1
|
Heom KA, Wangsanuwat C, Butkovich LV, Tam SC, Rowe AR, O'Malley MA, Dey SS. Targeted rRNA depletion enables efficient mRNA sequencing in diverse bacterial species and complex co-cultures. mSystems 2023; 8:e0028123. [PMID: 37855606 PMCID: PMC10734481 DOI: 10.1128/msystems.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Microbes present one of the most diverse sources of biochemistry in nature, and mRNA sequencing provides a comprehensive view of this biological activity by quantitatively measuring microbial transcriptomes. However, efficient mRNA capture for sequencing presents significant challenges in prokaryotes as mRNAs are not poly-adenylated and typically make up less than 5% of total RNA compared with rRNAs that exceed 80%. Recently developed methods for sequencing bacterial mRNA typically rely on depleting rRNA by tiling large probe sets against rRNAs; however, such approaches are expensive, time-consuming, and challenging to scale to varied bacterial species and complex microbial communities. Therefore, we developed EMBR-seq+, a method that requires fewer than 10 short oligonucleotides per rRNA to achieve up to 99% rRNA depletion in diverse bacterial species. Finally, EMBR-seq+ resulted in a deeper view of the transcriptome, enabling systematic quantification of how microbial interactions result in altering the transcriptional state of bacteria within co-cultures.
Collapse
Affiliation(s)
- Kellie A. Heom
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Lazarina V. Butkovich
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Scott C. Tam
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Annette R. Rowe
- Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
2
|
Wunderlich G, Bull M, Ross T, Rose M, Chapman B. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim Microbiome 2023; 5:3. [PMID: 36635784 PMCID: PMC9837927 DOI: 10.1186/s42523-022-00224-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
The equine gastrointestinal tract is a self-sufficient fermentation system, housing a complex microbial consortium that acts synergistically and independently to break down complex lignocellulolytic material that enters the equine gut. Despite being strict herbivores, equids such as horses and zebras lack the diversity of enzymes needed to completely break down plant tissue, instead relying on their resident microbes to carry out fibrolysis to yield vital energy sources such as short chain fatty acids. The bulk of equine digestion occurs in the large intestine, where digesta is fermented for 36-48 h through the synergistic activities of bacteria, fungi, and methanogenic archaea. Anaerobic gut dwelling bacteria and fungi break down complex plant polysaccharides through combined mechanical and enzymatic strategies, and notably possess some of the greatest diversity and repertoire of carbohydrate active enzymes among characterized microbes. In addition to the production of enzymes, some equid-isolated anaerobic fungi and bacteria have been shown to possess cellulosomes, powerful multi-enzyme complexes that further enhance break down. The activities of both anaerobic fungi and bacteria are further facilitated by facultatively aerobic yeasts and methanogenic archaea, who maintain an optimal environment for fibrolytic organisms, ultimately leading to increased fibrolytic microbial counts and heightened enzymatic activity. The unique interactions within the equine gut as well as the novel species and powerful mechanisms employed by these microbes makes the equine gut a valuable ecosystem to study fibrolytic functions within complex communities. This review outlines the primary taxa involved in fibre break down within the equine gut and further illuminates the enzymatic strategies and metabolic pathways used by these microbes. We discuss current methods used in analysing fibrolytic functions in complex microbial communities and propose a shift towards the development of functional assays to deepen our understanding of this unique ecosystem.
Collapse
Affiliation(s)
- Georgia Wunderlich
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Michelle Bull
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Tom Ross
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Michael Rose
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Belinda Chapman
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| |
Collapse
|
3
|
Li M, Wang Y, Guo C, Wang S, Zheng L, Bu Y, Ding K. The claim of primacy of human gut Bacteroides ovatus in dietary cellobiose degradation. Gut Microbes 2023; 15:2227434. [PMID: 37349961 PMCID: PMC10291918 DOI: 10.1080/19490976.2023.2227434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
A demonstration of cellulose degrading bacterium from human gut changed our view that human cannot degrade the cellulose. However, investigation of cellulose degradation by human gut microbiota on molecular level has not been completed so far. We showed here, using cellobiose as a model that promoted the growth of human gut key members, such as Bacteroides ovatus (BO), to clarify the molecular mechanism. Our results showed that a new polysaccharide utilization locus (PUL) from BO was involved in the cellobiose capturing and degradation. Further, two new cellulases BACOVA_02626GH5 and BACOVA_02630GH5 on the cell surface performed the degradation of cellobiose into glucose were determined. The predicted structures of BACOVA_02626GH5 and BACOVA_02630GH5 were highly homologous with the cellulase from soil bacteria, and the catalytic residues were highly conservative with two glutamate residues. In murine experiment, we observed cellobiose reshaped the composition of gut microbiota and probably modified the metabolic function of bacteria. Taken together, our findings further highlight the evidence of cellulose can be degraded by human gut microbes and provide new insight in the field of investigation on cellulose.
