1
|
Khan F, Jeong GJ, Tabassum N, Mishra A, Kim YM. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Appl Microbiol Biotechnol 2022; 106:5835-5862. [PMID: 35989330 DOI: 10.1007/s00253-022-12128-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Akanksha Mishra
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Zhang Z, Qin J, Wang Z, Chen F, Liao X, Hu X, Dong L. Sodium copper chlorophyll mediated photodynamic treatment inactivates Escherichia coli via oxidative damage. Food Res Int 2022; 157:111472. [PMID: 35761703 DOI: 10.1016/j.foodres.2022.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Photodynamic technology (PDT) is an emerging non-thermal processing technique, however, due to a lack of edible photosensitizers, its application to the food industry is limited. To better understand sodium copper chlorophyll (SCC) feasibility as a photosensitizer, we analyzed the effects of PDT-SCC on Escherichia coli O157:H7 inactivation using different lighting times (15, 30, 45, 60, and 75 min), lighting power (30, 60, 90, 120, and 150 W), and SCC concentrations (2, 4, 6, 8, and 10 mM). We showed that bactericidal effects depended on all three parameters, but the most suitable sterilization condition for E. coli occurred at 10 mM SCC, for 60 min at 120 W. We also investigated cell morphology, reactive oxygen species (ROS) production, the activity of three oxidative response enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)), and ompA, ompF, uvrA, and recA expression. When compared with the control group, PDT-SCC destroyed bacterial morphology, increased ROS production, decreased antioxidant enzyme activity (SOD, CAT, and GPX), down-regulated membrane protein gene expression, including ompA and ompF, and up-regulated the DNA damage-repair related genes, uvrA and recA. Thus, bacterial rupture caused by oxidative damage could be the main mechanism underpinning PDT-SCC action.
Collapse
Affiliation(s)
- Zequn Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jianran Qin
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhe Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Ghoshal M, Ryu V, McLandsborough L. Evaluation of the efficacy of antimicrobials against pathogens on food contact surfaces using a rapid microbial log reduction detection method. Int J Food Microbiol 2022; 373:109699. [DOI: 10.1016/j.ijfoodmicro.2022.109699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/01/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022]
|
4
|
Long filamentous state of Listeria monocytogenes induced by sublethal sodium chloride stress poses risk of rapid increase in colony-forming units. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
In the past few decades, peptide antibacterial products with unique antibacterial mechanisms have attracted widespread interest. They can effectively reduce the probability of drug resistance of bacteria and are biocompatible, so they possess tremendous development prospects. This review provides recent research and analysis on the basic types of antimicrobial peptides (including poly (amino acid)s, short AMPs, and lipopeptides) and factors to optimize antimicrobial effects. It also summarizes the two most important modes of action of antimicrobial peptides and the latest developments in the application of AMPs, including antimicrobial agent, wound healing, preservative, antibacterial coating and others. Finally, we discuss the remaining challenges to improve the antibacterial peptides and propose prospects in the field.
Collapse
Affiliation(s)
- Yuhan Yan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuanze Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Zhiwen Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xinhao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
6
|
Song H, Lee SY. High concentration of sodium chloride could induce the viable and culturable states of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. Lett Appl Microbiol 2021; 72:741-749. [PMID: 33650683 DOI: 10.1111/lam.13468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria-Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although E. coli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, E. coli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that E. coli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.
