1
|
Salimi S, Abdi MF, Rahnama M. Characterization and organization of telomeric-linked helicase (tlh) gene families in Fusarium oxysporum. Curr Genet 2024; 70:19. [PMID: 39528830 DOI: 10.1007/s00294-024-01303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Telomere-linked RecQ helicase (tlh) genes have been reported in several fungi and a choanoflagellate in the regions adjacent to the terminal telomere repeats. In this study, we explored the Telomere-linked RecQ helicase (tlh) genes in four strains of Fusarium oxysporum, offering new insights into their genomic structure, functional motifs, and impact on chromosomal ends. We conducted a comprehensive analysis, comparing the tlh genes of F. oxysporum with those previously identified in other organisms and uncovering significant similarities. Through comparative genomics, we identified conserved protein motifs across these genes, including a TLH domain, C2H2, and RecQ helicase motifs. Our phylogenetic analysis positions the F. oxysporum tlh genes in a cluster with other known tlhs, suggesting a shared evolutionary origin. Mutation analysis revealed a relatively low level of deleterious mutations in tlh gene paralogs, with a notable proportion of full-size structures maintained across strains. Analysis of subtelomeric sequences indicates that a region with almost identical sequences flanks the majority of chromosome ends, termed tlh-containing region (TLHcr), across these strains. The presence of TLHcrs at chromosome ends, either as single entities or in arrays, underscores their potential role in telomere function and genome stability. Our findings provide a detailed examination of tlh genes in four strains of F. oxysporum, laying the groundwork for future studies on their biological significance and evolutionary history in fungal genomes.
Collapse
Affiliation(s)
- Sahar Salimi
- School of Environmental Studies, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - M Foad Abdi
- Department of Biology, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Mostafa Rahnama
- Department of Biology, Tennessee Technological University, Cookeville, TN, 38505, USA.
| |
Collapse
|
2
|
Durán-Sequeda D, Suspes D, Maestre E, Alfaro M, Perez G, Ramírez L, Pisabarro AG, Sierra R. Effect of Nutritional Factors and Copper on the Regulation of Laccase Enzyme Production in Pleurotus ostreatus. J Fungi (Basel) 2021; 8:jof8010007. [PMID: 35049947 PMCID: PMC8780821 DOI: 10.3390/jof8010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023] Open
Abstract
This research aimed to establish the relationship between carbon–nitrogen nutritional factors and copper sulfate on laccase activity (LA) by Pleurotus ostreatus. Culture media composition was tested to choose the nitrogen source. Yeast extract (YE) was selected as a better nitrogen source than ammonium sulfate. Then, the effect of glucose and YE concentrations on biomass production and LA as response variables was evaluated using central composite experimental designs with and without copper. The results showed that the best culture medium composition was glucose 45 gL−1 and YE 15 gL−1, simultaneously optimizing these two response variables. The fungal transcriptome was obtained in this medium with or without copper, and the differentially expressed genes were found. The main upregulated transcripts included three laccase genes (lacc2, lacc6, and lacc10) regulated by copper, whereas the principal downregulated transcripts included a copper transporter (ctr1) and a regulator of nitrogen metabolism (nmr1). These results suggest that Ctr1, which facilitates the entry of copper into the cell, is regulated by nutrient-sufficiency conditions. Once inside, copper induces transcription of laccase genes. This finding could explain why a 10–20-fold increase in LA occurs with copper compared to cultures without copper when using the optimal concentration of YE as nitrogen sources.
