1
|
Nawrocki EM, Kudva IT, Dudley EG. Investigating the adherence factors of Escherichia coli at the bovine recto-anal junction. Microbiol Spectr 2024; 12:e0127024. [PMID: 39329486 PMCID: PMC11540155 DOI: 10.1128/spectrum.01270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens that result in thousands of hospitalizations each year in the United States. Cattle, the natural reservoir, harbor STEC asymptomatically at the recto-anal junction (RAJ). The molecular mechanisms that allow STEC and non-STEC E. coli to adhere to the RAJ are not fully understood, in part because most adherence studies utilize human cell culture models. To identify a set of bovine-specific E. coli adherence factors, we used the primary RAJ squamous epithelial (RSE) cell-adherence assay to coculture RSE cells from healthy Holstein cattle with diverse E. coli strains from bovine and nonbovine sources. We hypothesized that a comparative genomic analysis of the strains would reveal factors associated with RSE adherence. After performing adherence assays with historical strains from the E. coli Reference Center (n = 62) and strains newly isolated from the RAJ (n = 15), we used the bioinformatic tool Roary to create a pangenome of this collection. We classified strains as either low or high adherence and using the Scoary program compiled a list of accessory genes correlated with the "high adherence" strains. While none of the correlations were statistically significant, several gene clusters were associated with the high-adherence phenotype, including two that encode uncharacterized proteins. We also demonstrated that non-STEC E. coli strains from the RAJ are more adherent than other isolates and can outcompete STEC in coculture with RSEs. Further analysis of adherence-associated gene clusters may lead to an improved understanding of the molecular mechanisms of RSE adherence and may help develop probiotics targeting STEC in cattle. IMPORTANCE E. coli strains that produce Shiga toxin cause foodborne illness in humans but colonize cattle asymptomatically. The molecular mechanisms that E. coli uses to adhere to cattle cells are largely unknown. Various strategies are used to control E. coli in livestock and limit the risk of outbreaks. These include vaccinating animals against common E. coli strains and supplementing their feed with probiotics to reduce the carriage of pathogens. No strategy is completely effective, and probiotics often fail to colonize the animals. We sought to clarify the genes required for E. coli adherence in cattle by quantifying the attachment to bovine cells in a diverse set of bacteria. We also isolated nonpathogenic E. coli from healthy cows and showed that a representative isolate could outcompete pathogenic strains in cocultures. We propose that the focused study of these strains and their adherence factors will better inform the design of probiotics and vaccines for livestock.
Collapse
Affiliation(s)
- Erin M. Nawrocki
- Department of Food
Science, The Pennsylvania State
University, University Park,
Pennsylvania, USA
| | - Indira T. Kudva
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agriculture Research Service, U.S. Department of
Agriculture, Ames,
Iowa, USA
| | - Edward G. Dudley
- Department of Food
Science, The Pennsylvania State
University, University Park,
Pennsylvania, USA
- E. coli Reference
Center, The Pennsylvania State
University, University Park,
Pennsylvania, USA
| |
Collapse
|
2
|
Tapia-Pastrana G, Rojas-Bautista M, Hernández-Pérez P, Santiago-Martínez O, Gómez-Rodríguez LC, Terrazas-Luna VM, Montes-Yedra J, Bautista-Avendaño AA, García-López ES, Leon-Sicairos N, Angulo-Zamudio UA, Canizalez-Roman A. Virulence genes, antimicrobial resistance profile, phylotyping and pathotyping of diarrheagenic Escherichia coli isolated from children in Southwest Mexico. PLoS One 2024; 19:e0300304. [PMID: 38470897 DOI: 10.1371/journal.pone.0300304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Diarrheagenic E. coli (DEC) strains are one of the most important etiology factors causing diarrhea in children worldwide, especially in developing countries. DEC strains have characteristic virulence factors; however, other supplemental virulence genes (SVG) may contribute to the development of diarrhea in children. Therefore, this study aimed to determine the prevalence of DEC in children with diarrhea in southwestern Mexico and to associate childhood symptoms, SVG, and pathotypes with diarrhea-causing DEC strains. DEC strains were isolated from 230 children with diarrhea aged 0-60 months from the state of Oaxaca, southwestern Mexico; clinical data were collected, and PCR was used to identify SVG and pathotypes. Antibiotic resistance profiling was performed on DEC strains. 63% of samples were DEC positive, single or combined infections (two (21%) or three strains (1.3%)) of aEPEC (51%), EAEC (10.2%), tEPEC (5.4%), DAEC (4.8%), ETEC (4.1%), EIEC (1.4%), or EHEC (0.7%) were found. Children aged ≤ 12 and 49-60 months and symptoms (e.g., fever and blood) were associated with DEC strains. SVG related to colonization (nleB-EHEC), cytotoxicity (sat-DAEC and espC-tEPEC), and proteolysis (pic-aEPEC) were associated with DECs strains. E. coli phylogroup A was the most frequent, and some pathotypes (aEPEC-A, DAEC-B), and SVG (espC-B2, and sat-D) were associated with the phylogroups. Over 79% of the DEC strains were resistant to antibiotics, and 40% were MDR and XDR, respectively. In conclusion aEPEC was the most prevalent pathotype in children with diarrhea in this region. SVG related to colonization, cytotoxicity, and proteolysis were associated with diarrhea-producing DEC strains, which may play an essential role in the development of diarrhea in children in southwestern Mexico.
