1
|
Hull KL, Greenwood MP, Lloyd M, Brink-Hull M, Bester-van der Merwe AE, Rhode C. Drivers of genomic diversity and phenotypic development in early phases of domestication in Hermetia illucens. INSECT MOLECULAR BIOLOGY 2024; 33:756-776. [PMID: 38963286 DOI: 10.1111/imb.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
The black soldier fly (BSF), Hermetia illucens, has the ability to efficiently bioremediate organic waste into usable bio-compounds. Understanding the impact of domestication and mass rearing on fitness and production traits is therefore important for sustainable production. This study aimed to assess patterns of genomic diversity and its association to phenotypic development across early generations of mass rearing under two selection strategies: selection for greater larval mass (SEL lines) and no direct artificial selection (NS lines). Genome-wide single nucleotide polymorphism (SNP) data were generated using 2bRAD sequencing, while phenotypic traits relating to production and population fitness were measured. Declining patterns of genomic diversity were observed across three generations of captive breeding, with the lowest diversity recorded for the F3 generation of both selection lines, most likely due to founder effects. The SEL cohort displayed statistically significantly greater larval weight com the NS lines with pronounced genetic and phenotypic directional changes across generations. Furthermore, lower genetic and phenotypic diversity, particularly for fitness traits, were evident for SEL lines, illustrating the trade-off between selecting for mass and the resulting decline in population fitness. SNP-based heritability was significant for growth, but was low or non-significant for fitness traits. Genotype-phenotype correlations were observed for traits, but individual locus effect sizes where small and very few of these loci demonstrated a signature for selection. Pronounced genetic drift, due to small effective population sizes, is likely overshadowing the impacts of selection on genomic diversity and consequently phenotypic development. The results hold particular relevance for genetic management and selective breeding for BSF in future.
Collapse
Affiliation(s)
- Kelvin L Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Melissa Lloyd
- Research and Development Department, Insect Technology Group Holdings UK Ltd., Guildford, UK
| | - Marissa Brink-Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Bruno D, Orlando M, Testa E, Carnevale Miino M, Pesaro G, Miceli M, Pollegioni L, Barbera V, Fasoli E, Draghi L, Baltrocchi APD, Ferronato N, Seri R, Maggi E, Caccia S, Casartelli M, Molla G, Galimberti MS, Torretta V, Vezzulli A, Tettamanti G. Valorization of organic waste through black soldier fly: On the way of a real circular bioeconomy process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:123-134. [PMID: 39531740 DOI: 10.1016/j.wasman.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The transition from a linear to a circular production system involves transforming waste into valuable resources. Insect-mediated bioconversion, particularly using black soldier fly (BSF) larvae, can offer a promising opportunity to convert the organic fraction of municipal solid waste (OFMSW) into protein-rich biomass. However, current regulatory restrictions do not allow the use of this substrate to obtain insect proteins for animal feed, prompting the exploration of other applications, such as the production of bioplastics. Here, we explored at laboratory scale an innovative and integrated circular supply chain which aims to valorize the OFMSW through BSF larvae for the production of biobased materials with high technological value. BSF larvae reared on this organic waste showed excellent growth performance and bioconversion rate of the substrate. The use of well-suited extraction methods allowed the isolation of high-purity lipids, proteins, and chitin fractions, which are building blocks to produce biobased materials. In particular, the protein fraction was used to develop biodegradable plastic films which showed potential for replacing traditional petroleum-based materials, with the possibility to be fully recycled back to amino acids. Socioeconomic analysis highlighted values generated along the entire supply chain, and life cycle assessment pointed out that lipid extraction was the most challenging step: implementation of more sustainable methods is thus needed to reduce the overall environmental impact of the proposed chain. In conclusion, this study represents a proof of concept gathering evidence to support the feasibility of an alternative supply chain that can promote circular economy while valorising organic waste.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | - Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | - Edoardo Testa
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Marco Carnevale Miino
- Department of Theoretical and Applied Sciences, University of Insubria, Via O. Rossi 9, 21100 Varese, Italy.
| | - Giulia Pesaro
- Department of Economics, University of Insubria, Via Monte Generoso 71, 21100 Varese, Italy.
| | - Matteo Miceli
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | | | - Navarro Ferronato
- Department of Theoretical and Applied Sciences, University of Insubria, Via O. Rossi 9, 21100 Varese, Italy.
| | - Raffaello Seri
- Department of Economics, University of Insubria, Via Monte Generoso 71, 21100 Varese, Italy.
| | - Elena Maggi
- Department of Economics, University of Insubria, Via Monte Generoso 71, 21100 Varese, Italy.
| | - Silvia Caccia
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Morena Casartelli
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy.
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | - Maurizio Stefano Galimberti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, Via O. Rossi 9, 21100 Varese, Italy.
| | - Andrea Vezzulli
- Department of Economics, University of Insubria, Via Monte Generoso 71, 21100 Varese, Italy.
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy.
| |
Collapse
|
3
|
Wang Y, Yu Z, Cao Q, Liu C, Qin Y, Wang T, Wang C. A new approach to biotransformation and value of kitchen waste oil driven by gut microorganisms in Hermetia illucens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123046. [PMID: 39447358 DOI: 10.1016/j.jenvman.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Hermetia illucens larvae are known for their ability to recycle organic waste, but their capacity to recover waste oils and the role of gut microorganisms in this process are not fully understood. To gain further insights, the biological recovery of waste frying oil into valuable lipids and the influence of gut bacteria on this biotransformation were investigated. The larvae efficiently digested and absorbed waste frying oil, demonstrating their potential for converting various oils into insect fat. The presence of different fatty acids in their diet significantly altered gut bacterial communities, enriching certain genera such as Actinomyces, Enterococcus, and Providencia. Redundancy analysis revealed that the composition and structure of these bacterial communities were predictive of their function in the biotransformation of fatty acids and the lipid biosynthesis in the larvae. Specific bacteria, including Corynebacterium_1, Providencia, Actinomyces, Escherichia-Shigella, and others, were identified to play specialized roles in the digestion and absorption of fatty acids, contributing to lipid synthesis and storage. These findings highlight the potential of Hermetia illucens in the biological recovery of waste frying oil and underscore the crucial role of gut microbiota in this process, offering a sustainable approach to waste management and bioenergy production.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zuojian Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
4
|
Klüber P, Gurusinga FF, Hurka S, Vilcinskas A, Tegtmeier D. Turning trash into treasure: Hermetia illucens microbiome and biodegradation of industrial side streams. Appl Environ Microbiol 2024:e0099124. [PMID: 39436059 DOI: 10.1128/aem.00991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Black soldier fly larvae (BSFL) have attracted attention due to their ability to upcycle various biological side streams into valuable biomass, such as proteins, lipids, and chitin. In this study, we investigated the impact of high-fiber diets on larval growth performance and the shift of microbes in the gut. We tested empty fruit bunches (EFB), potato pulp (PP), and cottonseed press cake (CPC), with chicken feed (CF) used as a control diet. We found that larvae reared on the EFB, PP, and CPC were smaller than control larvae at the end of development due to the low nutritional value of the diets. However, survival rates of more than 90% were observed regardless of the diet. We used a cultivation-dependent approach to analyze the microbial community in the gut of BSFL, isolated, and identified a total of 329 bacterial strains. Bacillaceae were most frequently isolated from larvae reared on the high-fiber EFB diet. These isolates were predicted to degrade cellulose in silico and this was subsequently confirmed in vitro using the Congo Red assay. Whereas the members of Enterobacteriaceae and Morganellaceae were mostly found in guts of larvae reared on the high-protein diets CPC and CF. We conclude that the gut microbiome plays a crucial role in the digestion of fiber-rich plant organic material, thereby enabling the BSFL to successfully complete their life cycle also on substrates with low nutritional value. As a result, BSFL convert industrial side streams into valuable biomass, reducing waste and promoting sustainability. IMPORTANCE Organic side streams from various industries pose a challenge to the environment. They are often present in huge amounts and are mostly discarded, incinerated, used for biogas production, or as feed for ruminant animals. Many plant-based side streams contain difficult-to-digest fiber as well as anti-nutritional or even insecticidal compounds that could harm the animals. These challenges can be addressed using black soldier fly larvae, which are known to degrade various organic substrates and convert them into valuable biomass. This will help mitigate agro-industrial side streams via efficient waste management and will contribute to the more economical and sustainable farming of insects.
Collapse
Affiliation(s)
- Patrick Klüber
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Friscasari F Gurusinga
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| | - Sabine Hurka
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Giessen, Germany
| | - Dorothee Tegtmeier
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| |
Collapse
|
5
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
6
|
Silvaraju S, Zhang QH, Kittelmann S, Puniamoorthy N. Genetics, age, and diet influence gut bacterial communities and performance of black soldier fly larvae (Hermetia illucens). Anim Microbiome 2024; 6:56. [PMID: 39407272 PMCID: PMC11481748 DOI: 10.1186/s42523-024-00340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The gut microbiota of black soldier fly larvae (BSFL, Hermetia illucens) play a crucial role in recycling various organic waste streams. This capability is linked to the presence of a potential common core microbiota in BSFL. However, subjective thresholds for defining core taxa and the difficulty of separating genetic and environmental influences have prevented a clear consensus in the literature. We analysed the gut bacterial communities of two genetically distinct BSF lines (wild type (WT) and lab-adapted line (LD)) raised on ten different diets based on common agricultural by-products and food waste in Southeast Asia. RESULTS High-throughput 16S rRNA gene sequencing revealed that gut bacterial communities were significantly influenced by genetics (p = 0.001), diet (plant/meat-dominated; p = 0.001), larval age (p = 0.001), and the interactions between all three (p = 0.002). This led us to investigate both common core taxa and lineage-specific core taxa. At a strict > 97% prevalence threshold, four core taxa were identified: Providencia_A_732258, an unclassified genus within the family Enterococcaceae, Morganella, and Enterococcus_H_360604. A relaxed threshold (> 80% prevalence) extended the core to include other potential common core taxa such as Klebsiella, Proteus, and Scrofimicrobium. Our data suggest that Proteus, Scrofimicrobium, Corynebacterium, Vagococcus_B, Lysinibacillus_304693 (all LD), and Paenibacillus_J_366884 (WT) are lineage-specific rather than members of a common core (> 90% prevalence in either LD or WT, with prevalence significantly different between lines (p ≤ 0.05)). Positive correlations were observed between several core genera and larval performance in LD, typical of a highly optimized lab-adapted line. Interestingly, only members of the genus Providencia appeared to play a crucial role in most aspects of larval performance in both genetic lineages. CONCLUSION Our study demonstrates that the gut microbiota of BSFL is influenced by genetic factors, diet composition, larval age, and their interactions. We identified a distinct lineage-specific core microbiota, emphasizing genetic background's role. Future studies should apply a standardized high prevalence threshold of at least > 90% unless there is a valid reason for relaxation or sample exclusion. The consistent association of Providencia spp. with larval performance across both genetic lines highlights their crucial role in the BSFL gut ecosystem.