Collapse
Affiliation(s)
- Dinary Durán-Sequeda
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Daniela Suspes
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Estibenson Maestre
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Gumer Perez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Antonio G. Pisabarro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Rocío Sierra
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| |
Collapse
|
3
|
Pérez G, Lopez-Moya F, Chuina E, Ibañez-Vea M, Garde E, López-Llorca LV, Pisabarro AG, Ramírez L. Strain Degeneration in Pleurotus ostreatus: A Genotype Dependent Oxidative Stress Process Which Triggers Oxidative Stress, Cellular Detoxifying and Cell Wall Reshaping Genes. J Fungi (Basel) 2021; 7:jof7100862. [PMID: 34682283 PMCID: PMC8537115 DOI: 10.3390/jof7100862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Strain degeneration has been defined as a decrease or loss in the yield of important commercial traits resulting from subsequent culture, which ultimately leads to Reactive Oxygen Species (ROS) production. Pleurotus ostreatus is a lignin-producing nematophagous edible mushroom. Mycelia for mushroom production are usually maintained in subsequent culture in solid media and frequently show symptoms of strain degeneration. The dikaryotic strain P. ostreatus (DkN001) has been used in our lab as a model organism for different purposes. Hence, different tools have been developed to uncover genetic and molecular aspects of this fungus. In this work, strain degeneration was studied in a full-sib monokaryotic progeny of the DkN001 strain with fast (F) and slow (S) growth rates by using different experimental approaches (light microscopy, malondialdehyde levels, whole-genome transcriptome analysis, and chitosan effect on monokaryotic mycelia). The results obtained showed that: (i) strain degeneration in P. ostreatus is linked to oxidative stress, (ii) the oxidative stress response in monokaryons is genotype dependent, (iii) stress and detoxifying genes are highly expressed in S monokaryons with symptoms of strain degeneration, (iv) chitosan addition to F and S monokaryons uncovered the constitutive expression of both oxidative stress and cellular detoxifying genes in S monokaryon strains which suggest their adaptation to oxidative stress, and (v) the overexpression of the cell wall genes, Uap1 and Cda1, in S monokaryons with strain degeneration phenotype indicates cell wall reshaping and the activation of High Osmolarity Glycerol (HOG) and Cell Wall Integrity (CWI) pathways. These results could constitute a hallmark for mushroom producers to distinguish strain degeneration in commercial mushrooms.
Collapse
Affiliation(s)
- Gumer Pérez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Emilia Chuina
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - María Ibañez-Vea
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Edurne Garde
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Luis V. López-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Antonio G. Pisabarro
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Lucía Ramírez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
- Correspondence:
| |
Collapse
|
4
|
Lee YY, Vidal-Diez de Ulzurrun G, Schwarz EM, Stajich JE, Hsueh YP. Genome sequence of the oyster mushroom Pleurotus ostreatus strain PC9. G3-GENES GENOMES GENETICS 2021; 11:6044136. [PMID: 33585864 PMCID: PMC8022983 DOI: 10.1093/g3journal/jkaa008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
Abstract
The oyster mushroom Pleurotus ostreatus is a basidiomycete commonly found in the rotten wood and it is one of the most cultivated edible mushrooms globally. Pleurotus ostreatus is also a carnivorous fungus, which can paralyze and kill nematodes within minutes. However, the molecular mechanisms of the predator-prey interactions between P. ostreatus and nematodes remain unclear. PC9 and PC15 are two model strains of P. ostreatus and the genomes of both strains have been sequenced and deposited at the Joint Genome Institute (JGI). These two monokaryotic strains exhibit dramatic differences in growth, but because PC9 grows more robustly in laboratory conditions, it has become the strain of choice for many studies. Despite the fact that PC9 is the common strain for investigation, its genome is fragmentary and incomplete relative to that of PC15. To overcome this problem, we used PacBio long reads and Illumina sequencing to assemble and polish a more integrated genome for PC9. Our PC9 genome assembly, distributed across 17 scaffolds, is highly contiguous and includes five telomere-to-telomere scaffolds, dramatically improving the genome quality. We believe that our PC9 genome resource will be useful to the fungal research community investigating various aspects of P. ostreatus biology.