Collapse
Affiliation(s)
- Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, Servicios de Salud, IMSS-Bienestar, Oaxaca, Mexico
| | - Metztli Rojas-Bautista
- Facultad de Ciencias Químicas de la Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juarez, Oaxaca, Mexico
| | - Pilar Hernández-Pérez
- Facultad de Ciencias Químicas de la Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juarez, Oaxaca, Mexico
| | - Olegario Santiago-Martínez
- Facultad de Ciencias Químicas de la Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juarez, Oaxaca, Mexico
| | - Lucía C Gómez-Rodríguez
- Facultad de Ciencias Químicas de la Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juarez, Oaxaca, Mexico
| | - Víctor M Terrazas-Luna
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, Servicios de Salud, IMSS-Bienestar, Oaxaca, Mexico
| | - Jacobo Montes-Yedra
- Departamento de Ciencias Básicas del Instituto Tecnológico del Valle de Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | - Alfonso A Bautista-Avendaño
- Departamento de Ciencias Básicas del Instituto Tecnológico del Valle de Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | | | - Nidia Leon-Sicairos
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
- Pediatric Hospital of Sinaloa, Culiacan, Sinaloa, Mexico
| | | | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
- The Women's Hospital, Secretariat of Health, Culiacan, Sinaloa, Mexico
| |
Collapse
|
3
|
Carter MQ, Quiñones B, Laniohan N, Carychao D, Pham A, He X, Cooley M. Pathogenicity assessment of Shiga toxin-producing Escherichia coli strains isolated from wild birds in a major agricultural region in California. Front Microbiol 2023; 14:1214081. [PMID: 37822735 PMCID: PMC10562709 DOI: 10.3389/fmicb.2023.1214081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one E. coli strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow (Corvus brachyrhynchos) strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird (Agelaius phoeniceus) strain RM14516 in phylogroup D with serotype O17:H18, were examined. Shiga toxin genes were identified in RM9088 (stx1a), RM10410 (stx1a + stx2d), and RM14516 (stx2a). Unlike STEC O157:H7 strain EDL933, none of the avian STEC strains harbored the pathogenicity islands OI-122, OI-57, and the locus of enterocyte effacement, therefore the type III secretion system biogenesis genes and related effector genes were absent in the three avian STEC genomes. Interestingly, all avian STEC strains exhibited greater (RM9088 and RM14516) or comparable (RM10410) cytotoxicity levels compared with EDL933. Comparative pathogenomic analyses revealed that RM9088 harbored numerous genes encoding toxins, toxins delivery systems, and adherence factors, including heat-labile enterotoxin, serine protease autotransporter toxin Pic, type VI secretion systems, protein adhesin Paa, fimbrial adhesin K88, and colonization factor antigen I. RM9088 also harbored a 36-Kb high pathogenicity island, which is related to iron acquisition and pathogenicity in Yersinia spp. Strain RM14516 carried an acid fitness island like the one in EDL933, containing a nine gene cluster involved in iron acquisition. Genes encoding extracellular serine protease EspP, subtilase cytotoxin, F1C fimbriae, and inverse autotransporter adhesin IatC were only detected in RM14516, and genes encoding serine protease autotransporter EspI and P fimbriae were only identified in RM10410. Although all curli genes were present in avian STEC strains, production of curli fimbriae was only detected for RM9088 and RM14516. Consistently, strong, moderate, and little biofilms were observed for RM9088, RM14516, and RM10410, respectively. Our study revealed novel combinations of virulence factors in two avian strains, which exhibited high level of cytotoxicity and strong biofilm formation. Comparative pathogenomics is powerful in assessing pathogenicity and health risk of STEC strains.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Nicole Laniohan
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Michael Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
4
|