Collapse
Affiliation(s)
- Shaktheeshwari Silvaraju
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568, Singapore
| | - Qi-Hui Zhang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568, Singapore.
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
7
|
Cao Q, Liu C, Li Y, Qin Y, Wang C, Wang T. The underlying mechanisms of oxytetracycline degradation mediated by gut microbial proteins and metabolites in Hermetia illucens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174224. [PMID: 38914334 DOI: 10.1016/j.scitotenv.2024.174224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Hermetia illucens larvae can enhance the degradation of oxytetracycline (OTC) through its biotransformation. However, the underlying mechanisms mediated by gut metabolites and proteins are unclear. To gain further insights, the kinetics of OTC degradation, the functional structures of gut bacterial communities, proteins, and metabolites were investigated. An availability-adjusted first-order model effectively evaluated OTC degradation kinetics, with degradation half-lives of 4.18 and 21.71 days for OTC degradation with and without larval biotransformation, respectively. Dominant bacteria in the larval guts were Enterococcus, Psychrobacter, Providencia, Myroides, Enterobacteriaceae, and Lactobacillales. OTC exposure led to significant differential expression of proteins, with functional classification revealing involvement in digestion, transformation, and adaptability to environmental stress. Upregulated proteins, such as aromatic ring hydroxylase, acted as oxidoreductases modifying the chemical structure of OTC. Unique metabolites, aclarubicin and sancycline identified were possible OTC metabolic intermediates. Correlation analysis revealed significant interdependence between gut bacteria, metabolites, and proteins. These findings reveal a synergistic mechanism involving gut microbial metabolism and enzyme structure that drives the rapid degradation of OTC and facilitates the engineering applications of bioremediation.
Collapse
Affiliation(s)
- Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| |
Collapse
|
8
|
Piersanti S, Rebora M, Turchetti B, Salerno G, Ruscetta M, Zucconi L, D'Alò F, Buzzini P, Sannino C. Microplastics in the diet of Hermetia illucens: Implications for development and midgut bacterial and fungal microbiota. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:259-270. [PMID: 38943817 DOI: 10.1016/j.wasman.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
In a world with a population exceeding 8 billion people and continuing to grow, pollution from food and plastic waste is causing long-term issues in ecosystems. Potential solutions may be found by exploiting insect-based bioconversion. In this context, we investigated the impact of polyvinyl chloride microparticles (PVC-MPs) on the development of Hermetia illucens (black soldier fly; BSF) and its midgut bacterial and fungal microbiota. The impact of PVC-MPs was evaluated feeding BSF larvae with a PVC-MPs-supplemented diet. The larvae exposed to different PVC-MPs concentrations (2.5%, 5%, 10% and 20% w/w) developed into adults with no significant increase in pupal mortality. Faster development and smaller pupae were observed when 20% PVC-MPs was provided. The BSF larvae ingest PVC-MPs, resulting in a reduction in MPs size. Larvae exposed to PVC-MPs did not exhibit differences in gut morphology. Regarding the impact of PVC-MPs on the structure of both bacterial and fungal communities, the overall alpha- and beta-diversity did not exhibit significant changes. However, the presence of PVC-MPs significantly affected the relative abundances of Enterobacteriaceae and Paenibacillaceae among the bacteria and of Dipodascaceae and Plectospharellaceae among the fungi (including yeast and filamentous life forms), suggesting that PVC-MP contamination has a taxa-dependent impact. These results indicate that BSF larvae can tolerate PVC-MPs in their diet, supporting the potential use of these insects in organic waste management, even in the presence of high levels of PVC-MP contamination.
Collapse
Affiliation(s)
- Silvana Piersanti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Manuela Rebora
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Mario Ruscetta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Federica D'Alò
- Research Institute on Terrestrial Ecosystems, National Research Council, Porano (TR), Italy.
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
9
|
Li K, Li WJ, Liang K, Li FF, Qin GQ, Liu JH, Zhang YL, Li XJ. Gut microorganisms of Locusta migratoria in various life stages and its possible influence on cellulose digestibility. mSystems 2024; 9:e0060024. [PMID: 38888356 PMCID: PMC11264664 DOI: 10.1128/msystems.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Locusta migratoria is an important phytophagous pest, and its gut microbial communities play an important role in cellulose degradation. In this study, the gut microbial and cellulose digestibility dynamics of Locusta migratoria were jointly analyzed using high-throughput sequencing and anthrone colorimetry. The results showed that the gut microbial diversity and cellulose digestibility across life stages were dynamically changing. The species richness of gut bacteria was significantly higher in eggs than in larvae and imago, the species richness and cellulose digestibility of gut bacteria were significantly higher in early larvae (first and second instars) than in late larvae (third to fifth instars), and the diversity of gut bacteria and cellulose digestibility were significantly higher in imago than in late larvae. There is a correlation between the dynamics of gut bacterial communities and cellulose digestibility. Enterobacter, Lactococcus, and Pseudomonas are the most abundant genera throughout all life stages. Six strains of highly efficient cellulolytic bacteria were screened, which were dominant gut bacteria. Carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) experiments revealed that Pseudomonas had the highest cellulase enzyme activity. This study provides a new way for the screening of cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors. IMPORTANCE Cellulose is the most abundant and cheapest renewable resource in nature, but its degradation is difficult, so finding efficient cellulose degradation methods is an urgent challenge. Locusta migratoria is a large group of agricultural pests, and the large number of microorganisms that inhabit their intestinal tracts play an important role in cellulose degradation. We analyzed the dynamics of Locusta migratoria gut microbial communities and cellulose digestibility using a combination of high-throughput sequencing technology and anthrone colorimetry. The results revealed that the gut microbial diversity and cellulose digestibility were dynamically changed at different life stages. In addition, we explored the intestinal bacterial community of Locusta migratoria across life stages and its correlation with cellulose digestibility. The dominant bacterial genera at different life stages of Locusta migratoria were uncovered and their carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) were determined. This study provides a new avenue for screening cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors.
Collapse
Affiliation(s)
- Kai Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wen-Jing Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ke Liang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Fei-Fei Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guo-Qing Qin
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jia-Hao Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yu-Long Zhang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
10
|
Zuraik AA, Daboul Y, Awama MA, Yazigi H, Kayasseh MA, Georges M. Rapid detection of FadA in Fusobacterium nucleatum using the quantitative LAMP colorimetric phenol red method in stool samples from colorectal cancer patients. Sci Rep 2024; 14:13739. [PMID: 38877111 PMCID: PMC11178829 DOI: 10.1038/s41598-024-62846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
The study aimed to develop a quantitative colorimetric loop-mediated isothermal amplification technique using the phenol red indicator (QLAMP-PhR) for detecting Fusobacterium nucleatum (Fn) levels in colorectal cancer (CRC) patients and healthy individuals. QLAMP-PhR assays were conducted on 251 stool samples specific for the Fn FadA gene. Six primers were synthesized and utilized with master mix reagents, and a phenol red indicator was employed to enhance the QLAMP-PhR technique. A standard quantitative analysis curve was generated using a logarithmic function (absorbance vs. concentration) by serially diluting the copy number of genomic DNA templates (Fn ATCC25586). The CRC group exhibited a significantly higher abundance of Fn compared to the healthy control group (P < 0.001). These findings suggest that the QLAMP-PhR technique effectively identifies Fn specifically by its gene for the key virulence factor FadA. Additionally, ideas for developing a real-time QLAMP-PhR test were presented. Compared to the traditional polymerase chain reaction (PCR) technique, QLAMP-PhR offers several advantages including rapidity, simplicity, specificity, sensitivity, and cost-effectiveness method that can quantitatively screen for Fn presence in normal populations. The QLAMP-PhR method represents a sensitive and specific amplification assay for the rapid detection of the Fn pathogen. To the best of our knowledge, this study is the first to report the application of QLAMP-PhR for detecting FadA in Fn.
Collapse
Affiliation(s)
- Abdulrahman A Zuraik
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Tishreen University, Lattakia, Syria.
| | - Yaman Daboul
- School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - M Ayman Awama
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Tishreen University, Lattakia, Syria
| | - Haitham Yazigi
- Department of Laboratory Medicine/Faculty of Medicine, Tishreen University, Tishreen University Hospital, Lattakia, Syria
| | - Moh'd Azzam Kayasseh
- Dr. Kayasseh Medical Clinic, Dr. Sulaiman Al-Habib Medical Group, DHCC, Dubai, UAE
| | - Michael Georges
- Department of Oncology, Faculty of Medicine, Tishreen University, Tishreen University Hospital, Lattakia, Syria
| |
Collapse
|
11
|
Wu N, Ma Y, Yu X, Wang X, Wang Q, Liu X, Xu X. Black soldier fly larvae bioconversion and subsequent composting promote larval frass quality during pig and chicken manure transformation process. BIORESOURCE TECHNOLOGY 2024; 402:130777. [PMID: 38701978 DOI: 10.1016/j.biortech.2024.130777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This research systematically assessed the changes in carbon, nitrogen and microbial profiling during pig and chicken manure transformation by black soldier fly larvae (BSFL) and subsequent composting process. BSFL had higher conversion efficiency for chicken manure. The pH, phosphorus and potassium contents in fresh BSFL frass increased than raw manure, but conductivity, total-/nitrate-/ammonium-nitrogen decreased. After BSFL conversion, pig manure had a larger nitrogen loss (25 %) while chicken manure had a larger carbon loss (32 %). During subsequent composting, the indicator changes (e.g. humus, ammonium nitrogen) in frass composts basically remained stable after 20-30 days. Compared to natural composts, frass composts had higher humification degree, cellulase activities, and more cellulose-degrading bacteria. Subsequent composting further reduced potential pathogens (reduced by 98.9 %-99.7 % than raw manure), and elevated the aromaticity and humification of frass. The findings gave an insight into the maturation management of manure-sourced insect frass.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
12
|
Van Looveren N, IJdema F, van der Heijden N, Van Der Borght M, Vandeweyer D. Microbial dynamics and vertical transmission of Escherichia coli across consecutive life stages of the black soldier fly (Hermetia illucens). Anim Microbiome 2024; 6:29. [PMID: 38797818 PMCID: PMC11129375 DOI: 10.1186/s42523-024-00317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The black soldier fly (BSF, Hermetia illucens L.) is one of the most promising insects for bioconversion of organic waste, which often carry a high microbial load with potential foodborne pathogens. Although horizontal transmission (from rearing substrate to larvae) has been extensively studied, less is known about vertical transmission of microorganisms, and particularly of foodborne pathogens, across different BSF life stages. RESULTS This study investigated the microbial dynamics and vertical transmission of Escherichia coli across different life stages (larvae, prepupae, pupae and adults) of one BSF life cycle and its associated substrate (chicken feed) and frass, based on a combination of general microbial counts (based on culture-dependent techniques) and the bacterial community composition (based on 16S rRNA gene sequencing). Multiple interactions between the microbiota of the substrate, frass and BSF larvae were affirmed. The larvae showed relative consistency among both the microbial counts and bacterial community composition. Diversification of the bacterial communities started during the pupal stage, while most notable changes of the microbial counts and bacterial community compositions occurred during metamorphosis to adults. Furthermore, vertical transmission of E. coli was investigated after substrate inoculation with approximately 7.0 log cfu/g of kanamycin-resistant E. coli, and monitoring E. coli counts from larval to adult stage. Although the frass still contained substantial levels of E. coli (> 4.5 log cfu/g) and E. coli was taken up by the larvae, limited vertical transmission of E. coli was observed with a decreasing trend until the prepupal stage. E. coli counts were below the detection limit (1.0 log cfu/g) for all BSF samples from the end of the pupal stage and the adult stage. Additionally, substrate inoculation of E. coli did not have a substantial impact on the bacterial community composition of the substrate, frass or different BSF life stages. CONCLUSIONS The fluctuating microbial counts and bacterial community composition underscored the dynamic character of the microbiota of BSF life stages. Additionally, vertical transmission throughout one BSF life cycle was not observed for E. coli. Hence, these findings paved the way for future case studies on vertical transmission of foodborne pathogens across consecutive BSF life stages or other insect species.