Collapse
Affiliation(s)
- Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academic Sinica, Taipei, Taiwan
| | | | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academic Sinica, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
5
|
Tobias PA, Schwessinger B, Deng CH, Wu C, Dong C, Sperschneider J, Jones A, Lou Z, Zhang P, Sandhu K, Smith GR, Tibbits J, Chagné D, Park RF. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. G3 (BETHESDA, MD.) 2021; 11:jkaa015. [PMID: 33793741 PMCID: PMC8063080 DOI: 10.1093/g3journal/jkaa015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Austropuccinia psidii, originating in South America, is a globally invasive fungal plant pathogen that causes rust disease on Myrtaceae. Several biotypes are recognized, with the most widely distributed pandemic biotype spreading throughout the Asia-Pacific and Oceania regions over the last decade. Austropuccinia psidii has a broad host range with more than 480 myrtaceous species. Since first detected in Australia in 2010, the pathogen has caused the near extinction of at least three species and negatively affected commercial production of several Myrtaceae. To enable molecular and evolutionary studies into A. psidii pathogenicity, we assembled a highly contiguous genome for the pandemic biotype. With an estimated haploid genome size of just over 1 Gb (gigabases), it is the largest assembled fungal genome to date. The genome has undergone massive expansion via distinct transposable element (TE) bursts. Over 90% of the genome is covered by TEs predominantly belonging to the Gypsy superfamily. These TE bursts have likely been followed by deamination events of methylated cytosines to silence the repetitive elements. This in turn led to the depletion of CpG sites in TEs and a very low overall GC content of 33.8%. Compared to other Pucciniales, the intergenic distances are increased by an order of magnitude indicating a general insertion of TEs between genes. Overall, we show how TEs shaped the genome evolution of A. psidii and provide a greatly needed resource for strategic approaches to combat disease spread.
Collapse
Affiliation(s)
- Peri A Tobias
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Plant & Food Research Australia, SA 5064, Australia
| | - Benjamin Schwessinger
- Australia Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Chongmei Dong
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 2600, Australia
| | - Ashley Jones
- Australia Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Zhenyan Lou
- Australia Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Peng Zhang
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| | - Karanjeet Sandhu
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| | - Grant R Smith
- The New Zealand Institute for Plant and Food Research Limited, Christchurch 8140, New Zealand
| | - Josquin Tibbits
- Agriculture Victoria Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| | - David Chagné
- The New Zealand Institute for Plant & Food Research, Palmerston North 4442, New Zealand
| | - Robert F Park
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| |
Collapse
|
6
|
Vidal-Diez de Ulzurrun G, Lee YY, Stajich JE, Schwarz EM, Hsueh YP. Genomic analyses of two Italian oyster mushroom Pleurotus pulmonarius strains. G3 (BETHESDA, MD.) 2021; 11:jkaa007. [PMID: 33585863 PMCID: PMC8022975 DOI: 10.1093/g3journal/jkaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2020] [Indexed: 11/14/2022]
Abstract
Pleurotus mushrooms are among the most cultivated fungi in the world and are highly valuable for food, medicine, and biotechnology industries. Furthermore, Pleurotus species are carnivorous fungi; they can rapidly paralyze and kill nematodes when nutrient-deprived. The predator-prey interactions between Pleurotus and nematodes are still widely unexplored. Moreover, the molecular mechanisms and the genes involved in the carnivorous behavior of Pleurotus mushrooms remain a mystery. We are attempting to understand the interactions between Pleurotus mushrooms and their nematode prey through genetic and genomic analyses. Two single spores (ss2 and ss5) isolated from a fruiting body of Pleurotus pulmonarius exhibited significant differences in growth and toxicity against nematodes. Thus, using PacBio long reads, we assembled and annotated two high-quality genomes for these two isolates of P. pulmonarius. Each of these assemblies contains 23 scaffolds, including 6 (ss2) and 8 (ss5) telomere-to-telomere scaffolds, and they are among the most complete assembled genomes of the Pleurotus species. Comparative analyses identified the genomic differences between the two P. pulmonarius strains. In sum, this work provides a genomic resource that will be invaluable for better understanding the Italian oyster mushroom P. pulmonarius.
Collapse
Affiliation(s)
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Ave. Riverside, CA 92521, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology 351, 526 Campus Road, Ithaca, NY 14853-2703, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
7
|
Ke HM, Lee HH, Lin CYI, Liu YC, Lu MR, Hsieh JWA, Chang CC, Wu PH, Lu MJ, Li JY, Shang G, Lu RJH, Nagy LG, Chen PY, Kao HW, Tsai IJ. Mycena genomes resolve the evolution of fungal bioluminescence. Proc Natl Acad Sci U S A 2020; 117:31267-31277. [PMID: 33229585 PMCID: PMC7733832 DOI: 10.1073/pnas.2010761117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mushroom-forming fungi in the order Agaricales represent an independent origin of bioluminescence in the tree of life; yet the diversity, evolutionary history, and timing of the origin of fungal luciferases remain elusive. We sequenced the genomes and transcriptomes of five bonnet mushroom species (Mycena spp.), a diverse lineage comprising the majority of bioluminescent fungi. Two species with haploid genome assemblies ∼150 Mb are among the largest in Agaricales, and we found that a variety of repeats between Mycena species were differentially mediated by DNA methylation. We show that bioluminescence evolved in the last common ancestor of mycenoid and the marasmioid clade of Agaricales and was maintained through at least 160 million years of evolution. Analyses of synteny across genomes of bioluminescent species resolved how the luciferase cluster was derived by duplication and translocation, frequently rearranged and lost in most Mycena species, but conserved in the Armillaria lineage. Luciferase cluster members were coexpressed across developmental stages, with the highest expression in fruiting body caps and stipes, suggesting fruiting-related adaptive functions. Our results contribute to understanding a de novo origin of bioluminescence and the corresponding gene cluster in a diverse group of enigmatic fungal species.
