| |
Collapse
|
7
|
Sabna S, Kamboj DV, Rajoria S, Kumar RB, Babele P, Goel AK, Tuteja U, Gupta MK, Alam SI. Protein biomarker elucidation for the verification of biological agents in the taxonomic group of Gammaproteobacteria using tandem mass spectrometry. World J Microbiol Biotechnol 2021; 37:74. [PMID: 33779874 DOI: 10.1007/s11274-021-03039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Some pathogenic microbes can be used for nefarious applications and instigate population-based fear. In a bio-threat scenario, rapid and accurate methods to detect biological agents in a wide range of complex environmental and clinical matrices, is of paramount importance for the implementation of mitigation protocols and medical countermeasures. This study describes targeted and shot-gun tandem MS based approaches for the verification of biological agents from the environmental samples. The marker proteins and peptides were elucidated by an exhaustive literature mining, in silico analysis of prioritized proteins, and MS/MS analysis of abundant proteins from selected bacterial species. For the shot-gun methodology, tandem MS analysis of abundant peptides was carried from spiked samples. The validation experiments employing a combination of shot-gun tandem MS analysis and a targeted search reported here is a proof of concept to show the applicability of the methodology for the unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ajay Kumar Goel
- Bioprocess Technology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
8
|
Novel Strategy for Rapidly and Safely Distinguishing Bacillus anthracis and Bacillus cereus by Use of Peptide Mass Fingerprints Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2020; 59:JCM.02358-20. [PMID: 33115846 DOI: 10.1128/jcm.02358-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to construct a rapid, high-throughput, and biosafety-compatible screening method for Bacillus anthracis and Bacillus cereus based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and generate a classification model based on a genetic algorithm (GA) to differentiate between different Bacillus anthracis and Bacillus cereus isolates. Thirty Bacillus anthracis and 19 Bacillus cereus strains were used to construct and analyze the model, and 40 Bacillus strains were used for validation. For the GA screening model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra, and the recognition capability values, which reflect the model's ability to correctly identify its component spectra, were all 100%. This model contained 10 biomarker peaks (m/z 3,339.9, 3,396.3, 3,682.4, 5,476.7, 6,610.6, 6,680.1, 7,365.3, 7,792.4, 9,475.8, and 10,934.1) used to correctly identify 28 Bacillus anthracis and 12 Bacillus cereus isolates from 40 Bacillus isolates, with a sensitivity and specificity of 100%. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for screening Bacillus anthracis and Bacillus cereus strains.
Collapse
|
9
|
Lasch P, Schneider A, Blumenscheit C, Doellinger J. Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS 1) and in Silico Peptide Mass Libraries. Mol Cell Proteomics 2020; 19:2125-2139. [PMID: 32998977 PMCID: PMC7710138 DOI: 10.1074/mcp.tir120.002061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Over the past decade, modern methods of MS (MS) have emerged that allow reliable, fast and cost-effective identification of pathogenic microorganisms. Although MALDI-TOF MS has already revolutionized the way microorganisms are identified, recent years have witnessed also substantial progress in the development of liquid chromatography (LC)-MS based proteomics for microbiological applications. For example, LC-tandem MS (LC-MS2) has been proposed for microbial characterization by means of multiple discriminative peptides that enable identification at the species, or sometimes at the strain level. However, such investigations can be laborious and time-consuming, especially if the experimental LC-MS2 data are tested against sequence databases covering a broad panel of different microbiological taxa. In this proof of concept study, we present an alternative bottom-up proteomics method for microbial identification. The proposed approach involves efficient extraction of proteins from cultivated microbial cells, digestion by trypsin and LC-MS measurements. Peptide masses are then extracted from MS1 data and systematically tested against an in silico library of all possible peptide mass data compiled in-house. The library has been computed from the UniProt Knowledgebase covering Swiss-Prot and TrEMBL databases and comprises more than 12,000 strain-specific in silico profiles, each containing tens of thousands of peptide mass entries. Identification analysis involves computation of score values derived from correlation coefficients between experimental and strain-specific in silico peptide mass profiles and compilation of score ranking lists. The taxonomic positions of the microbial samples are then determined by using the best-matching database entries. The suggested method is computationally efficient - less than 2 mins per sample - and has been successfully tested by a test set of 39 LC-MS1 peak lists obtained from 19 different microbial pathogens. The proposed method is rapid, simple and automatable and we foresee wide application potential for future microbiological applications.