Collapse
Affiliation(s)
- Noor Van Looveren
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Freek IJdema
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Niels van der Heijden
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Mik Van Der Borght
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Dries Vandeweyer
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium.
| |
Collapse
|
13
|
Wang J, Liu C, Cao Q, Li Y, Chen L, Qin Y, Wang T, Wang C. Enhanced biodegradation of microplastic and phthalic acid ester plasticizer: The role of gut microorganisms in black soldier fly larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171674. [PMID: 38479533 DOI: 10.1016/j.scitotenv.2024.171674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.
Collapse
Affiliation(s)
- Jiaqing Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
14
|
Ma C, Huang Z, Feng X, Memon FU, Cui Y, Duan X, Zhu J, Tettamanti G, Hu W, Tian L. Selective breeding of cold-tolerant black soldier fly (Hermetia illucens) larvae: Gut microbial shifts and transcriptional patterns. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:252-265. [PMID: 38354633 DOI: 10.1016/j.wasman.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The larvae of black soldier fly (BSFL) convert organic waste into insect proteins used as feedstuff for livestock and aquaculture. BSFL production performance is considerably reduced during winter season. Herein, the intraspecific diversity of ten commercial BSF colonies collected in China was evaluated. The Bioforte colony was subjected to selective breeding at 12 °C and 16 °C to develop cold-tolerant BSF with improved production performance. After breeding for nine generations, the weight of larvae, survival rate, and the dry matter conversion rate significantly increased. Subsequently, intestinal microbiota in the cold-tolerant strain showed that bacteria belonging to Morganella, Dysgonomonas, Salmonella, Pseudochrobactrum, and Klebsiella genera were highly represented in the 12 °C bred, while those of Acinetobacter, Pseudochrobactrum, Enterococcus, Comamonas, and Leucobacter genera were significantly represented in the 16 °C bred group. Metagenomic revealed that several animal probiotics of the Enterococcus and Vagococcus genera were greatly enriched in the gut of larvae bred at 16 °C. Moreover, bacterial metabolic pathways including carbohydrate, lipid, amino acids, and cofactors and vitamins, were significantly increased, while organismal systems and human diseases was decreased in the 16 °C bred group. Transcriptomic analysis revealed that the upregulated differentially expressed genes in the 16 °C bred groups mainly participated in Autophagy-animal, AMPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Hippo signaling pathway at day 34 under 16 °C conditions, suggesting their significant role in the survival of BSFL. Taken together, these results shed lights on the role of intestinal microflora and gene pathways in the adaptation of BSF larvae to cold stress.
Collapse
Affiliation(s)
- Chong Ma
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Zhijun Huang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Xingbao Feng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Fareed Uddin Memon
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Ying Cui
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Xinyu Duan
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Jianfeng Zhu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 21100, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Wenfeng Hu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China; Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangdong 510642, China
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China.
| |
Collapse
|
15
|
Deng B, Liu Z, Gong T, Xu C, Zhang X, Cao H, Yuan Q. Addition of plantation waste to the bioconversion of pig manure by black soldier fly larvae: Effects on heavy metal content and bioavailability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:64-73. [PMID: 38266476 DOI: 10.1016/j.wasman.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
During the conversion of pig manure by black soldier fly larvae (BSFL), the accumulation and speciation changes of heavy metals (HMs) have adverse effects on the environment. In this study, corn straw, rice straw, bamboo chips (BC), wood chips, and rice husk char were added to a bioconversion system to study the accumulation, migration, speciation changes, and microbial correlations of HMs. The results indicated that the addition of BC was most beneficial for the accumulation of HMs (47-72 %) in the BSFL body. In the BC group, the accumulation effect of the BSFL body on zinc (Zn) and arsenic (As) was the most evident (72 and 71 %, respectively). The results of linear fitting (R2 > 0.90) and redundancy analysis (RDA; 90 %) indicated that the bacterium Bacillaceae (Bacillus) was beneficial for increasing the larval weight (LW) of BSFL, and a higher LW accumulated HMs. The addition of BC helped reduce the total amount (6-51 %) of available states (weak acid extraction and reducible states) in the BSFL residue. The RDA results indicated that bacteria (55-92 %) affected the transformation of HM speciation. For example, Zn and cadmium were mainly affected by Firmicutes, whereas copper and chromium were affected by Bacteroidetes. Proteobacteria and Pseudomonas formosensis affected the conversion of lead and As. This study provides important insights into the adsorption of HMs from pig manure by BSFL.
Collapse
Affiliation(s)
- Bo Deng
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Liu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Gong
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongliang Cao
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Liu G, Tiang MF, Ma S, Wei Z, Liang X, Sajab MS, Abdul PM, Zhou X, Ma Z, Ding G. An alternative peptone preparation using Hermetia illucens (Black soldier fly) hydrolysis: process optimization and performance evaluation. PeerJ 2024; 12:e16995. [PMID: 38426145 PMCID: PMC10903346 DOI: 10.7717/peerj.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Hermetia illucens (HI), commonly known as the black soldier fly, has been recognized for its prowess in resource utilization and environmental protection because of its ability to transform organic waste into animal feed for livestock, poultry, and aquaculture. However, the potential of the black soldier fly's high protein content for more than cheap feedstock is still largely unexplored. Methods This study innovatively explores the potential of H. illucens larvae (HIL) protein as a peptone substitute for microbial culture media. Four commercial proteases (alkaline protease, trypsin, trypsase, and papain) were explored to hydrolyze the defatted HIL, and the experimental conditions were optimized via response surface methodology experimental design. The hydrolysate of the defatted HIL was subsequently vacuum freeze-dried and deployed as a growth medium for three bacterial strains (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) to determine the growth kinetics between the HIL peptone and commercial peptone. Results The optimal conditions were 1.70% w/w complex enzyme (alkaline protease: trypsin at 1:1 ratio) at pH 7.0 and 54 °C for a duration of 4 h. Under these conditions, the hydrolysis of defatted HIL yielded 19.25% ±0.49%. A growth kinetic analysis showed no significant difference in growth parameters (μmax, Xmax, and λ) between the HIL peptone and commercial peptone, demonstrating that the HIL hydrolysate could serve as an effective, low-cost alternative to commercial peptone. This study introduces an innovative approach to HIL protein resource utilization, broadening its application beyond its current use in animal feed.
Collapse
Affiliation(s)
- Gaoqiang Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Ming Foong Tiang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Shixia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Zeyan Wei
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiaolin Liang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Mohd Shaiful Sajab
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Xueyan Zhou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
17
|
Mannaa M, Mansour A, Park I, Lee DW, Seo YS. Insect-based agri-food waste valorization: Agricultural applications and roles of insect gut microbiota. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100287. [PMID: 37333762 PMCID: PMC10275724 DOI: 10.1016/j.ese.2023.100287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Meeting the demands of the growing population requires increased food and feed production, leading to higher levels of agri-food waste. As this type of waste seriously threatens public health and the environment, novel approaches to waste management should be developed. Insects have been proposed as efficient agents for biorefining waste, producing biomass that can be used for commercial products. However, challenges in achieving optimal outcomes and maximizing beneficial results remain. Microbial symbionts associated with insects are known to have a critical role in the development, fitness, and versatility of insects, and as such, they can be utilized as targets for the optimization of agri-food waste insect-based biorefinery systems. This review discusses insect-based biorefineries, focusing on the agricultural applications of edible insects, mainly as animal feed and organic fertilizers. We also describe the interplay between agri-food waste-utilizing insects and associated microbiota and the microbial contribution in enhancing insect growth, development, and involvement in organic waste bioconversion processes. The potential contribution of insect gut microbiota in eliminating pathogens, toxins, and pollutants and microbe-mediated approaches for enhancing insect growth and the bioconversion of organic waste are also discussed. The present review outlines the benefits of using insects in agri-food and organic waste biorefinery systems, describes the roles of insect-associated microbial symbionts in waste bioconversion processes, and highlights the potential of such biorefinery systems in addressing the current agri-food waste-related challenges.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
- Department of Plant Pathology, Cairo University, Faculty of Agriculture, Giza, 12613, Egypt
| | - Abdelaziz Mansour
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Inmyoung Park
- School of Food and Culinary Arts, Youngsan University, Bansong Beltway, Busan, 48015, Republic of Korea
| | - Dae-Weon Lee
- Department of SmartBio, Kyungsung University, Busan, 48434, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
18
|
Xiang F, Zhang Q, Xu X, Zhang Z. Black soldier fly larvae recruit functional microbiota into the intestines and residues to promote lignocellulosic degradation in domestic biodegradable waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122676. [PMID: 37839685 DOI: 10.1016/j.envpol.2023.122676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
Lignocellulose is an important component of domestic biodegradable waste (DBW), and its complex structure makes it an obstacle in the biological treatment of DBW. Here, we identify black soldier fly larvae (Hermetia illucens L., BSFL) as a bioreactor for lignocellulose degradation in DBW based on their ability to effectively recruit lignocellulose-degrading bacteria. This study mainly examined the lignocellulose degradation, dynamic succession of the microbial community, gene expression of carbohydrate-active enzymes (CAZymes), and co-occurrence network analysis. Investigation of lignocellulose degradation by BSFL within 14 days indicated that the lignocellulose biodegradation rate in the larvae treatment (LT, 26.5%) group was higher than in natural composting (NC, 4.06%). In order to gain a more comprehensive understanding of microbiota, we conducted metagenomic sequencing of larvae intestines (LI), along with the LT and NC. The relative abundance of lignocellulose-degrading bacteria and CAZymes genes in LT and LI were higher than those in NC based on metagenomics sequencing. Importantly, genes coding cellulase and hemicellulase in LI were 3.36- and 2.79-fold higher, respectively, than that in LT, while the ligninase genes in LT were 1.82-fold higher than in LI. A co-occurrence network analysis identified Enterocluster and Luteimonas as keystone taxa in larvae intestines and residues, respectively, with a synergistic relationship to lignocellulose-degrading bacteria. The mechanism of recruiting functional bacteria through the larvae intestines promoted lignocellulose degradation in DBW, improving the efficiency of BSFL biotechnology and resource regeneration.