Collapse
Affiliation(s)
- Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chan-Yi Ivy Lin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| | - Jo-Wei Allison Hsieh
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chiung-Chih Chang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Hsuan Wu
- Master Program for Plant Medicine and Good Agricultural Practice, National Chung Hsing University, Taichung 402, Taiwan
| | - Meiyeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jeng-Yi Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Gaus Shang
- Department of Biotechnology, Ming Chuan University, Taoyuan 333, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Centre, 6726 Szeged, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Pao-Yang Chen
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiao-Wei Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
8
|
Alfaro M, Castanera R, Lavín JL, Grigoriev IV, Oguiza JA, Ramírez L, Pisabarro AG. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungusPleurotus ostreatus. Environ Microbiol 2016; 18:4710-4726. [DOI: 10.1111/1462-2920.13360] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Alfaro
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Raúl Castanera
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - José L. Lavín
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Bizkaia Technology Park; Derio 48160 Spain
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - José A. Oguiza
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Lucía Ramírez
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Antonio G. Pisabarro
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| |
Collapse
|
9
|
Castanera R, Pérez G, López L, Sancho R, Santoyo F, Alfaro M, Gabaldón T, Pisabarro AG, Oguiza JA, Ramírez L. Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in Pleurotus ostreatus and other fungi. BMC Genomics 2014; 15:1071. [PMID: 25480150 PMCID: PMC4289320 DOI: 10.1186/1471-2164-15-1071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helitrons are class-II eukaryotic transposons that transpose via a rolling circle mechanism. Due to their ability to capture and mobilize gene fragments, they play an important role in the evolution of their host genomes. We have used a bioinformatics approach for the identification of helitrons in two Pleurotus ostreatus genomes using de novo detection and homology-based searching. We have analyzed the presence of helitron-captured genes as well as the expansion of helitron-specific helicases in fungi and performed a phylogenetic analysis of their conserved domains with other representative eukaryotic species. RESULTS Our results show the presence of two helitron families in P. ostreatus that disrupt gene colinearity and cause a lack of synteny between their genomes. Both putative autonomous and non-autonomous helitrons were transcriptionally active, and some of them carried highly expressed captured genes of unknown origin and function. In addition, both families contained eukaryotic, bacterial and viral domains within the helitron's boundaries. A phylogenetic reconstruction of RepHel helicases using the Helitron-like and PIF1-like helicase conserved domains revealed a polyphyletic origin for eukaryotic helitrons. CONCLUSION P. ostreatus helitrons display features similar to other eukaryotic helitrons and do not tend to capture host genes or gene fragments. The occurrence of genes probably captured from other hosts inside the helitrons boundaries pose the hypothesis that an ancient horizontal transfer mechanism could have taken place. The viral domains found in some of these genes and the polyphyletic origin of RepHel helicases in the eukaryotic kingdom suggests that virus could have played a role in a putative lateral transfer of helitrons within the eukaryotic kingdom. The high similarity of some helitrons, along with the transcriptional activity of its RepHel helicases indicates that these elements are still active in the genome of P. ostreatus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lucía Ramírez
- Department of Agrarian Production, Genetics and Microbiology Research Group, Public University of Navarre, 31006 Pamplona, Navarre, Spain.