Collapse
Affiliation(s)
- Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yeqing Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ciliang Guo
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | | | | | - Yifan Bu
- Zelixir Biotech, Shanghai, P. R. China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, P. R. China
| |
Collapse
|
4
|
Teklebrhan T, Tan Z, Jonker A. Diet containing sulfur shifted hydrogen metabolism from methanogenesis to alternative sink and influenced fermentation and gut microbial ecosystem of goats. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Bao W, Yu J, He Y, Liu M, Yang X. The diversity analysis and gene function prediction of intestinal bacteria in three equine species. Front Microbiol 2022; 13:973828. [PMID: 36160217 PMCID: PMC9490377 DOI: 10.3389/fmicb.2022.973828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The intestinal flora has a variety of physiological functions involved in the regulation of host metabolism, immunity and endocrinology, and plays an important role in maintaining the health of the host. In this study, we used high-throughput sequencing technology to analyze the intestinal bacterial diversity and their gene functions in three equine species of the genus Shetland Pony (SP), Mongolian Wild Ass (MA), and Plain Zebra (PZ) in captivity in two wildlife parks in Inner Mongolia Autonomous Region, China. The results showed that only the SP intestinal bacterial abundance index (Chao1) was significantly different (P < 0.05) between the same species in the two wildlife parks, but neither the intestinal bacterial diversity index (Shannon) nor the community composition were significantly different (P > 0.05). The bacterial abundance index (Chao1) was significantly higher in MA than SP (P < 0.05) and highly significantly higher than PZ (P < 0.01); the bacterial diversity index (Shannon) was higher in MA than PZ, but there was no significant difference, but both MA and PZ were significantly higher than SP (P < 0.05). Moreover, the intestinal bacterial community composition was significantly different among the three equine species (P = 0.001). The dominant bacterial phyla for SP, MA, and PZ were Firmicutes and Bacteroidota; among them, the bacterial family with the highest relative abundance was Lachnospiraceae and the bacterial genus was Rikenellaceae_RC9_gut_group. Analysis of the metabolic gene functions of intestinal bacteria revealed that the highest relative abundance at Pathway level 2 was for global and overview maps; at Pathway level 3, the highest relative abundance was for biosynthesis of secondary metabolites. In sum, the intestinal bacterial community composition and diversity of the above three equine species differed significantly, but their metabolic gene functions were similar. Moreover, the results of this manuscript fill the gap in the study of intestinal bacterial diversity in SP, MA, and PZ. It also provides a reference for the study of the dominant bacteria in the intestinal microorganisms of these three equine species and the discovery of novel functional genes.