Collapse
Affiliation(s)
- Hana Song
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
7
|
Regulation of filamentation by bacteria and its impact on the productivity of compounds in biotechnological processes. Appl Microbiol Biotechnol 2020; 104:4631-4642. [DOI: 10.1007/s00253-020-10590-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022]
|
8
|
Kim HW, Rhee MS. Novel Antibiotic Testing Approaches Reveal Reduced Antibiotic Efficacy Against Shiga Toxin-Producing Escherichia coli O157:H7 Under Simulated Microgravity. Front Microbiol 2019; 9:3214. [PMID: 30619237 PMCID: PMC6308135 DOI: 10.3389/fmicb.2018.03214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
As a foodborne and environmental pathogen, Shiga toxin-producing Escherichia coli O157:H7 could pose a health threat to immunocompromised astronauts during a space mission. In this study, novel approaches, including real-time testing and direct evaluation of resistance mechanisms, were used to evaluate antibiotic efficacy against E. coli O157:H7 under low-shear modeled microgravity (LSMMG) produced using a rotary cell culture system. When compared with normal gravity (NG), bacterial growth was increased under LSMMG in the presence of sub-inhibitory nalidixic acid concentrations and there was an accompanying up-regulation of stress-related genes. LSMMG also induced transcriptional changes of the virulence genes stx1 and stx2, highlighting the potential risk of inappropriate antibiotic use during a spaceflight. The degree of bacterial cell damage induced by the antibiotics was reduced under LSMMG, suggesting low induction of reactive oxygen species. Efflux pumps were also shown to play an important role in these responses. Increased cell filamentation was observed under LSMMG upon ampicillin treatment, possibly reflecting a protective mechanism against exposure to antibiotics. These observations indicate that, in the presence of antibiotics, the survival of E. coli O157:H7 is greater under LSMMG than under NG, indicating that antibiotic therapies may need to be adjusted during space missions.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
9
|
Aspridou Z, Akritidou T, Koutsoumanis KP. Simultaneous growth, survival and death: The trimodal behavior of Salmonella cells under osmotic stress giving rise to "Phoenix phenomenon". Int J Food Microbiol 2018; 285:103-109. [PMID: 30075464 DOI: 10.1016/j.ijfoodmicro.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022]
Abstract
Time-lapse microscopy methods were used to monitor growth, survival and death of Salmonella enterica serotype Agona individual cells on solid laboratory medium (tryptone soy agar) in the presence of various salt concentrations (0.5%, 3.5%, 4.5% and 5.7% NaCl). The results showed a highly heterogeneous behavior. As NaCl concentration increased, the distribution of the first division time was shifted to higher values and became wider. The mean first division time increased from 1.8 h at 0.5% NaCl to 5.48 h, 16.2 h, and 35.9 h at 3.5%, 4.5% and 5.7% NaCl, respectively. The concentration of NaCl in the growth medium also affected the ability of the cells to divide. The percentage of cells able to grow decreased from 88.9% at 0.5% NaCl to 66.5%, 32.8%, and 6.9% at 3.5%, 4.5% and 5.7% NaCl, respectively. In the latter case (5.7% NaCl), 74 cells out of 406 cells tested (18%) died with mean time to death 5.03 h and standard deviation 6.70 h. To investigate the effect of the behavior of individual cells on the dynamics of the whole population, simulation analysis was used. The simulation results showed that the simultaneous growth, survival and death of cells observed under osmotic stress can lead to a total population behavior known as the "Phoenix" phenomenon. The simulation findings were confirmed by validation experiments using both viable counts and time lapse microscopy. The results of the present study show the high heterogeneity of individual cell responses and the complexity in the behavior of microbial populations at conditions approaching the boundaries of growth.
Collapse
Affiliation(s)
- Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Akritidou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
10
|
Tat-exported peptidoglycan amidase-dependent cell division contributes to Salmonella Typhimurium fitness in the inflamed gut. PLoS Pathog 2018; 14:e1007391. [PMID: 30379938 PMCID: PMC6231687 DOI: 10.1371/journal.ppat.1007391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea. For proteins residing outside the bacterial cytoplasm, transport is an essential step for adequate function. The twin-arginine translocation (Tat) system enables the transport of folded proteins across the cytoplasmic membrane in prokaryotes. It has recently become clear that this system plays a pivotal role in the detrimental effects of many bacterial pathogens, suggesting Tat as a novel therapeutic target against their infection. In particular, the bacterial enteropathogen Salmonella Typhimurium causes foodborne diarrhea by colonizing the gut interior space. Here, we describe that the S. Typhimurium Tat system contributes to intestinal infection by facilitating colonization of the gut by this pathogen. We also identify that two Tat-exported enzymes, peptidoglycan amidase AmiA and AmiC, are responsible for the Tat-dependent colonization. S. Typhimurium strains having nonfunctional Tat systems or lacking these enzymes undergo filamentous growth in the gut interior owing to defective cell division. Notably, this chain form of S. Typhimurium cells is highly sensitive to bile acids, rendering it less competitive with native bacteria in the gut. The data presented here suggest that the Tat system and associated amidases may comprise promising therapeutic targets for Salmonella diarrhea, and that controlling bacterial shape might be new strategy for regulating intestinal enteropathogen infection.