| |
Collapse
|
10
|
Kim SY, Kim KH, Im CH, Ali A, Lee CY, Kong WS, Ryu JS. Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes. PLoS One 2014; 9:e107207. [PMID: 25221949 PMCID: PMC4164608 DOI: 10.1371/journal.pone.0107207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
Flammulina velutipes is one of the major edible mushrooms in the world. Recently, abnormalities that have a negative impact on crop production have been reported in this mushroom. These symptoms include slow vegetative growth, a compact mycelial mat, and few or even no fruiting bodies. The morphologies and fruiting capabilities of monokaryons of wild-type and degenerate strains that arose through arthrospore formation were investigated through test crossing. Only one monokaryotic group of the degenerate strains and its hybrid strains showed abnormal phenotypes. Because the monokaryotic arthrospore has the same nucleus as the parent strain, these results indicated that only one aberrant nucleus of the two nuclei in the degenerate strain was responsible for the degeneracy. A sequence-characterized amplified region marker that is linked to the degenerate monokaryon was identified based on a polymorphic sequence that was generated using random primers. Comparative analyses revealed the presence of a degenerate-specific genomic region in a telomere, which arose via the transfer of a genomic fragment harboring a putative helicase gene. Our findings have narrowed down the potential molecular targets responsible for this phenotype for future studies and have provided a marker for the detection of degenerate strains.
Collapse
Affiliation(s)
- Sun Young Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Kyung-Hee Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Chak Han Im
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Asjad Ali
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | | | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumsung, Republic of Korea
| | - Jae-San Ryu
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 2013; 55:6-21. [DOI: 10.1016/j.fgb.2013.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
|
12
|
Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z, Qu Y. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 2013; 8:e55185. [PMID: 23383313 PMCID: PMC3562324 DOI: 10.1371/journal.pone.0055185] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023] Open
Abstract
Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Wei
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Gen Zou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong, China
| | - Liang Ma
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Chengshu Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Qi X, Li Y, Honda S, Hoffmann S, Marz M, Mosig A, Podlevsky JD, Stadler PF, Selker EU, Chen JJL. The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res 2012; 41:450-62. [PMID: 23093598 PMCID: PMC3592445 DOI: 10.1093/nar/gks980] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase is a ribonucleoprotein with an intrinsic telomerase RNA (TER) component. Within yeasts, TER is remarkably large and presents little similarity in secondary structure to vertebrate or ciliate TERs. To better understand the evolution of fungal telomerase, we identified 74 TERs from Pezizomycotina and Taphrinomycotina subphyla, sister clades to budding yeasts. We initially identified TER from Neurospora crassa using a novel deep-sequencing-based approach, and homologous TER sequences from available fungal genome databases by computational searches. Remarkably, TERs from these non-yeast fungi have many attributes in common with vertebrate TERs. Comparative phylogenetic analysis of highly conserved regions within Pezizomycotina TERs revealed two core domains nearly identical in secondary structure to the pseudoknot and CR4/5 within vertebrate TERs. We then analyzed N. crassa and Schizosaccharomyces pombe telomerase reconstituted in vitro, and showed that the two RNA core domains in both systems can reconstitute activity in trans as two separate RNA fragments. Furthermore, the primer-extension pulse-chase analysis affirmed that the reconstituted N. crassa telomerase synthesizes TTAGGG repeats with high processivity, a common attribute of vertebrate telomerase. Overall, this study reveals the common ancestral cores of vertebrate and fungal TERs, and provides insights into the molecular evolution of fungal TER structure and function.
Collapse
Affiliation(s)
- Xiaodong Qi
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Foulongne-Oriol M. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biotechnol 2012; 95:891-904. [PMID: 22743715 DOI: 10.1007/s00253-012-4228-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.
Collapse
|
15
|
Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Appl Environ Microbiol 2012; 78:4037-45. [PMID: 22467498 DOI: 10.1128/aem.07880-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors.