Collapse
Affiliation(s)
- Peter Lasch
- Robert Koch-Institute, ZBS6, Proteomics and Spectroscopy, Berlin, Germany.
| | - Andy Schneider
- Robert Koch-Institute, ZBS6, Proteomics and Spectroscopy, Berlin, Germany
| | | | - Joerg Doellinger
- Robert Koch-Institute, ZBS6, Proteomics and Spectroscopy, Berlin, Germany
| |
Collapse
|
10
|
Elucidation of protein biomarkers for verification of selected biological warfare agents using tandem mass spectrometry. Sci Rep 2020; 10:2205. [PMID: 32042063 PMCID: PMC7010682 DOI: 10.1038/s41598-020-59156-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Some pathogens and toxins have the potential to be used as weapons of mass destruction and instigate population-based fear. Efforts to mitigate biothreat require development of efficient countermeasures which in turn relies on fast and accurate methods to detect the biological agents in a range of complex matrices including environmental and clinical samples. We report here an mass spectrometry (MS) based methodology, employing both targeted and shot-gun approaches for the verification of biological agents from the environmental samples. Our shot-gun methodology relied on tandem MS analysis of abundant peptides from the spiked samples, whereas, the targeted method was based on an extensive elucidation of marker proteins and unique peptides resulting in the generation of an inclusion list of masses reflecting relevant peptides for the unambiguous identification of nine bacterial species [listed as priority agents of bioterrorism by Centre for Disease Control and Prevention (CDC)] belonging to phylogenetically diverse genera. The marker peptides were elucidated by extensive literature mining, in silico analysis, and tandem MS (MS/MS) analysis of abundant proteins of the cultivated bacterial species in our laboratory. A combination of shot-gun MS/MS analysis and the targeted search using a panel of unique peptides is likely to provide unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples. The comprehensive list of peptides reflected in the inclusion list, makes a valuable resource for the multiplex analysis of select biothreat agents and further development of targeted MS/MS assays.
Collapse
|
11
|
Zasada AA. Detection and Identification of Bacillus anthracis: From Conventional to Molecular Microbiology Methods. Microorganisms 2020; 8:E125. [PMID: 31963339 PMCID: PMC7023132 DOI: 10.3390/microorganisms8010125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Rapid and reliable identification of Bacillus anthracis is of great importance, especially in the event of suspected deliberate release of anthrax spores. However, the identification of B. anthracis is challenging due to its high similarity to closely related species. Since Amerithrax in 2001, a lot of effort has been made to develop rapid methods for detection and identification of this microorganism with special focus on easy-to-perform rapid tests for first-line responders. This article presents an overview of the evolution of B. anthracis identification methods from the time of the first description of the microorganism until the present day.
Collapse
Affiliation(s)
- Aleksandra A Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| |
Collapse
|
12
|
MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:27-43. [DOI: 10.1007/978-3-030-15950-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents. Anal Biochem 2018; 560:60-66. [DOI: 10.1016/j.ab.2018.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
|
14
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
15
|
Improved Discrimination of Bacillus anthracis from Closely Related Species in the Bacillus cereus Sensu Lato Group Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2018. [PMID: 29514939 DOI: 10.1128/jcm.01900-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Discrimination of highly pathogenic bacteria, such as Bacillus anthracis, from closely related species based on molecular biological methods is challenging. We applied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to a collection of B. anthracis strains and close relatives in order to significantly improve the statistical confidence of identification results for this group of bacteria. Protein mass spectra of 189 verified and diverse Bacillus strains of the Bacillus cereus sensu lato group were generated using MALDI-TOF MS and subsequently analyzed with supervised and unsupervised statistical methods, such as shrinkage discriminant analysis (SDA) and principal-component analysis (PCA). We aimed at identifying specific biomarkers in the protein spectra of B. anthracis not present in closely related Bacillus species. We could identify 7, 10, 18, and 14 B. anthracis-specific biomarker candidates that were absent in B. cereus, B. mycoides, B. thuringiensis, and B. weihenstephanensis strains, respectively. Main spectra (MSP) of a defined collection of Bacillus strains were compiled using the Bruker Biotyper software and added to an in-house reference library. Reevaluation of this library with 15 hitherto untested strains of B. anthracis and B. cereus yielded improved score values. The B. anthracis strains were identified with score values between 2.33 and 2.55 using the in-house database, while the same strains were identified with scores between 1.94 and 2.37 using the commercial database, and no false-positive identifications occurred using the in-house database.