Collapse
Affiliation(s)
- FangMing Xiang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China; JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China.
| | - Qian Zhang
- JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China; HangZhou GuSheng Technology Company Limited, XiangWang Ave 311118, HangZhou, 311121, PR China.
| | - XinHua Xu
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China.
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou, 310058, PR China.
| |
Collapse
|
19
|
Zhang J, Luo Z, Li N, Yu Y, Cai M, Zheng L, Zhu F, Huang F, K Tomberlin J, Rehman KU, Yu Z, Zhang J. Cellulose-degrading bacteria improve conversion efficiency in the co-digestion of dairy and chicken manure by black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119156. [PMID: 37837764 DOI: 10.1016/j.jenvman.2023.119156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijun Luo
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongqiang Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| | | | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
20
|
Mani K, Vitenberg T, Khatib S, Opatovsky I. Effect of entomopathogenic fungus Beauveria bassiana on the growth characteristics and metabolism of black soldier fly larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105684. [PMID: 38072541 DOI: 10.1016/j.pestbp.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Beauveria bassiana is an entomopathogenic fungus widely used in agriculture to reduce populations of various pests. However, when agricultural waste is utilized for organic recycling, B. bassiana has the potential to impact recycling performance, by affecting the survival, and body mass of decomposing organisms (such as insect's larvae). Additionally, in natural conditions where decayed organic matter contains a high load of different entomopathogenic organisms, larval growth may be affected when consumed or in contact. In a laboratory study, we aimed to comprehend the effects of B. bassiana on the growth characteristics and larval metabolism of the black soldier fly larvae, which is a known decomposing insect. The experiments used both feeding (mixing the spores with the diet, hereafter BF) and contact treatments (by dipping the larva in the spores solution, hereafter BD), and were compared to a water-treated control group. The BF treatment significantly reduced larval body weight, adult emergence, and adult weight compared to both the control and the BD treatment. Furthermore, an analysis of hemolymph metabolites, categorized by class, indicated a higher accumulation of metabolites belonging to the purine and purine derivative classes, as well as carboxylic acids and their derivatives, including peptides and oligopeptides, indicating potential disruption of protein synthesis or degradation caused by the BF treatment. Pathway enrichment analysis showed significant alterations in purine metabolism and D-Arginine and D-ornithine metabolism compared to the control. Taurine and hypotaurine metabolism were significantly altered in the BD treatment compared to the control but not significantly enriched in the BF treatment. Our results suggest that the BF treatment impairs protein synthesis or degradation, affecting larval growth characteristics. Future studies should explore innate immunity-related gene expression and antimicrobial peptide production in BSF larvae to understand their immunity to pathogens.
Collapse
Affiliation(s)
- Kannan Mani
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Tzach Vitenberg
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Soliman Khatib
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel
| | - Itai Opatovsky
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel.
| |
Collapse
|
21
|
Vandeweyer D, Bruno D, Bonelli M, IJdema F, Lievens B, Crauwels S, Casartelli M, Tettamanti G, De Smet J. Bacterial biota composition in gut regions of black soldier fly larvae reared on industrial residual streams: revealing community dynamics along its intestinal tract. Front Microbiol 2023; 14:1276187. [PMID: 38107863 PMCID: PMC10722301 DOI: 10.3389/fmicb.2023.1276187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Some insect species have gained attention as efficient bioconverters of low-value organic substrates (i.e., residual streams) into high-value biomass. Black soldier fly (BSF) (Hermetia illucens) larvae are particularly interesting for bioconversion due to their ability to grow on a wide range of substrates, including low-value industrial residual streams. This is in part due to the plasticity of the gut microbiota of polyphagous insects, like BSF. Gut microbiota composition varies depending on rearing substrates, via a mechanism that might support the recruitment of microorganisms that facilitate digestion of a specific substrate. At the same time, specific microbial genera do persist on different substrates via unknown mechanisms. This study aimed to offer insights on this microbial plasticity by investigating how the composition of the bacterial community present in the gut of BSF larvae responds to two industrial residual streams: swill (a mixture of catering and supermarket leftovers) and distiller's dried grains with solubles. The bacterial biota composition of substrates, whole larvae at the beginning of the rearing period and at harvest, rearing residues, and larval gut regions were investigated through 16S rRNA gene sequencing. It was observed that both substrate and insect development influenced the bacterial composition of the whole larvae. Zooming in on the gut regions, there was a clear shift in community composition from a higher to a lower diversity between the anterior/middle midgut and the posterior midgut/hindgut, indicating a selective pressure occurring in the middle midgut region. Additionally, the abundance of the bacterial biota was always high in the hindgut, while its diversity was relatively low. Even more, the bacterial community in the hindgut was found to be relatively more conserved over the different substrates, harboring members of the BSF core microbiota. We postulate a potential role of the hindgut as a reservoir for insect-associated microbes. This warrants further research on that underexplored region of the intestinal tract. Overall, these findings contribute to our understanding of the bacterial biota structure and dynamics along the intestinal tract, which can aid microbiome engineering efforts to enhance larval performance on (industrial) residual streams.
Collapse
Affiliation(s)
- Dries Vandeweyer
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Freek IJdema
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| |
Collapse
|
22
|
Laconi EB, Jayanegara A, Astuti DA, Fitriana EL, Nabawi SNL, Alifian MD. Evaluation of rations containing bioconverted cacao pod as fiber source for small ruminant. Trop Anim Health Prod 2023; 55:422. [PMID: 38012359 DOI: 10.1007/s11250-023-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
This study aimed to evaluate the potential use of bioconverted cacao pod (BCP) as a substitute for forage in the total mixed ration (TMR) for a small ruminant. In the in vitro experiment, the control TMR (30% forage and 70% concentrate) was substituted with two different levels of BCP (15% and 30%) and two different types of BCP ( BCP-pc and BCP-tv). Based on the in vitro evaluation, the best ration was then chosen for the in vivo experiment, in which male goats were fed a control TMR, the TMR containing 15% BCP-pc (RC), and TMR containing 15% bioconverted palm kernel meal (RP). The results showed that TMRs with 15% BCP-pc and BCP-tv substitution had significantly lower gas production and digestibility than the control ration. However, the TMR with 15% or 30% BCP substitution showed no significant difference in rumen fermentation characteristics, methane production, and total protozoa. In the in vivo experiment, the RC showed no significant difference in all nutrient intakes, the average daily gain of animals, feed conversion ratio value, and crude fiber digestibility but reduced dry and organic matter digestibility. In comparison, the RP resulted in reduced parameters. Therefore, the study concluded that BCP-pc at a level of 15% could be used as a substitute for forage in TMR for male goats without compromising the fermentability of rumen, nutrient intakes, and their average daily gain and feed conversion ratio. Overall, this study suggests the potential of BCP-pc as an alternative feed ingredient.
Collapse
Affiliation(s)
- Erika Budiarti Laconi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia.
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Dewi Apri Astuti
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Eko Lela Fitriana
- Graduate Study Program of Nutrition and Feed Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Soviro Nurul Lisa Nabawi
- Graduate Study Program of Nutrition and Feed Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Mochamad Dzaky Alifian
- Graduate Study Program of Nutrition and Feed Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| |
Collapse
|
23
|
Quan J, Wang Y, Cheng X, Li C, Yuan Z. Revealing the effects of fermented food waste on the growth and intestinal microorganisms of black soldier fly (Hermetia illucens) larvae. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:580-589. [PMID: 37820415 DOI: 10.1016/j.wasman.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
The escalating global food waste (FW) issues necessitate sustainable management strategies. Black soldier fly larvae (BSFL) offer a promising solution for FW management by converting organic matter into insect protein. However, the fermentation of FW during production, collection, and transportation induces changes in FW's physicochemical properties and bacterial communities, requiring further exploration of its impact on BSFL growth and gut microbiota. The results showed that feeding FW fermented for different durations (0-10 d) slightly affected the BSFL yield. Feeding FW fermented for 8 d, characterized by a lower pH and higher biodiversity, resulted in a slight increase in larval biomass (222 mg/larvae). Nearly all groups harvested the peak larval biomass after 10 day's bioconversion. The fermentation significantly altered the microbial community of FW, with an increase in the abundance of unclassified_f_Clostridiaceae and a decrease in Lactobacillus abundance. As bioconversion progressed, intricate and mutualistic microbial interactions likely occurred between the BSFL gut and FW substrate, restructuring each other's microbial community. Specifically, the abundance of unclassified_f_Clostridiaceae increased in the BSFL gut, while its abundance in the initial larval gut was extremely low (<1 %). Despite the substrate microbial changes and interactions, a stable core gut microbiota was identified across all BSFL samples, primarily composed of nine genera dominated by Enterococcus and Klebsiella. This core gut microbiome may play a crucial role in facilitating the adaptation of BSFL to various environmental conditions and maintaining efficient FW bioconversion. These findings enhance our understanding of the role of BSFL gut microbiota in FW bioconversion.