Collapse
|
11
|
Lensmire JM, Pratt ZL, Wong ACL, Kaspar CW. Phosphate and carbohydrate facilitate the formation of filamentous Salmonella enterica during osmotic stress. MICROBIOLOGY-SGM 2018; 164:1503-1513. [PMID: 30325297 DOI: 10.1099/mic.0.000731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica is a human pathogen that can produce filamentous cells in response to environmental stress. The molecular mediators and biosynthetic pathways that contribute to the formation of filamentous cells (>10 µm in length) during osmotic stress are mostly unknown. The comparison of filamentous and non-filamentous cells in this study was aided by the use of a filtration step to separate cell types. Osmotic stress caused an efflux of phosphate from cells, and the addition of phosphate and a carbohydrate to Luria broth with 7 % NaCl (LB-7NaCl) significantly increased the proportion of filamentous cells in the population (58 %). In addition to direct measurements of intracellular and extracellular phosphate concentrations, the relative abundance of the iraP transcript that is induced by phosphate limitation was monitored. Non-filamentous cells had a greater relative abundance of iraP transcript than filamentous cells. IraP also affects the stability of RpoS, which regulates the general stress regulon, and was detected in non-filamentous cells but not filamentous cells. Markers of metabolic pathways for the production of acetyl-CoA (pflB, encoding for pyruvate formate lyase) and fatty acids (fabH) that are essential to membrane biosynthesis were found in greater abundance in filamentous cells than non-filamentous cells. There were no differences in the DNA, protein and biomass levels in filamentous and non-filamentous cells after 48 h of incubation, although the filamentous cells produced significantly (P<0.05) more acetate. This study found that phosphate and carbohydrate enhanced the formation of filamentous cells during osmotic stress, and there were differences in key regulatory elements and markers of metabolic pathways in filamentous and non-filamentous S. enterica.
Collapse
Affiliation(s)
- Joshua M Lensmire
- 1Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Amy C L Wong
- 1Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.,3Food Research Institute, University of Wisconsin - Madison, Madison, WI, USA
| | - Charles W Kaspar
- 3Food Research Institute, University of Wisconsin - Madison, Madison, WI, USA.,1Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
12
|
Yamazaki K, Takeuchi K, Yamazaki Y, Mino S, Kasai H, Sawabe T, Sawabe T, Satomi M. Occurrence and Prevention of Injured Bacterial Cells in Fisheries. J JPN SOC FOOD SCI 2018. [DOI: 10.3136/nskkk.65.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koji Yamazaki
- Laboratory of Marine Food Science, Faculty of Fisheries Sciences, Hokkaido University
| | - Kantaro Takeuchi
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University
| | - Yohei Yamazaki
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University
| | - Hisae Kasai
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University
| | - Toko Sawabe
- Department of Food Nutrition, Hakodate Junior College Hakodate
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University
| | - Masataka Satomi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency
| |
Collapse
|
13
|
Yadavalli SS, Carey JN, Leibman RS, Chen AI, Stern AM, Roggiani M, Lippa AM, Goulian M. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system. Nat Commun 2016; 7:12340. [PMID: 27471053 PMCID: PMC4974570 DOI: 10.1038/ncomms12340] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP-QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system.