Kudva IT, Biernbaum EN, Cassmann ED, Palmer MV. Bovine Rectoanal Junction In Vitro Organ Culture Model System to Study Shiga Toxin-Producing Escherichia coli Adherence. Microorganisms 2023; 11:1289. [PMID: 37317263 DOI: 10.3390/microorganisms11051289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Studies evaluating the interactions between Shiga toxin-producing Escherichia coli O157:H7 (O157) and the bovine recto-anal junction (RAJ) have been limited to either in vitro analyses of bacteria, cells, or nucleic acids at the RAJ, providing limited information. Alternatively, expensive in vivo studies in animals have been conducted. Therefore, our objective was to develop a comprehensive in vitro organ culture system of the RAJ (RAJ-IVOC) that accurately represents all cell types present in the RAJ. This system would enable studies that yield results similar to those observed in vivo. Pieces of RAJ tissue, obtained from unrelated cattle necropsies, were assembled and subjected to various tests in order to determine the optimal conditions for assaying bacterial adherence in a viable IVOC. O157 strain EDL933 and E. coli K12 with known adherence differences were used to standardize the RAJ-IVOC adherence assay. Tissue integrity was assessed using cell viability, structural cell markers, and histopathology, while the adherence of bacteria was evaluated via microscopy and culture methods. DNA fingerprinting verified the recovered bacteria against the inoculum. When the RAJ-IVOC was assembled in Dulbecco's Modified Eagle Medium, maintained at a temperature of 39 °C with 5% CO2 and gentle shaking for a duration of 3-4 h, it successfully preserved tissue integrity and reproduced the expected adherence phenotype of the bacteria being tested. The RAJ-IVOC model system provides a convenient method to pre-screen multiple bacteria-RAJ interactions prior to in vivo experiments, thereby reducing animal usage.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Erika N Biernbaum
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
5
|
Delago J, Miller EA, Flores-Figueroa C, Munoz-Aguayo J, Cardona C, Smith AH, Johnson TJ. Survey of clinical and commensal Escherichia coli from commercial broilers and turkeys, with emphasis on high-risk clones using APECTyper. Poult Sci 2023; 102:102712. [PMID: 37156077 DOI: 10.1016/j.psj.2023.102712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
Molecular characterization of avian pathogenic Escherichia coli (APEC) is challenging due to the complex nature of its associated disease, colibacillosis, in poultry. Numerous efforts have been made toward defining APEC, and it is becoming clear that certain clonal backgrounds are predictive of an avian E. coli isolate's virulence potential. Thus, APEC can be further differentiated as high-risk APEC based upon their clonal background's virulence potential. However, less clear is the degree of overlap between clinical isolates of differing bird type, and between clinical and gastrointestinal isolates. This study aimed to determine genomic similarities and differences between such populations, comparing commercial broiler vs. turkey isolates, and clinical vs. gastrointestinal isolates. Differences were observed in Clermont phylogenetic groups between isolate populations, with B2 as the dominant group in turkey clinical isolates and G as the dominant group in broiler clinical isolates. Nearly all clinical isolates were classified as APEC using a traditional gene-based typing scheme, whereas 53.4% and 44.1% of broiler and turkey gastrointestinal isolates were classified as APEC, respectively. High-risk APEC were identified among 31.0% and 46.9% of broiler and turkey clinical isolates, compared with 5.7% and 2.9% of broiler and turkey gastrointestinal isolates. As found in previous studies, no specific known virulence or fitness gene sets were identified which universally differentiate between clinical and gastrointestinal isolates. This study further demonstrates the utility of a hybrid APEC typing approach, considering both plasmid content and clonal background, for the identification of dominant and highly virulent APEC clones in poultry production.