Collapse
Affiliation(s)
- Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
24
|
De Filippis F, Bonelli M, Bruno D, Sequino G, Montali A, Reguzzoni M, Pasolli E, Savy D, Cangemi S, Cozzolino V, Tettamanti G, Ercolini D, Casartelli M, Caccia S. Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. MICROBIOME 2023; 11:205. [PMID: 37705113 PMCID: PMC10500907 DOI: 10.1186/s40168-023-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Davide Savy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Silvana Cangemi
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Vincenza Cozzolino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy.
| | - Silvia Caccia
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Pourcher AM, Druilhe C, Le Maréchal C, Repérant E, Boscher E, Ziebal C, Martin L, Lebreton M, Rouxel S, Houdayer C, Le Roux S, Derongs L, Poëzévara T, Sarrazin M, Nagard B, Heurtevent L, Denis M. Quantification of indicator and pathogenic bacteria in manures and digestates from three agricultural biogas plants over a one-year period. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:91-100. [PMID: 37418788 DOI: 10.1016/j.wasman.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Interest in the conversion of manure in biogas via anaerobic digestion (AD) is growing, but questions remain about the biosafety of digestates. For a period of one year, we monitored the impact of three mesophilic agricultural biogas plants (BPs) mainly fed with pig manure (BP1, BP3) or bovine manure (BP2) on the physicochemical parameters, the composition of the microbial community and the concentration of bacteria (E. coli, enterococci, Salmonella, Campylobacter, Listeria monocytogenes, Clostridium perfringens, Clostridium botulinum and Clostridioides difficile). The BP2 digestate differed from those of the two other BPs with a higher nitrogen content, more total solids and greater abundance of Clostridia MBA03 and Disgonomonadacea. Persistence during digestion ranked from least to most, was: Campylobacter (1.6 to >2.9 log10 reduction, according to the BP) < E. coli (1.8 to 2.2 log10) < Salmonella (1.1 to 1.4 log10) < enterococci (0.2 to 1.2 log10) and C. perfringens (0.2 to 1 log10) < L. monocytogenes (-1.2 to 1.6 log10) < C. difficile and C. botulinum (≤0.5 log10). No statistical link was found between the reduction in the concentration of the targeted bacteria and the physicochemical and operational parameters likely to have an effect (NH3, volatile fatty acids and total solids contents, hydraulic retention time, presence of co-substrates), underlining the fact that the fate of the bacteria during mesophilic digestion depends on many interacting factors. The reduction in concentrations varied significantly over the sampling period, underlining the need for longitudinal studies to estimate the impact of AD on pathogenic microorganisms.
Collapse
Affiliation(s)
| | - Céline Druilhe
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Caroline Le Maréchal
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Elisabeth Repérant
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Evelyne Boscher
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Christine Ziebal
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Laure Martin
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Megane Lebreton
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Sandra Rouxel
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Catherine Houdayer
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Sophie Le Roux
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Lorine Derongs
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Typhaine Poëzévara
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Martine Sarrazin
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Bérengère Nagard
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | | | - Martine Denis
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| |
Collapse
|
26
|
Liang J, Cheng Y, Ma Y, Yu X, Wang Z, Wu N, Wang X, Liu X, Xu X. Effects of straw addition on the physicochemical and microbial features of black soldier fly larvae frass derived from fish meat and bone meal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1435-1444. [PMID: 36951008 DOI: 10.1177/0734242x231160091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Black soldier fly larvae (BSFL) hold great promise for sustainable management of meat and bone meal (MBM), a kind of organic waste. Harvested BSFL frass can be used as soil amendment or organic fertilizer. This study evaluated the quality and microbial profile in the frass of BSFL, fed with fish MBM containing 0% (CK), 1% (T1), 2% (T2) and 3% (T3) of rice straw. Results suggested straw addition into fish MBM had no significant impacts on BSFL weight; however, straw addition remarkably affected waste reduction and conversion efficiency, as well as physicochemical properties including electric conductivity, organic matter (OM) and total phosphorus contents in frass. Fourier transform infrared analysis indicated that increasing levels of cellulose and lignin might not be fully degraded or transformed by BSFL when more straw was introduced into substrates. Straw addition had hardly significant influences on microbial richness or evenness in BSFL frass, only T3 treatment remarkably elevated the phylogenetic diversity value more than the control. Bacteroidetes, Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla. Genera Myroides, Acinetobacter and Paenochrobactrum maintained high abundances in all frass samples. Elements including OM, pH and Na were key factors in shaping the microbiological characteristics of BSFL frass. Our findings helped to understand the effects of fish MBM waste manipulation on BSFL frass qualities and contributed to the further application of BSFL frass.
Collapse
Affiliation(s)
- Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yixian Cheng
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
27
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
28
|
Auger L, Deschamps MH, Vandenberg G, Derome N. Microbiota is structured by gut regions, life stage, and diet in the Black Soldier Fly ( Hermetia illucens). Front Microbiol 2023; 14:1221728. [PMID: 37664118 PMCID: PMC10469785 DOI: 10.3389/fmicb.2023.1221728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The larvae of the Black Soldier Fly (Hermetia illucens) provide numerous ecological benefits, leading to significant commercial advancements. These benefits include the bioconversion of low-value waste into high-value feed and soil amendments. Understanding how the bacterial and eukaryotic microbiota communities affect host performance becomes vital for the optimization and specialization of industrial-scale rearing. This study investigates H. illucens-associated microbiota taxonomic composition and dynamics across the developmental cycle (eggs, neonates, larvae, prepupae, and imago X0 to second generation X1) when reared on two substrates: (i) plant-based (Housefly Gainesville diet) and (ii) animal-based (poultry hatchery waste). By using the 16S gene amplicon metataxonomic approach, we found that the results revealed that bacterial microbiota inherited from parents reared on a different substrate may have induced dysbiosis in the progeny. Specifically, the interaction networks of individuals reared on hatchery waste showed a high prevalence of negative interactions and low connectivity. Proteobacteria (39-92%), Firmicutes (4-39%), Bacteroidota (1-38%), and Actinobacteria (1-33%). In animal feed-reared individuals, Firmicutes reached the highest relative abundance (10-80%), followed by Proteobacteria (6-55%), Actinobacteria (1-31%), and Bacteroidota (0-22%). The rearing substrate was the main driver of microbiota composition, while the developmental stage influenced only the whole individual's bacterial microbiota composition. Gut regions were associated with distinct bacterial composition and richness, with diversity decreasing along the digestive tract. For the first time, microeukaryotes of the microbiota other than Fungi were investigated using 18S genetic marker amplicon sequencing with novel blocking primers specific to the Black Soldier Fly. Microeukaryotes are a neglected part of multitrophic microbiota communities that can have similar effects on their hosts as bacterial microbiota. Microeukaryotes from seven orders were identified in black soldier flies, including potential pathogens (e.g., Aplicomplexa group). Nucletmycea were the dominant class throughout development, followed by Holozoa and Stramenophiles. The eukaryote microbiota was structured by developmental stages but not by gut regions. Insights from this study are a stepping stone toward the microbiological optimization of black soldier flies for industrial rearing, highlighting how a synthetic microbiota assembly should be tailored to the rearing environment of the larvae at a targeted developmental stage.
Collapse
Affiliation(s)
- Laurence Auger
- Laboratory Derome, Département de Biologie, Institute of Integrative Biology and Systems, Université Laval, Québec, QC, Canada
| | | | - Grant Vandenberg
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Nicolas Derome
- Laboratory Derome, Département de Biologie, Institute of Integrative Biology and Systems, Université Laval, Québec, QC, Canada
| |
Collapse
|
29
|
Belhadj Slimen I, Yerou H, Ben Larbi M, M’Hamdi N, Najar T. Insects as an alternative protein source for poultry nutrition: a review. Front Vet Sci 2023; 10:1200031. [PMID: 37662983 PMCID: PMC10470001 DOI: 10.3389/fvets.2023.1200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
This review summarizes the most relevant scientific literature related to the use of insects as alternative protein sources in poultry diets. The black soldier fly, the housefly, the beetle, mealworms, silkworms, earthworms, crickets, and grasshoppers are in the spotlight because they have been identified as an important future source of sustainable animal proteins for poultry feeding. Insect meals meet poultry requirements in terms of nutritional value, essential amino acid composition, nutrient digestibility, and feed acceptance. Furthermore, they are enriched with antimicrobial peptides and bioactive molecules that can improve global health. Results from poultry studies suggest equivalent or enhanced growth performances and quality of end-products as compared to fish meal and soybean meal. To outline this body of knowledge, this article states established threads of research about the nutrient profiles and the digestibility of insect meals, their subsequent effects on the growth and laying performances of poultry as well as the quality of meat, carcass, and eggs. To fully exploit insect-derived products, the effects of insect bioactive molecules (antimicrobial peptides, fatty acids, and polysaccharides) were addressed. Furthermore, as edible insects are likely to take a meaningful position in the feed and food chain, the safety of their derived products needs to be ensured. Some insights into the current knowledge on the prevalence of pathogens and contaminants in edible insects were highlighted. Finally, the effect of insect farming and processing treatment on the nutritive value of insect larvae was discussed. Our overview reveals that using insects can potentially solve problems related to reliance on other food sources, without altering the growth performances and the quality of meat and eggs.
Collapse
Affiliation(s)
- Imen Belhadj Slimen
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Houari Yerou
- Department of Agronomic Sciences, SNV Institute, Mustapha Stambouli University, Mascara, Algeria
- Laboratory of Geo Environment and Development of Spaces, Mascara University, Mascara, Algeria
| | - Manel Ben Larbi
- Higher School of Agriculture, University of Carthage, Mateur, Tunisia
| | - Naceur M’Hamdi
- Research Laboratory of Ecosystems and Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Taha Najar
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| |
Collapse
|
30
|
Chen G, Zhang K, Tang W, Li Y, Pang J, Yuan X, Song X, Jiang L, Yu X, Zhu H, Wang J, Zhang J, Zhang X. Feed nutritional composition affects the intestinal microbiota and digestive enzyme activity of black soldier fly larvae. Front Microbiol 2023; 14:1184139. [PMID: 37293219 PMCID: PMC10244541 DOI: 10.3389/fmicb.2023.1184139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Using black soldier fly larvae (BSFLs) to treat food waste is one of the most promising environmental protection technologies. Methods We used high-throughput sequencing to study the effects of different nutritional compositions on the intestinal microbiota and digestive enzymes of BSF. Results Compared with standard feed (CK), high-protein feed (CAS), high-fat feed (OIL) and high-starch feed (STA) had different effects on the BSF intestinal microbiota. CAS significantly reduced the bacterial and fungal diversity in the BSF intestinal tract. At the genus level, CAS, OIL and STA decreased the Enterococcus abundance compared with CK, CAS increased the Lysinibacillus abundance, and OIL increased the Klebsiella, Acinetobacter and Bacillus abundances. Diutina, Issatchenkia and Candida were the dominant fungal genera in the BSFL gut. The relative abundance of Diutina in the CAS group was the highest, and that of Issatchenkia and Candida in the OIL group increased, while STA decreased the abundance of Diutina and increased that of Issatchenkia. The digestive enzyme activities differed among the four groups. The α-amylase, pepsin and lipase activities in the CK group were the highest, and those in the CAS group were the lowest or the second lowest. Correlation analysis of environmental factors showed a significant correlation between the intestinal microbiota composition and digestive enzyme activity, especially α-amylase activity, which was highly correlated with bacteria and fungi with high relative abundances. Moreover, the mortality rate of the CAS group was the highest, and that of the OIL group was the lowest. Discussion In summary, different nutritional compositions significantly affected the community structure of bacteria and fungi in the BSFL intestinal tract, affected digestive enzyme activity, and ultimately affected larval mortality. The high oil diet gave the best results in terms of growth, survival and intestinal microbiota diversity, although the digestive enzymes activities were not the highest.