Collapse
Affiliation(s)
- Srujana S. Yadavalli
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeffrey N. Carey
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rachel S. Leibman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Annie I. Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew M. Stern
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Manuela Roggiani
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew M. Lippa
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mark Goulian
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
The In Vitro Redundant Enzymes PurN and PurT Are Both Essential for Systemic Infection of Mice in Salmonella enterica Serovar Typhimurium. Infect Immun 2016; 84:2076-2085. [PMID: 27113361 DOI: 10.1128/iai.00182-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/21/2016] [Indexed: 11/20/2022] Open
Abstract
Metabolic enzymes show a high degree of redundancy, and for that reason they are generally ignored in searches for novel targets for anti-infective substances. The enzymes PurN and PurT are redundant in vitro in Salmonella enterica serovar Typhimurium, in which they perform the third step of purine synthesis. Surprisingly, the results of the current study demonstrated that single-gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection indexes [CI] of <0.03) in mouse infections. While the ΔpurT mutant multiplied as fast as the wild-type strain in cultured J774A.1 macrophages, net multiplication of the ΔpurN mutant was reduced approximately 50% in 20 h. The attenuation of the ΔpurT mutant was abolished by simultaneous removal of the enzyme PurU, responsible for the formation of formate, indicating that the attenuation was related to formate accumulation or wasteful consumption of formyl tetrahydrofolate by PurU. In the process of further characterization, we disclosed that the glycine cleavage system (GCV) was the most important for formation of C1 units in vivo (CI = 0.03 ± 0.03). In contrast, GlyA was the only important enzyme for the formation of C1 units in vitro The results with the ΔgcvT mutant further revealed that formation of serine by SerA and further conversion of serine into C1 units and glycine by GlyA were not sufficient to ensure C1 formation in S Typhimurium in vivo The results of the present study call for reinvestigations of the concept of metabolic redundancy in S Typhimurium in vivo.
Collapse
|
15
|
Gwak E, Oh MH, Park BY, Lee H, Lee S, Ha J, Lee J, Kim S, Choi KH, Yoon Y. Probabilistic Models to Predict Listeria monocytogenes Growth at Low Concentrations of NaNO2 and NaCl in Frankfurters. Korean J Food Sci Anim Resour 2015; 35:815-23. [PMID: 26877642 PMCID: PMC4726962 DOI: 10.5851/kosfa.2015.35.6.815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
This study developed probabilistic models to describe Listeria monocytogenes growth responses in meat products with low concentrations of NaNO2 and NaCl. A five-strain mixture of L. monocytogenes was inoculated in NBYE (nutrient broth plus 0.6% yeast extract) supplemented with NaNO2 (0-141 ppm) and NaCl (0-1.75%). The inoculated samples were then stored under aerobic and anaerobic conditions at 4, 7, 10, 12, and 15℃ for up to 60 d. Growth response data [growth (1) or no growth (0)] for each combination were determined by turbidity. The growth response data were analyzed using logistic regression to predict the growth probability of L. monocytogenes as a function of NaNO2 and NaCl. The model performance was validated with the observed growth responses. The effect of an obvious NaNO2 and NaCl combination was not observed under aerobic storage condition, but the antimicrobial effect of NaNO2 on the inhibition of L. monocytogenes growth generally increased as NaCl concentration increased under anaerobic condition, especially at 7-10℃. A single application of NaNO2 or NaCl significantly (p<0.05) inhibited L. monocytogenes growth at 4-15℃, but the combination of NaNO2 or NaCl more effectively (p<0.05) inhibited L. monocytogenes growth than single application of either compound under anaerobic condition. Validation results showed 92% agreement between predicted and observed growth response data. These results indicate that the developed model is useful in predicting L. monocytogenes growth response at low concentrations of NaNO2 and NaCl, and the antilisterial effect of NaNO2 increased by NaCl under anaerobic condition.