Collapse
|
16
|
Kües U, Rühl M. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr Genomics 2011; 12:72-94. [PMID: 21966246 PMCID: PMC3129051 DOI: 10.2174/138920211795564377] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distribution to fungal life styles. Types of mco genes might be present in one and absent in another fungus. Distinct types of genes have been multiplied at speciation in different organisms. Phylogenetic analysis defined different subfamilies of laccases sensu stricto (specific to Agaricomycetes), classical Fe2+-oxidizing Fet3-like ferroxidases, potential ferroxidases/laccases exhibiting either one or both of these enzymatic functions, enzymes clustering with pigment MCOs and putative ascorbate oxidases. Biochemically best described are laccases sensu stricto due to their proposed roles in degradation of wood, straw and plant litter and due to the large interest in these enzymes in biotechnology. However, biological functions of laccases and other MCOs are generally little addressed. Functions in substrate degradation, symbiontic and pathogenic intercations, development, pigmentation and copper homeostasis have been put forward. Evidences for biological functions are in most instances rather circumstantial by correlations of expression. Multiple factors impede research on biological functions such as difficulties of defining suitable biological systems for molecular research, the broad and overlapping substrate spectrum multi-copper oxidases usually possess, the low existent knowledge on their natural substrates, difficulties imposed by low expression or expression of multiple enzymes, and difficulties in expressing enzymes heterologously.
Collapse
Affiliation(s)
- Ursula Kües
- University of Goettingen, Büsgen-Institute, Division of Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, 37077 Goettingen, Germany
| | | |
Collapse
|
17
|
Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A. Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 2010; 166:314-22. [PMID: 20869218 DOI: 10.1016/j.micres.2010.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/24/2010] [Accepted: 07/03/2010] [Indexed: 11/18/2022]
Abstract
A transformation system for the basidiomycete Pleurotus ostreatus was established using agrobacterium-mediated infection. Following P. ostreatus glyceraldehyde-3-phosphate dehydrogenase gene analysis, its promoter region including two introns was used as cis-regulatory element to drive expression of enhanced green fluorescent protein (eGFP). As a selection marker, the hygromycin phosphotransferase (hph) gene cassette was used in the binary vector pPEH. Mycelia without pretreatment were found to be the most efficient recipients in transformation experiments while fruiting body tissue or basidiospores showed lower transformation rates. A transformation efficiency of 75% was achieved. After subculturing, putative transformants were screened by PCR and Southern blot analysis showing the expected ectopic integration of the transforming DNA. At the same time, the promotor region was shown to drive expression of selection marker as well as eGFP that could be visualized, which will be helpful for future investigation using Agrobacterium tumefaciens mediated transformation for functional characterization of genes in the mushroom forming basidioymcete P. ostreatus.
Collapse
Affiliation(s)
- Yi Ding
- College of Food Science and Technology, Huazhong Agricultural University, 1 Lion Hill Road, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
18
|
Lettera V, Piscitelli A, Leo G, Birolo L, Pezzella C, Sannia G. Identification of a new member of Pleurotus ostreatus laccase family from mature fruiting body. Fungal Biol 2010; 114:724-30. [DOI: 10.1016/j.funbio.2010.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
|
19
|
Foulongne-Oriol M, Spataro C, Cathalot V, Monllor S, Savoie JM. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporusxA. bisporus var. burnettii hybrid based on AFLP, SSR and CAPS markers sheds light on the recombination behaviour of the species. Fungal Genet Biol 2009; 47:226-36. [PMID: 20026415 DOI: 10.1016/j.fgb.2009.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/27/2009] [Accepted: 12/09/2009] [Indexed: 01/27/2023]
Abstract
A genetic linkage map for the edible basidiomycete Agaricus bisporus was constructed from 118 haploid homokaryons derived from an intervarietal A. bisporus var. bisporus x A. bisporus var. burnettii hybrid. Two hundred and thirty-one AFLP, 21 SSR, 68 CAPS markers together with the MAT, BSN, PPC1 loci and one allozyme locus (ADH) were evenly spread over 13 linkage groups corresponding to the chromosomes of A. bisporus. The map covers 1156cM, with an average marker spacing of 3.9cM and encompasses nearly the whole genome. The average number of crossovers per chromosome per individual is 0.86. Normal recombination over the entire genome occurs in the heterothallic variety, burnettii, contrary to the homothallic variety, bisporus, which showed adaptive genome-wide suppressed recombination. This first comprehensive genetic linkage map for A. bisporus provides foundations for quantitative trait analyses and breeding programme monitoring, as well as genome organisation studies.
Collapse
Affiliation(s)
- Marie Foulongne-Oriol
- Mycologie et Sécurité des Aliments, INRA, Centre de Recherche Bordeaux-Aquitaine, Villenave d'Ornon Cedex, France.
| | | | | | | | | |
Collapse
|