Collapse
|
6
|
Gharechahi J, Sarikhan S, Han JL, Ding XZ, Salekdeh GH. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates. NPJ Biofilms Microbiomes 2022; 8:46. [PMID: 35676509 PMCID: PMC9177762 DOI: 10.1038/s41522-022-00309-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022] Open
Abstract
Rumen microbiota facilitates nutrition through digestion of recalcitrant lignocellulosic substrates into energy-accessible nutrients and essential metabolites. Despite the high similarity in rumen microbiome structure, there might be distinct functional capabilities that enable different ruminant species to thrive on various lignocellulosic substrates as feed. Here, we applied genome-centric metagenomics to explore phylogenetic diversity, lignocellulose-degrading potential and fermentation metabolism of biofilm-forming microbiota colonizing 11 different plant substrates in the camel rumen. Diversity analysis revealed significant variations in the community of rumen microbiota colonizing different substrates in accordance with their varied physicochemical properties. Metagenome reconstruction recovered genome sequences of 590 bacterial isolates and one archaeal lineage belonging to 20 microbial phyla. A comparison to publicly available reference genomes and rumen metagenome-assembled genomes revealed that most isolates belonged to new species with no well-characterized representatives. We found that certain low abundant taxa, including members of Verrucomicrobiota, Planctomycetota and Fibrobacterota, possessed a disproportionately large number of carbohydrate active enzymes per Mb of genome, implying their high metabolic potential to contribute to the rumen function. In conclusion, we provided a detailed picture of the diversity and functional significance of rumen microbiota colonizing feeds of varying lignocellulose composition in the camel rumen. A detailed analysis of 591 metagenome-assembled genomes revealed a network of interconnected microbiota and highlighted the key roles of certain taxonomic clades in rumen function, including those with minimal genomes (e.g., Patescibacteria). The existence of a diverse array of gene clusters encoding for secondary metabolites unveiled the specific functions of these biomolecules in shaping community structure of rumen microbiota.
Collapse
Affiliation(s)
- Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajjad Sarikhan
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100, Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), 730050, Lanzhou, China.
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran.
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, Australia.
| |
Collapse
|
7
|
Teklebrhan T, Tan Z. Diet Supplementation With Sulfur Amino Acids Modulated Fermentation Metabolome and Gut Microbiome in Goats. Front Microbiol 2022; 13:870385. [PMID: 35694302 PMCID: PMC9174029 DOI: 10.3389/fmicb.2022.870385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary amino acids shift hydrogen metabolism to an alternative hydrogen sink consisting of dissolved hydrogen sulfur (dH2S) rather than methanogenesis; and influences the fermentation metabolome and microbiome associated with particles and liquid fractions in gut regions (foregut, small intestine, and hindgut) of goats. A completely randomized block design with a total of 20 goats (5 goats per treatment) was used to conduct the trial. The goats were fed on a diet that consisted of a concentrated mixture with maize stover roughage (50:50, on a dry matter basis) and randomly assigned to one of the four treatments: without amino acid supplementation (a basal diet), a basal diet supplemented with methionine (Met), a basal diet supplemented with lysine (Lys), and a basal diet supplemented with methionine and lysine (ML). Goats fed Met alone or in combination had less acetate, acetate to propionate ratio, and greater propionate (p < 0.05) in the foregut and hindgut than those fed control or Lys. Nonetheless, the goats fed on the amino acid supplements had higher levels of branched-chain VFA (p < 0.05) in the foregut and hindgut than the control goats. Goats fed on ML had the highest ammonia (p < 0.01), followed by Met or Lys, both in the foregut and hindgut, compared with the control. Those fed on Met alone or in combination, had lower dH2, dCH4 (p < 0.01), and higher dH2S (p < 0.01) in the foregut and hindgut than the control or Lys. The goats that were fed on Met alone or in combination, had higher 16S rRNA gene copies of total bacteria, methanogens, and 18S rRNA gene copies of protozoa, fungi, and fiber-utilizing bacterial species (p < 0.01) associated with particles vs. liquid, both in the foregut and hindgut than the control goats. This study gives insights into the use of sulfur-containing amino acids, as an alternative dietary mitigation strategy of methanogenesis in ruminants and highlights the need for further research in this direction.
Collapse
Affiliation(s)
- Tsegay Teklebrhan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Animal and Range Sciences, Haramaya University, Dire Dawa, Ethiopia
- *Correspondence: Tsegay Teklebrhan,
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
8
|
Abstract
The utilization of dietary cellulose by resident bacteria in the large intestine of mammals, both herbivores and omnivores (including humans), has been a subject of interest since the nineteenth century. Cellulolytic bacteria are key participants in this breakdown process of cellulose, which is otherwise indigestible by the host. They critically contribute to host nutrition and health through the production of short-chain fatty acids, in addition to maintaining the balance of intestinal microbiota. Despite this key role, cellulolytic bacteria have not been well studied. In this review, we first retrace the history of the discovery of cellulolytic bacteria in the large intestine. We then focus on the current knowledge of cellulolytic bacteria isolated from the large intestine of various animal species and humans and discuss the methods used for isolating these bacteria. Moreover, we summarize the enzymes and the mechanisms involved in cellulose degradation. Finally, we present the contribution of these bacteria to the host.