Collapse
Affiliation(s)
- Jodi Delago
- Arm and Hammer Animal and Food Production, Waukesha, WI, 53186, USA
| | - Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | | | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA; Mid-Central Research and Outreach Center, University of Minnesota, Willmar, MN, USA.
| |
Collapse
|
6
|
Carter MQ, Laniohan N, Pham A, Quiñones B. Comparative genomic and phenotypic analyses of the virulence potential in Shiga toxin-producing Escherichia coli O121:H7 and O121:H10. Front Cell Infect Microbiol 2022; 12:1043726. [PMID: 36506028 PMCID: PMC9729726 DOI: 10.3389/fcimb.2022.1043726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O121 is among the top six non-O157 serogroups that are most frequently associated with severe disease in humans. While O121:H19 is predominant, other O121 serotypes have been frequently isolated from environmental samples, but their virulence repertoire is poorly characterized. Here, we sequenced the complete genomes of two animal isolates belonging to O121:H7 and O121:H10 and performed comparative genomic analysis with O121:H19 to assess their virulence potential. Both O121:H7 and O121:H10 strains carry a genome comparable in size with the O121:H19 genomes and belong to phylogroup B1. However, both strains appear to have evolved from a different lineage than the O121:H19 strains according to the core genes-based phylogeny and Multi Locus Sequence Typing. A systematic search of over 300 E. coli virulence genes listed in the Virulence Factor DataBase revealed a total of 73 and 71 in O121:H7 and O121:H10 strains, respectively, in comparison with an average of 135 in the O121:H19 strains. This variation in the virulence genes repertoire was mainly attributed to the reduction in the number of genes related to the Type III Secretion System in the O121:H7 and O121:H10 strains. Compared to the O121:H19 strains, the O121:H7 strain carries more adherence and toxin genes while the O121:H10 strain carries more genes related to the Type VI Secretion System. Although both O121:H7 and O121:H10 strains carry the large virulence plasmid pEHEC, they do not harbor all pEHEC virulence genes in O121:H19. Furthermore, unlike the O121:H19 strains, neither the O121:H7 nor O121:H10 strain carried the Locus of Enterocyte Effacement, OI-122, nor the tellurite resistance island. Although an incomplete Locus of Adhesion and Autoaggregation (LAA) was identified in the O121:H7 and O121:H10 strains, a limited number of virulence genes were present. Consistently, both O121:H7 and O121:H10 strains displayed significant reduced cytotoxicity than either the O157:H7 strain EDL933 or the O121:H19 strain RM8352. In fact, the O121:H7 strain RM8082 appeared to cause minimal cytotoxicity to Vero cells. Our study demonstrated distinct evolutionary lineages among the strains of serotypes O121:H19, O121:H10, and O121:H7 and suggested reduced virulence potentials in STEC strains of O121:H10 and O121:H7.
Collapse
|
7
|
Comparative Genomics Applied to Systematically Assess Pathogenicity Potential in Shiga Toxin-Producing Escherichia coli O145:H28. Microorganisms 2022; 10:microorganisms10050866. [PMID: 35630311 PMCID: PMC9144400 DOI: 10.3390/microorganisms10050866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145:H28 can cause severe disease in humans and is a predominant serotype in STEC O145 environmental isolates. Here, comparative genomics was applied to a set of clinical and environmental strains to systematically evaluate the pathogenicity potential in environmental strains. While the core genes-based tree separated all O145:H28 strains from the non O145:H28 reference strains, it failed to segregate environmental strains from the clinical. In contrast, the accessory genes-based tree placed all clinical strains in the same clade regardless of their genotypes or serotypes, apart from the environmental strains. Loss-of-function mutations were common in the virulence genes examined, with a high frequency in genes related to adherence, autotransporters, and the type three secretion system. Distinct differences in pathogenicity islands LEE, OI-122, and OI-57, the acid fitness island, and the tellurite resistance island were detected between the O145:H28 and reference strains. A great amount of genetic variation was detected in O145:H28, which was mainly attributed to deletions, insertions, and gene acquisition at several chromosomal “hot spots”. Our study demonstrated a distinct virulence gene repertoire among the STEC O145:H28 strains originating from the same geographical region and revealed unforeseen contributions of loss-of-function mutations to virulence evolution and genetic diversification in STEC.
Collapse
|
8
|
Meza-Segura M, Zaidi MB, Vera-Ponce de León A, Moran-Garcia N, Martinez-Romero E, Nataro JP, Estrada-Garcia T. New Insights Into DAEC and EAEC Pathogenesis and Phylogeny. Front Cell Infect Microbiol 2020; 10:572951. [PMID: 33178627 PMCID: PMC7593697 DOI: 10.3389/fcimb.2020.572951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Diarrheagenic E. coli can be separated into six distinct pathotypes, with enteroaggregative (EAEC) and diffusely-adherent E. coli (DAEC) among the least characterized. To gain additional insights into these two pathotypes we performed whole genome sequencing of ten DAEC, nine EAEC strains, isolated from Mexican children with diarrhea, and one EAEC plus one commensal E. coli strains isolated from an adult with diarrhea and a healthy child, respectively. These genome sequences were compared to 85 E. coli genomes available in public databases. The EAEC and DAEC strains segregated into multiple different clades; however, six clades were heavily or exclusively comprised of EAEC and DAEC strains, suggesting a phylogenetic relationship between these two pathotypes. EAEC strains harbored the typical virulence factors under control of the activator AggR, but also several toxins, bacteriocins, and other virulence factors. DAEC strains harbored several iron-scavenging systems, toxins, adhesins, and complement resistance or Immune system evasion factors that suggest a pathogenic paradigm for this poorly understood pathotype. Several virulence factors for both EAEC and DAEC were associated with clinical presentations, not only suggesting the importance of these factors, but also potentially indicating opportunities for intervention. Our studies provide new insights into two distinct but related diarrheagenic organisms.