Collapse
Affiliation(s)
- Guozhong Chen
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Kai Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
| | - Junyi Pang
- School of Life Sciences, Ludong University, Yantai, China
| | - Xin Yuan
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Xiangbin Song
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Jiao Wang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| |
Collapse
|
31
|
Kariuki EG, Kibet C, Paredes JC, Mboowa G, Mwaura O, Njogu J, Masiga D, Bugg TDH, Tanga CM. Metatranscriptomic analysis of the gut microbiome of black soldier fly larvae reared on lignocellulose-rich fiber diets unveils key lignocellulolytic enzymes. Front Microbiol 2023; 14:1120224. [PMID: 37180276 PMCID: PMC10171111 DOI: 10.3389/fmicb.2023.1120224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Recently, interest in the black soldier fly larvae (BSFL) gut microbiome has received increased attention primarily due to their role in waste bioconversion. However, there is a lack of information on the positive effect on the activities of the gut microbiomes and enzymes (CAZyme families) acting on lignocellulose. In this study, BSFL were subjected to lignocellulose-rich diets: chicken feed (CF), chicken manure (CM), brewers' spent grain (BSG), and water hyacinth (WH). The mRNA libraries were prepared, and RNA-Sequencing was conducted using the PCR-cDNA approach through the MinION sequencing platform. Our results demonstrated that BSFL reared on BSG and WH had the highest abundance of Bacteroides and Dysgonomonas. The presence of GH51 and GH43_16 enzyme families in the gut of BSFL with both α-L-arabinofuranosidases and exo-alpha-L-arabinofuranosidase 2 were common in the BSFL reared on the highly lignocellulosic WH and BSG diets. Gene clusters that encode hemicellulolytic arabinofuranosidases in the CAZy family GH51 were also identified. These findings provide novel insight into the shift of gut microbiomes and the potential role of BSFL in the bioconversion of various highly lignocellulosic diets to fermentable sugars for subsequent value-added products (bioethanol). Further research on the role of these enzymes to improve existing technologies and their biotechnological applications is crucial.
Collapse
Affiliation(s)
- Eric G. Kariuki
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Caleb Kibet
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Juan C. Paredes
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Oscar Mwaura
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - John Njogu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Timothy D. H. Bugg
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
32
|
Wu N, Yu X, Liang J, Mao Z, Ma Y, Wang Z, Wang X, Liu X, Xu X. A full recycling chain of food waste with straw addition mediated by black soldier fly larvae: Focus on fresh frass quality, secondary composting, and its fertilizing effect on maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163386. [PMID: 37031930 DOI: 10.1016/j.scitotenv.2023.163386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Bioconversion of food waste (FW) by black soldier fly larvae (BSFL) has great potential in generating high-quality organic fertilizers (insect frass). However, the stabilization of BSFL frass and its fertilizing effect on crops remain largely unexplored. Here, a full recycling chain mediated by BSFL from FW source to end application was systematically evaluated. BSFL were reared on FW containing 0 %-6 % of rice straw. Straw addition alleviated the high salinity of BSFL frass (Na decreased from 5.9 % to 3.3 %). Specifically, 4 % straw addition significantly enhanced larval biomass and conversion rates, producing fresh frass with a higher humification degree. Lactobacillus (57.0 %-79.9 %) strongly prevailed in almost all fresh frass. A 32-day secondary composting process continued to increase the humification degree of 4 % straw-added frass. Major indicators e.g., pH, organic matter (OM), NPK of final compost basically met the organic fertilizer standard. Application of composted frass fertilizers (0 %-6 %) substantially improved soil OM, nutrients availability and enzyme activities. Moreover, 2 % frass application had optimal enhancing impacts on the height and weight, root activity, total phosphorus and net photosynthetic rate of maize seedling. These findings gave an insight into the BSFL-mediated FW conversion process and proposed the rational application of BSFL frass fertilizer in maize.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiyue Mao
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
33
|
Candian V, Tedeschi R. Impact of the Diet on the Mortality and on Gene Expression of the Antimicrobial Peptide Tenecin 3 in Tenebrio molitor Larvae Infected by Beauveria bassiana. INSECTS 2023; 14:359. [PMID: 37103174 PMCID: PMC10146776 DOI: 10.3390/insects14040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Large-scale insect rearing can be subjected to microbial infections, leading to serious economic losses. When possible, the use of antibiotics is to be avoided for insects intended as feed or food and new strategies to preserve the health of the farmed insects are required. The effectiveness of insect immune system depends on several factors, including the nutritional composition of the diet. The possibility to modulate immune responses through the diet is currently a topic of great interest from an application point of view. We evaluated the effect of two different diets on the survival rate and gene expression of the antimicrobial peptide Tenecin 3 in uninfected and Beauveria bassiana-infected Tenebrio molitor L. larvae. A wheat bran diet, mixed 50% with brewers' spent grains, could positively influence the expression of Tenecin 3 gene when uninfected T. molitor is allowed to develop on such a substrate from early larval stages. Even if, in our trial, the diet with added brewers' spent grains could not reduce the mortality of the larvae infected with B. bassiana, higher transcriptional levels of the antifungal peptide were observed in insects fed this diet, depending on the timing of diet administration.
Collapse
|
34
|
Auger L, Bouslama S, Deschamps MH, Vandenberg G, Derome N. Absence of microbiome triggers extensive changes in the transcriptional profile of Hermetia illucens during larval ontology. Sci Rep 2023; 13:2396. [PMID: 36765081 PMCID: PMC9918496 DOI: 10.1038/s41598-023-29658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Black soldier fly larvae (BSF, Hermetia illucens) have gained much attention for their industrial use as biowaste recyclers and as a new source of animal proteins. The functional effect that microbiota has on insect health and growth performance remains largely unknown. This study clarifies the role of microbiota in BSF ontogeny by investigating the differential genomic expression of BSF larvae in axenic conditions (i.e., germfree) relative to non-axenic (conventional) conditions. We used RNA-seq to measure differentially expressed transcripts between axenic and conventional condition using DESeq2 at day 4, 12 and 20 post-hatching. Gene expression was significantly up or down-regulated for 2476 transcripts mapped in gene ontology functions, and axenic larvae exhibited higher rate of down-regulated functions. Up-regulated microbiota-dependant transcriptional gene modules included the immune system, the lipid metabolism, and the nervous system. Expression profile showed a shift in late larvae (day 12 and 20), exposing a significant temporal effect on gene expression. These results provide the first evidence of host functional genes regulated by microbiota in the BSF larva, further demonstrating the importance of host-microbiota interactions on host ontology and health. These results open the door to optimization of zootechnical properties in alternative animal protein production, biowaste revalorization and recycling.
Collapse
Affiliation(s)
- Laurence Auger
- Département de Biologie, Université Laval, Quebec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, QC, Canada.
| | - Sidki Bouslama
- Département de Biologie, Université Laval, Quebec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, QC, Canada
| | | | - Grant Vandenberg
- Département des Sciences Animales, Université Laval, Quebec, QC, Canada
| | - Nicolas Derome
- Département de Biologie, Université Laval, Quebec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, QC, Canada
| |
Collapse
|
35
|
Pazmiño MF, Del Hierro AG, Flores FJ. Genetic diversity and organic waste degrading capacity of Hermetia illucens from the evergreen forest of the Equatorial Choco lowland. PeerJ 2023; 11:e14798. [PMID: 36755868 PMCID: PMC9901308 DOI: 10.7717/peerj.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Globally, microplastics (MP) represent a growing burden for ecosystems due to their increasing presence at different trophic levels. In Ecuador, the lack of waste segregation has increased the quantity of waste, primarily organics and plastics, overloading landfills and water sources. Over time, plastics reduce in size and silently enter the food chain of animals, such as insects. The black soldier fly (BSF) larvae, Hermetia illucens (Linnaeus, 1758), is a species with devouring behavior used for waste management because of its beneficial qualities such as fly pest control, biomass production, and rapid organic waste degradation. Studies have uncovered the insect's ability to tolerate MP, and consider the possibility that they may be able to degrade polymers. For the first time in Ecuador, the present study characterized H. illucens using the sequences of different molecular markers. Finally, H. illucens' degrading capacity was evaluated in the presence of MP and decaying food residues, resembling landfill conditions.
Collapse
Affiliation(s)
- María Fernanda Pazmiño
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Ana G. Del Hierro
- Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Francisco Javier Flores
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Centro de Investigación de Alimentos, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Pichincha, Ecuador
| |
Collapse
|
36
|
Chamankar B, Maleki-Ravasan N, Karami M, Forouzan E, Karimian F, Naeimi S, Choobdar N. The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome. MICROBIOME 2023; 11:11. [PMID: 36670494 PMCID: PMC9862579 DOI: 10.1186/s40168-022-01456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Paederus fuscipes is medically the most famous rove beetle, which causes dermatitis or conjunctivitis in humans, as well as gastrointestinal toxicosis in livestock, via releasing toxic hemolymph containing pederin. Pedrin biosynthesis genes have been identified in uncultured Pseudomonas-like endosymbionts that are speculated to be acquired through a horizontal transfer. However, the composition of the P. fuscipes microbial community, especially of the gut and genital microbiome, remains unclear. This study was aimed to characterize the structure and diversity of P. fuscipes-associated bacterial communities in terms of gender, organ, and location using the Illumina HiSeq platform in the southern littorals of Caspian Sea. RESULTS The OTUs identified from P. fuscipes specimens were collapsed into 40 phyla, 112 classes, 249 orders, 365 families, 576 genera, and 106 species. The most abundant families were Pseudomonadaceae, Spiroplasmataceae, Weeksellaceae, Enterococcaceae, and Rhizobiaceae, respectively. Thirty top genera made up > 94% of the P. fuscipes microbiome, with predominating Pseudomonas, followed by the Spiroplasma, Apibacter, Enterococcus, Dysgonomonas, Sebaldella, Ruminococcus, and Wolbachia. Interesting dissimilarities were also discovered within and between the beetle microbiomes in terms of genders and organs. Analyses showed that Spiroplasma / Apibacter as well as Pseudomonas / Pseudomonas were the most abundant in the genitals / intestines of male and female beetles, respectively. Bacterial richness did not display any significant difference in the three provinces but was higher in male beetles than in females and more in the genitals than intestines. CONCLUSIONS The present study identified Pseudomonas-like endobacterium as a common symbiont of P. fuscipes beetles; this bacterium begins its journey from gut and genitalia of females to reach the male rove beetles. Additionally, male and female rove beetles were characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes. Evidence of the extension of P. fuscipes microbiome from the environmental paradigm to the pathobiome was also presented herein. A comprehensive survey of P. fuscipes microbiome components may eventually lead to ecological insights into the production and utilization of defensive compound of pederin and also the management of linear dermatitis with the use of available antibiotics against bacterial pathogens released by the beetles. Video Abstract.