Collapse
Affiliation(s)
- Eunji Gwak
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Beom-Young Park
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Heeyoung Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Soomin Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Jimyeong Ha
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeeyeon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Sejeong Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
16
|
Heinrich K, Leslie DJ, Jonas K. Modulation of bacterial proliferation as a survival strategy. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:127-71. [PMID: 26003935 DOI: 10.1016/bs.aambs.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell cycle is one of the most fundamental processes in biology, underlying the proliferation and growth of all living organisms. In bacteria, the cell cycle has been extensively studied since the 1950s. Most of this research has focused on cell cycle regulation in a few model bacteria, cultured under standard growth conditions. However in nature, bacteria are exposed to drastic environmental changes. Recent work shows that by modulating their own growth and proliferation bacteria can increase their survival under stressful conditions, including antibiotic treatment. Here, we review the mechanisms that allow bacteria to integrate environmental information into their cell cycle. In particular, we focus on mechanisms controlling DNA replication and cell division. We conclude this chapter by highlighting the importance of understanding bacterial cell cycle and growth control for future research as well as other disciplines.
Collapse
|
17
|
Shiroda M, Pratt ZL, Döpfer D, Wong ACL, Kaspar CW. RpoS impacts the lag phase of Salmonella enterica during osmotic stress. FEMS Microbiol Lett 2014; 357:195-200. [PMID: 24985365 DOI: 10.1111/1574-6968.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonella enterica can survive harsh environmental conditions, including hyperosmotic stress. It is well established that the alternative sigma factor, σ(s) (RpoS), is required for maximal survival of enteric pathogens, including S. enterica. Although RpoS levels are greatest during stationary phase or stress conditions, RpoS can be found in S. enterica during growth. However, its activity during growth is poorly characterized. In this study, the impact of RpoS levels on the growth of S. enterica in LB supplemented with 6% NaCl (LB-NaCl) was examined. Cells in stationary phase prior to inoculation into LB-NaCl had a shorter lag phase than did exponential-phase cells. In addition, the deletion of rpoS from S. enterica Typhimurium M-09 (M-09 ΔrpoS) increased the length of lag phase in LB-NaCl relative to the parental strain. Complementation of M-09 ΔrpoS in trans by an inducible plasmid encoding rpoS reduced the length of lag phase. The length of lag phase in both the rpoS mutant and complemented strain was independent of their growth phase prior to inoculation of LB-NaCl. The results from this study demonstrate that the level of RpoS influences the length of lag phase and the growth of S. enterica in hyperosmotic growth conditions.
Collapse
Affiliation(s)
- Megan Shiroda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
18
|
Jones TH, Vail KM, McMullen LM. Filament formation by foodborne bacteria under sublethal stress. Int J Food Microbiol 2013; 165:97-110. [PMID: 23727653 DOI: 10.1016/j.ijfoodmicro.2013.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
Abstract
A number of studies have reported that pathogenic and nonpathogenic foodborne bacteria have the ability to form filaments in microbiological growth media and foods after prolonged exposure to sublethal stress or marginal growth conditions. In many cases, nucleoids are evenly spaced throughout the filamentous cells but septa are not visible, indicating that there is a blockage in the early steps of cell division but the mechanism behind filament formation is not clear. The formation of filamentous cells appears to be a reversible stress response. When filamentous cells are exposed to more favorable growth conditions, filaments divide rapidly into a number of individual cells, which may have major health and regulatory implications for the food industry because the potential numbers of viable bacteria will be underestimated and may exceed tolerated levels in foods when filamentous cells that are subjected to sublethal stress conditions are enumerated. Evidence suggests that filament formation under a number of sublethal stresses may be linked to a reduced energy state of bacterial cells. This review focuses on the conditions and extent of filament formation by foodborne bacteria under conditions that are used to control the growth of microorganisms in foods such as suboptimal pH, high pressure, low water activity, low temperature, elevated CO2 and exposure to antimicrobial substances as well as lack a of nutrients in the food environment and explores the impact of the sublethal stresses on the cell's inability to divide.
Collapse
Affiliation(s)
- Tineke H Jones
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada.
| | | | | |
Collapse
|