Collapse
|
16
|
Shu LJ, Yang YL. Bacillus Classification Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry-Effects of Culture Conditions. Sci Rep 2017; 7:15546. [PMID: 29138467 PMCID: PMC5686160 DOI: 10.1038/s41598-017-15808-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a reliable and rapid technique applied widely in the identification and classification of microbes. MALDI-TOF MS has been used to identify many endospore-forming Bacillus species; however, endospores affect the identification accuracy when using MALDI-TOF MS because they change the protein composition of samples. Since culture conditions directly influence endospore formation and Bacillus growth, in this study we clarified how culture conditions influence the classification of Bacillus species by using MALDI-TOF MS. We analyzed members of the Bacillus subtilis group and Bacillus cereus group using different incubation periods, temperatures and media. Incubation period was found to affect mass spectra due to endospores which were observed mixing with vegetative cells after 24 hours. Culture temperature also resulted in different mass spectra profiles depending on the temperature best suited growth and sporulation. Conversely, the four common media for Bacillus incubation, Luria-Bertani agar, nutrient agar, plate count agar and brain-heart infusion agar did not result in any significant differences in mass spectra profiles. Profiles in the range m/z 1000-3000 were found to provide additional data to the standard ribosomal peptide/protein region m/z 3000-15000 profiles to enable easier differentiation of some highly similar species and the identification of new strains under fresh culture conditions. In summary, control of culture conditions is vital for Bacillus identification and classification by MALDI-TOF MS.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
17
|
Schwarz NG, Loderstaedt U, Hahn A, Hinz R, Zautner AE, Eibach D, Fischer M, Hagen RM, Frickmann H. Microbiological laboratory diagnostics of neglected zoonotic diseases (NZDs). Acta Trop 2017; 165:40-65. [PMID: 26391646 DOI: 10.1016/j.actatropica.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
This review reports on laboratory diagnostic approaches for selected, highly pathogenic neglected zoonotic diseases, i.e. anthrax, bovine tuberculosis, brucellosis, echinococcosis, leishmaniasis, rabies, Taenia solium-associated diseases (neuro-/cysticercosis & taeniasis) and trypanosomiasis. Diagnostic options, including microscopy, culture, matrix-assisted laser-desorption-ionisation time-of-flight mass spectrometry, molecular approaches and serology are introduced. These procedures are critically discussed regarding their diagnostic reliability and state of evaluation. For rare diseases reliable evaluation data are scarce due to the rarity of samples. If bio-safety level 3 is required for cultural growth, but such high standards of laboratory infrastructure are not available, serological and molecular approaches from inactivated sample material might be alternatives. Multiple subsequent testing using various test platforms in a stepwise approach may improve sensitivity and specificity. Cheap and easy to use tests, usually called "rapid diagnostic tests" (RDTs) may impact disease control measures, but should not preclude developing countries from state of the art diagnostics.
Collapse
|
18
|
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the identification of highly pathogenic bacteria. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
20
|
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Zhang L, Gao Y, Lai L, Li SFY. Whole-cell-based identification of electrochemically active bacteria in microbial fuel cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2211-2218. [PMID: 26522312 DOI: 10.1002/rcm.7387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/06/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Electrochemically active bacteria (EAB) that are capable of producing electricity from renewable biomass and organic wastes have been of particular interest in recent years. Methods for selective enrichment, accurate identification and easy acquisition of EAB fingerprints for phylogenetic characterization would facilitate utilization of these bioenergy-producing species in practical environmental engineering applications. METHODS Electricigens/exoelectrogens were selectively enriched from domestic wastewater in a microbial fuel cell (MFC). Whole EAB cell-derived mass spectra were obtained with simple agar incubation for 24 h and subsequent release of proteins by 25% formic acid (FA) and ultrasonication. Mass fingerprints of EAB were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and species-specific analyses were completed by using the Spectral ARchive and Microbial Identification System (SARAMIS). RESULTS EAB could be discriminated by clustering of MALDI-TOF/TOF-MS results. Different species in mixtures originating from domestic sewage could be identified unambiguously at 99.90% confidence. Five species, namely Klebsiella oxytoca (K. oxytoca), Comamonas testosterone (C. testosterone), Pseudomonas putida (P. putida), Klebsiella pneumonia (K. pneumonia) and Raoultella ornithinolytica (R. ornithinolytica), that are known to be of clinical significance, were found to be enriched in MFCs and determined as high power-producing species. By using an agglomerative clustering algorithm to compute spectral similarity and diversity, a dendrogram was constructed to illustrate the phylogenetic relationships for EAB on the basis of mass spectral analyses. CONCLUSIONS An integrated method based on MFC-enrichment, agar-cultivation and MALDI-TOF/TOF-MS identification of whole-cell-extracted proteins has been proved to be a simple, rapid and reliable approach for rapid identification and routine inspection of EAB. Mixed phyla can be analyzed at species level to provide phylogenetic information on the highly efficient bacteria generating electricity from domestic wastewater.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yan Gao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Linke Lai
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore
| |
Collapse
|
22
|
Shivakiran MS, Venkataramana M, Lakshmana Rao PV. Rapid onsite detection of bacterial spores of biothreat importance by paper-based colorimetric method using erbium–pyrocatechol violet complex. Appl Microbiol Biotechnol 2015; 100:893-901. [DOI: 10.1007/s00253-015-7151-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 01/26/2023]
|
23
|
van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 2015; 12:595-605. [DOI: 10.1586/14789450.2015.1091731] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial. J Clin Microbiol 2015; 53:2632-40. [PMID: 26063856 DOI: 10.1128/jcm.00813-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023] Open
Abstract
In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification.
Collapse
|
25
|
Schumann P, Maier T. MALDI-TOF Mass Spectrometry Applied to Classification and Identification of Bacteria. METHODS IN MICROBIOLOGY 2014. [DOI: 10.1016/bs.mim.2014.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Dudley E. MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:33-58. [DOI: 10.1007/978-3-319-06068-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Bacillus cereus Sensu Lato Genomes: Basis for Identifying Anthrax Disease Strain Sources. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00790-13. [PMID: 24092785 PMCID: PMC3790089 DOI: 10.1128/genomea.00790-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|