Collapse
Affiliation(s)
- Bahar Chamankar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- Departments of Zoology Biosystematics, Payame Noor University, East Tehran Centre, Tehran, Iran
| | | | - Mohsen Karami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Sabah Naeimi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nayyereh Choobdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Gorrens E, Lecocq A, De Smet J. The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms 2023; 11:245. [PMID: 36838211 PMCID: PMC9960648 DOI: 10.3390/microorganisms11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Given the novelty of the industrial production of the edible insects sector, research has primarily focused on the zootechnical performances of black soldier fly larvae (BSFL) in response to different substrates and rearing conditions as a basis to optimize yield and quality. However recently, research has started to focus more on the associated microbes in the larval digestive system and their substrates and the effect of manipulating the composition of these communities on insect performance as a form of microbiome engineering. Here we present an overview of the existing literature on the use of microorganisms during rearing of the BSFL to optimize the productivity of this insect. These studies have had variable outcomes and potential explanations for this variation are offered to inspire future research that might lead to a better success rate for microbiome engineering in BSFL.
Collapse
Affiliation(s)
- Ellen Gorrens
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| |
Collapse
|
38
|
Candian V, Meneguz M, Tedeschi R. Immune Responses of the Black Soldier Fly Hermetia illucens (L.) (Diptera: Stratiomyidae) Reared on Catering Waste. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010213. [PMID: 36676162 PMCID: PMC9867232 DOI: 10.3390/life13010213] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/14/2023]
Abstract
The black soldier fly (BSF), Hermetia illucens L. (Diptera: Stratiomyidae), has a great bioconversion potential and ability to develop on diverse substrates. Although the use of catering waste and food by-products containing meat and fish would reduce the footprint of the insect sector, to date, in Europe, their use is still facing legal obstacles for insects as food and feed. Since a major request from the EU insect sector is to diversify the spectrum of allowed substrates, and considering that variations in diet composition could influence insect immune responses, we evaluated the impact of different catering wastes on BSF prepupae immunity. Insects were reared on five diets: one based on feed for laying hens and four based on catering waste containing (i) fruits and vegetables; (ii) fruits, vegetables and bread; (iii) fruit, vegetables, bread and dairy products; (iv) fruits, vegetables, bread, meat and fish. The gene expression of two antimicrobial peptides (AMPs), one defensin and one cecropin, was assessed. Moreover, the hemolymph inhibitory activity against Escherichia coli DH5α and Micrococcus yunnanensis HI55 was evaluated using diffusion assays in solid media. The up-regulation of both AMPs' encoding genes was observed in insects fed a bread-added and dairy product-added diet. All hemolymph samples showed inhibitory activity against both bacteria, affecting the colony size and number. The obtained results show how catering waste positively influences the H. illucens immune system. The possibility of modulating AMP expression levels through the diet opens up new perspectives in the management of insect health in mass rearings.
Collapse
Affiliation(s)
- Valentina Candian
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
| | - Marco Meneguz
- BEF Biosystems, Via Tancredi Canonico 18/c, 10156 Torino (TO), Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
- Correspondence: ; Tel.: +39-011-6708675
| |
Collapse
|
39
|
Yu Y, Zhang J, Zhu F, Fan M, Zheng J, Cai M, Zheng L, Huang F, Yu Z, Zhang J. Enhanced protein degradation by black soldier fly larvae ( Hermetia illucens L.) and its gut microbes. Front Microbiol 2023; 13:1095025. [PMID: 36704554 PMCID: PMC9871565 DOI: 10.3389/fmicb.2022.1095025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Black soldier fly larvae (BSFL) can convert a variety of organic wastes into biomass, and its gut microbiota are involved in this process. However, the role of gut microbes in the nutrient metabolism of BSFL is unclear. In this study, germ-free BSFL (GF) and gnotobiotic BSFL (GB) were evaluated in a high-protein artificial diet model. We used 16S rDNA sequencing, ITS1 sequencing, and network analysis to study gut microbiota in BSFL that degrade proteins. The protein reduction rate of the GB BSFL group was significantly higher (increased by 73.44%) than that of the GF BSFL group. The activity of gut proteinases, such as trypsin and peptidase, in the GB group was significantly higher than the GF group. The abundances of different gut microbes, including Pseudomonas spp., Orbus spp. and Campylobacter spp., were strongly correlated with amino acid metabolic pathways. Dysgonomonas spp. were strongly correlated with protein digestion and absorption. Issatchenkia spp. had a strong correlation with pepsin activity. Campylobacter spp., Pediococcus spp. and Lactobacillus spp. were strongly correlated with trypsin activity. Lactobacillus spp. and Bacillus spp. were strongly correlated with peptidase activity. Gut microbes such as Issatchenkia spp. may promote the gut proteolytic enzyme activity of BSFL and improve the degradation rate of proteins. BSFL protein digestion and absorption involves gut microbiota that have a variety of functions. In BSFL the core gut microbiota help complete protein degradation. These results demonstrate that core gut microbes in BSFL are important in protein degradation.
Collapse
Affiliation(s)
- Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxia Fan
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China,*Correspondence: Jibin Zhang, ✉
| |
Collapse
|
40
|
Jian S, Zhang L, Ding N, Yang K, Xin Z, Hu M, Zhou Z, Zhao Z, Deng B, Deng J. Effects of black soldier fly larvae as protein or fat sources on apparent nutrient digestibility, fecal microbiota, and metabolic profiles in beagle dogs. Front Microbiol 2022; 13:1044986. [PMID: 36504773 PMCID: PMC9733673 DOI: 10.3389/fmicb.2022.1044986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) act as a biological system converting organic waste into protein and fat with great potential application as pet food. To evaluate the feasibility of BSFL as a protein and fat source, 20 healthy beagle dogs were fed three dietary treatments for 65 days, including (1) a basal diet group (CON group), (2) a basal diet that replaced 20% chicken meal with defatted black soldier fly larvae protein group (DBP group), and (3) a basal diet that replaced 8% mixed oil with black soldier fly larvae fat group (BF group). This study demonstrated that the serum biochemical parameters among the three groups were within the normal range. No difference (p > 0.05) was observed in body weight, body condition score, or antioxidant capacity among the three groups. The mean IFN-γ level in the BF group was lower than that in the CON group, but there was no significant difference (p > 0.05). Compared with the CON group, the DBP group had decreasing (p < 0.05) apparent crude protein and organic matter digestibility. Furthermore, the DBP group had decreasing (p < 0.05) fecal propionate, butyrate, total short-chain fatty acids (SCFAs), isobutyrate, isovalerate, and total branched-chain fatty acids (BCFAs) and increased (p < 0.05) fecal pH. Nevertheless, there was no difference (p > 0.05) in SCFAs or BCFAs between the CON and BF groups. The fecal microbiota revealed that Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were significantly enriched in the DBP group, and Terrisporobacter and Ralstonia were significantly enriched in the BF group. The fecal metabolome showed that the DBP group significantly influenced 18 metabolic pathways. Integrating biological and statistical correlation analysis on differential fecal microbiota and metabolites between the CON and DBP groups found that Lachnoclostridium, Clostridioides, and Enterococcus were positively associated with biotin. In addition, Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were positively associated with niacinamide, phenylalanine acid, fumaric acid, and citrulline and negatively associated with cadavrine, putrescine, saccharopine, and butyrate. In all, 20% DBP restrained the apparent CP and OM digestibility, thereby affecting hindgut microbial metabolism. In contrast, 8% BF in the dog diet showed no adverse effects on body condition, apparent nutrient digestibility, fecal microbiota, or metabolic profiles. Our findings are conducive to opening a new avenue for the exploitation of DBP and BF as protein and fat resources in dog food.
Collapse
Affiliation(s)
- Shiyan Jian
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Ning Ding
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Kang Yang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Minhua Hu
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhidong Zhou
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhihong Zhao
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Baichuan Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Querejeta M, Hervé V, Perdereau E, Marchal L, Herniou EA, Boyer S, Giron D. Changes in Bacterial Community Structure Across the Different Life Stages of Black Soldier Fly (Hermetia illucens). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02146-x. [PMID: 36434303 DOI: 10.1007/s00248-022-02146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The digestive capacity of organic compounds by the black soldier fly (BSF, Hermetia illucens, Diptera: Stratiomyidae, Linnaeus, 1758) is known to rely on complex larva-microbiota interactions. Although insect development is known to be a driver of changes of bacterial communities, the fluctuations along BSF life cycle in terms of composition and diversity of bacterial communities are still unknown. In this work, we used a metabarcoding approach to explore the differences in bacterial diversity along all four BSF developmental stages: eggs, larvae, pupae, and adult. We detected not only significant differences in bacterial community composition and species richness along the development of BSF, but also nine prevalent amplicon single variants (ASVs) forming the core microbiota. Out of the 2010 ASVs identified, 160 were significantly more abundant in one of the life stages. Moreover, using PICRUSt2, we inferred 27 potential metabolic pathways differentially used among the BSF life cycle. This distribution of metabolic pathways was congruent with the bacterial taxonomic distribution among life stages, demonstrating that the functional requirements of each phase of development are drivers of bacterial composition and diversity. This study provides a better understanding of the different metabolic processes occurring during BSF development and their links to changes in bacterial taxa. This information has important implications for improving bio-waste processing in such an economically important insect species.
Collapse
Affiliation(s)
- Marina Querejeta
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France.
- Department of Functional Biology, University of Oviedo, Asturias, Spain.
| | - Vincent Hervé
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | - Elfie Perdereau
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Lorène Marchal
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Stéphane Boyer
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| |
Collapse
|
42
|
Shi Z, Zhang J, Jiang Y, Wen Y, Gao Z, Deng W, Yin Y, Zhu F. Two low-toxic Klebsiella pneumoniae strains from gut of black soldier fly Hermetia illucens are multi-resistance to sulfonamides and cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120062. [PMID: 36049579 DOI: 10.1016/j.envpol.2022.120062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, pollution of antibiotics and heavy metal has often been reported in organic wastes. Saprophytic insects have been recorded as biological control agents in organic waste management. During organic waste conversion, the intestinal bacteria of the saprophytic insects play an important role in digestion, physiology, immunity and prevention of pathogen colonization. Black soldier fly (BSF) Hermetia illucens has been widely used as saprophytic insects and showed tolerance to sulfonamides (SAs) and cadmium (Cd). Diversity and changes in gut microbiota of black soldier fly larvae (BSFL) were evaluated through 16S rRNA high-throughput sequencing, and a decrease in diversity of gut microbiota along with an increase in SAs stress was recorded. Major members identified were Actinomycetaceae, Enterobacteriaceae, and Enterococcaceae. And fourteen multi-resistance Klebsiella pneumoniae strains were isolated. Two strains BSFL7-B-5 (from middle midgut of 7-day BSFL) and BSFL11-C-1 (from posterior midgut of 11-day BSFL) were found to be low-toxic and multi-resistance. The adsorption rate of SAs in 5 mg/kg solutions by these two strains reached 65.2% and 61.6%, respectively. Adsorption rate of Cd in 20 mg/L solutions was 77.2% for BSFL7-B-5. The strain BSFL11-C-1 showed higher than 70% adsorption rates of Cd in 20, 30 and 40 mg/L solutions. This study revealed that the presence of multi-resistance bacterial strains in the gut of BSFL helped the larvae against SAs or Cd stress. After determining how and where they are used, selected BSFL gut bacterial strains might be utilized in managing SAs or Cd contamination at suitable concentrations in the future.