Collapse
Affiliation(s)
- Mario Meza-Segura
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mussaret B Zaidi
- Infectious Diseases Research Unit, Hospital General O'Horan, Mérida, Mexico.,Department of Epidemiology and Biostatistics, Michigan State University, Lansing, MI, United States
| | | | - Nadia Moran-Garcia
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - James P Nataro
- Department of Pediatrics, University of Virginia, Charlottesville, VI, United States
| | - Teresa Estrada-Garcia
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
10
|
Melotto M, Brandl MT, Jacob C, Jay-Russell MT, Micallef SA, Warburton ML, Van Deynze A. Breeding Crops for Enhanced Food Safety. FRONTIERS IN PLANT SCIENCE 2020; 11:428. [PMID: 32351531 PMCID: PMC7176021 DOI: 10.3389/fpls.2020.00428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
An increasing global population demands a continuous supply of nutritious and safe food. Edible products can be contaminated with biological (e.g., bacteria, virus, protozoa), chemical (e.g., heavy metals, mycotoxins), and physical hazards during production, storage, transport, processing, and/or meal preparation. The substantial impact of foodborne disease outbreaks on public health and the economy has led to multidisciplinary research aimed to understand the biology underlying the different contamination processes and how to mitigate food hazards. Here we review the knowledge, opportunities, and challenges of plant breeding as a tool to enhance the food safety of plant-based food products. First, we discuss the significant effect of plant genotypic and phenotypic variation in the contamination of plants by heavy metals, mycotoxin-producing fungi, and human pathogenic bacteria. In addition, we discuss the various factors (i.e., temperature, relative humidity, soil, microbiota, cultural practices, and plant developmental stage) that can influence the interaction between plant genetic diversity and contaminant. This exposes the necessity of a multidisciplinary approach to understand plant genotype × environment × microbe × management interactions. Moreover, we show that the numerous possibilities of crop/hazard combinations make the definition and identification of high-risk pairs, such as Salmonella-tomato and Escherichia coli-lettuce, imperative for breeding programs geared toward improving microbial safety of produce. Finally, we discuss research on developing effective assays and approaches for selecting desirable breeding germplasm. Overall, it is recognized that although breeding programs for some human pathogen/toxin systems are ongoing (e.g., Fusarium in wheat), it would be premature to start breeding when targets and testing systems are not well defined. Nevertheless, current research is paving the way toward this goal and this review highlights advances in the field and critical points for the success of this initiative that were discussed during the Breeding Crops for Enhanced Food Safety workshop held 5-6 June 2019 at University of California, Davis.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Maeli Melotto,
| | - Maria T. Brandl
- United States Department of Agriculture-Agricultural Research Service, Produce Safety and Microbiology Research, Albany, CA, United States
| | - Cristián Jacob
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Michele T. Jay-Russell
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States
| | - Shirley A. Micallef
- Department of Plant Science and Landscape Architecture, Center for Food Safety and Security Systems, University of Maryland, College Park, MD, United States
| | - Marilyn L. Warburton
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Research Resistance Unit Mississippi State, Starkville, MS, United States
| | - Allen Van Deynze
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Curli fimbriae confer shiga toxin-producing Escherichia coli a competitive trait in mixed biofilms. Food Microbiol 2019; 82:482-488. [DOI: 10.1016/j.fm.2019.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/07/2019] [Accepted: 03/19/2019] [Indexed: 12/27/2022]
|
12
|
A Clonal Shiga Toxin–Producing Escherichia coli O121:H19 Population Exhibits Diverse Carbon Utilization Patterns. Foodborne Pathog Dis 2019; 16:384-393. [DOI: 10.1089/fpd.2018.2567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|