Collapse
Affiliation(s)
- Zhihui Shi
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jie Zhang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yijie Jiang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yiting Wen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhenghui Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenhui Deng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yumeng Yin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
43
|
Liu C, Yao H, Cao Q, Wang T, Wang C. The enhanced degradation behavior of oxytetracycline by black soldier fly larvae with tetracycline resistance genes in the larval gut: Kinetic process and mechanism. ENVIRONMENTAL RESEARCH 2022; 214:114211. [PMID: 36037919 DOI: 10.1016/j.envres.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly larvae (larvae) can digest organic wastes and degrade contaminants such as oxytetracycline (OTC). However, compared to the kinetic processes and enhanced mechanisms used in the traditional microbial degradation of OTC, those employed by larvae are largely uncharacterized. To obtain further details, a combined analysis of larval development, larval nutritional values (crude protein, crude fat and the composition of fatty acids) and the expression of tetracycline resistance genes (TRGs) in the larval gut was performed for the degradation of OTC added to substrates and for oxytetracycline bacterial residue (OBR). When the larvae were exposed to the substrates, the degradation processes were enhanced significantly (P < 0.01), with a 4.74-7.86-fold decrease in the degradation half-life (day-1) and a 3.34-5.74-fold increase in the final degradation efficiencies. This result was attributed to the abundant TRGs (with a detection rate of 35.90%∼52.14%) in the larval gut. The TRGs presented the resistance mechanisms of cellular protection and efflux pumps, which ensured that the larvae could tolerate elevated OTC concentrations. Investigation of the TRGs indicated that enzymatic inactivation enhanced OTC degradation by larvae. These findings demonstrate that the larval degradation of antibiotic contaminants is an efficient method based on abundant TRGs in the larval gut, even though OTC degradation results in OBR. In addition, a more optimized system for higher reductions in antibiotic levels and the expansion of larval bioremediation to other fields is necessary.
Collapse
Affiliation(s)
- Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Huaiying Yao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
44
|
IJdema F, De Smet J, Crauwels S, Lievens B, Van Campenhout L. Meta-analysis of larvae of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiol Ecol 2022; 98:fiac094. [PMID: 35977400 PMCID: PMC9453823 DOI: 10.1093/femsec/fiac094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Black soldier fly larvae (BSFL) belong to the most widely reared insects as an alternative protein source at industrial scale. Bacteria in the larval gut can provide benefits for the animal, though some bacteria can also be pathogenic for the insect. Accurate characterization of the BSFL microbiota is important for the production of BSFL in terms of yield and microbiological safety. In this study, 16S ribosomal RNA gene sequence data sets from 11 studies were re-analysed to gain better insights in the BSFL gut microbiota, potential factors that influence their composition, and differences between the gut and the whole larvae microbiota. A core gut microbiota was found consisting of members of Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium. Further, the factors 'Study', 'Age' and 'Feed' (i.e. rearing substrate of the larvae) significantly affected the microbiota gut composition. When compared to whole larvae, a significantly lower diversity was found for gut samples, suggesting that the larvae harboured additional microbes on their cuticle or in the insect body. Universal choices in insect sample type, primer selection and bio-informatics analysis pipeline can strengthen future meta-analyses and improve our understanding of the BSFL gut microbiota towards the optimization of insect rearing conditions and substrates.
Collapse
Affiliation(s)
- Freek IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Jeroen De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, B-3001, Belgium
| | - Leen Van Campenhout
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| |
Collapse
|
45
|
Bruno D, Montali A, Gariboldi M, Wrońska AK, Kaczmarek A, Mohamed A, Tian L, Casartelli M, Tettamanti G. Morphofunctional characterization of hemocytes in black soldier fly larvae. INSECT SCIENCE 2022. [PMID: 36065570 DOI: 10.1111/1744-7917.13111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marzia Gariboldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Katarzyna Wrońska
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Morena Casartelli
- Department of Biosciences, University of Milano, Milano, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| |
Collapse
|
46
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
47
|
Zhang Y, Xiao X, Elhag O, Cai M, Zheng L, Huang F, Jordan HR, Tomberlin JK, Sze SH, Yu Z, Zhang J. Hermetia illucens L. larvae-associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure. Microb Biotechnol 2022; 15:2631-2644. [PMID: 35881487 PMCID: PMC9518977 DOI: 10.1111/1751-7915.14113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/03/2022] Open
Abstract
Black soldier fly (BSF) larvae are considered a promising biological reactor to convert organic waste and reduce the impact of zoonotic pathogens on the environment. We analysed the effects of BSF larvae on Staphylococcus aureus and Salmonella spp. populations in pig manure (PM), which showed that BSF larvae can significantly reduce the counts of the associated S. aureus and Salmonella spp. Then, using a sterile BSF larval system, we validated the function of BSF larval intestinal microbiota in vivo to suppress pathogens, and lastly, we isolated eight bacterial strains from the BSF larval gut that inhibit S. aureus. Results indicated that functional microbes are essential for BSF larvae to antagonise S. aureus. Moreover, the analysis results of the relationship between the intestinal microbiota and S. aureus and Salmonella spp. showed that Myroides, Tissierella, Oblitimonas, Paenalcalignes, Terrisporobacter, Clostridium, Fastidiosipila, Pseudomonas, Ignatzschineria, Savagea, Moheibacter and Sphingobacterium were negatively correlated with S. aureus and Salmonella. Overall, these results suggested that the potential ability of BSF larvae to inhibit S. aureus and Salmonella spp. present in PM is accomplished primarily by gut‐associated microorganisms.
Collapse
Affiliation(s)
- Yuanpu Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Osama Elhag
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China.,Faculty of Science and Technology, Omdurman Islamic University, Khartoum, Sudan
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Heather R Jordan
- Department of Biology, Mississippi State University, Mississippi State, Mississippi, USA
| | | | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
48
|
Li XY, Mei C, Luo XY, Wulamu D, Zhan S, Huang YP, Yang H. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. INSECT SCIENCE 2022. [PMID: 35811567 DOI: 10.1111/1744-7917.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.
Collapse
Affiliation(s)
- Xin-Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xing-Yu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dilinuer Wulamu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
49
|
Black Soldier Fly Larvae Influence Internal and Substrate Bacterial Community Composition Depending on Substrate Type and Larval Density. Appl Environ Microbiol 2022; 88:e0008422. [PMID: 35532232 PMCID: PMC9128521 DOI: 10.1128/aem.00084-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Saprophagous fly larvae interact with a rich community of bacteria in decomposing organic matter. Larvae of some species, such as the black soldier fly, can process a wide range of organic residual streams into edible insect biomass and thus produce protein as a sustainable component of livestock feed. The microbiological safety of the insects and substrates remains a point of concern. Substrate-associated bacteria can dominate the larval gut microbiota, but the larvae can also alter the bacterial community in the substrate. However, the relative importance of substrate type and larval density in bacterial community dynamics is unknown. We investigated four larval densities (0 [control], 50, 100, or 200 larvae per container [520 mL; diameter, 75 mm]) and three feed substrates (chicken feed, chicken manure, and camelina substrate [50% chicken feed, 50% camelina oilseed press cake]) and sampled the bacterial communities of the substrates and larvae at three time points over 15 days. Although feed substrate was the strongest driver of microbiota composition over time, larval density significantly altered the relative abundances of several common bacterial genera, including potential pathogens, in each substrate and in larvae fed chicken feed. Bacterial communities of the larvae and substrate differed to a higher degree in chicken manure and camelina than in chicken feed. This supports the substrate-dependent impact of black soldier fly larvae on bacteria both within the larvae and in the substrate. This study indicates that substrate composition and larval density can alter bacterial community composition and might be used to improve insect microbiological safety. IMPORTANCE Black soldier fly larvae can process organic side streams into nutritious insect biomass, yielding a sustainable ingredient of animal feed. In processing such organic residues, the larvae impact the substrate and its microbiota. However, their role relative to the feed substrate in shaping the bacterial community is unknown. This may be important for the waste management industry to determine whether pathogens can be controlled by manipulating the larval density and the timing of harvest. We investigated how the type of feed substrate and the larval density (number of larvae per container) interacted to influence bacterial community composition in the substrates and larvae over time. Substrate type was the strongest driver of bacterial community composition, and the magnitude of the impact of the larvae depended on the substrate type and larval density. Thus, both substrate composition and larval density may be used to improve the microbiological safety of the larvae as animal feed.
Collapse
|
50
|
Diet Fermentation Leads to Microbial Adaptation in Black Soldier Fly (Hermetia illucens; Linnaeus, 1758) Larvae Reared on Palm Oil Side Streams. SUSTAINABILITY 2022. [DOI: 10.3390/su14095626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insects offer a promising alternative source of protein to mitigate the environmental consequences of conventional livestock farming. Larvae of the black soldier fly (Hermetia illucens; Linnaeus, 1758) efficiently convert a variety of organic side streams and residues into valuable proteins, lipids, and chitin. Here, we evaluated the suitability of two palm oil industry side streams—empty fruit bunches (EFB) and palm kernel meal (PKM)—as larval feed, and their impact on the larval gut microbiome. Among 69 fungal species we screened, Marasmius palmivorus, Irpex consors, and Bjerkandera adusta achieved the fastest growth and lignin degradation, so these fungi were used for the pretreatment of 7:3 mixtures of EFB and PKM. Larvae reared on the mixture pretreated with B. adusta (BAD) developed significantly more quickly and reached a higher final weight than those reared on the other pretreatments or the non-fermented reference (NFR). Amplicon sequencing of the BAD and NFR groups revealed major differences in the larval gut microbiome. The NFR group was dominated by facultatively anaerobic Enterobacteriaceae (typical of H. illucens larvae) whereas the BAD group favored obligately anaerobic, cellulolytic bacteria (Ruminococcaceae and Lachnospiraceae). We hypothesize that fungal lignin degradation led to an accumulation of mycelia and subsequent cellulolytic breakdown of fiber residues, thus improving substrate digestibility.
Collapse
|