Collapse
Affiliation(s)
- Alicia Froidurot
- Université Bourgogne Franche–Comté, Institut Agro Dijon, PAM UMR A 02.102, Dijon, France,CONTACT Alicia Froidurot Université Bourgogne Franche–Comté, Institut Agro Dijon, PAM UMR A 02.102Dijon, France
| | - Véronique Julliand
- Université Bourgogne Franche–Comté, Institut Agro Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
9
|
Rumen sampling methods bias bacterial communities observed. PLoS One 2022; 17:e0258176. [PMID: 35511785 PMCID: PMC9070869 DOI: 10.1371/journal.pone.0258176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/10/2022] [Indexed: 01/04/2023] Open
Abstract
The rumen is a complex ecosystem that plays a critical role in our efforts to improve feed efficiency of cattle and reduce their environmental impacts. Sequencing of the 16S rRNA gene provides a powerful tool to survey the bacterial and some archaeal. Oral stomach tubing a cow to collect a rumen sample is a rapid, cost-effective alternative to rumen cannulation for acquiring rumen samples. In this study, we determined how sampling method (oral stomach tubing vs cannulated grab sample), as well as rumen fraction type (liquid vs solid), bias the bacterial and archaeal communities observed. Liquid samples were further divided into liquid strained through cheesecloth and unstrained. Fecal samples were also collected to determine how these differed from the rumen sample types. The abundance of major archaeal communities was not different at the family level in samples acquired via rumen cannula or stomach tube. In contrast to the stable archaeal communities across sample type, the bacterial order WCHB1-41 (phylum Kiritimatiellaeota) was enriched in both liquid strained and unstrained samples as well as the family Prevotellaceae as compared to grab samples. However, these liquid samples had significantly lower abundance of Lachnospiraceae compared with grab samples. Solid samples strained of rumen liquid most closely resembled the grab samples containing both rumen liquid and solid particles obtained directly from the rumen cannula; therefore, inclusion of particulate matter is important for an accurate representation of the rumen bacteria. Stomach tube samples were the most variable and were most representative of the liquid phase. In comparison with a grab sample, stomach tube samples had significantly lower abundance of Lachnospiraceae, Fibrobacter and Treponema. Fecal samples did not reflect the community composition of the rumen, as fecal samples had significantly higher relative abundance of Ruminococcaceae and significantly lower relative abundance of Lachnospiraceae compared with grab samples.
Collapse
|
10
|
Wang W, Wang Y, Cui Z, Yang Y, An X, Qi J. Fermented Wheat Bran Polysaccharides Intervention Alters Rumen Bacterial Community and Promotes Rumen Development and Growth Performance in Lambs. Front Vet Sci 2022; 9:841406. [PMID: 35433917 PMCID: PMC9007612 DOI: 10.3389/fvets.2022.841406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing interest in the utilization of plant polysaccharides for the modulation of the rumen bacterial community and enhancement of growth performance in ruminants. Fermented wheat bran polysaccharides (FWBPs), plant polysaccharides, have been shown to improve the growth performance of lambs, but little is known about their effect on rumen bacteria. The aim of this study was to investigate the effects of FWBPs supplementation to milk replacer (MR) on the growth performance, blood metabolites, weight and morphology of rumen, rumen fermentation, and rumen bacterial community which were investigated in lambs. Twelve 1.5-month-old crossbred lambs (Dorper × Small-tailed Han Sheep) with an initial body weight (BW) of 11.38 ± 0.19 kg were randomly divided into two groups, namely, the control group and FWBPs group. Compared with the control group, the FWBPs group had a higher average daily weight gain and serum total protein concentrations, and a lower feed: gain ratio. A tendency of increase in final BW and carcass BW was also observed. Administration of FWBPs increased the ruminal papillae width and ruminal butyrate proportion and decreased the concentration of ammonia nitrogen and the proportion of isobutyrate and isovalerate. In addition, the epithelial cell thickness had an increased trend in the FWBPs group. High-throughput sequencing data showed that the relative abundance of Lachnospiraceae_NK3A20_group and Solobacterium was enhanced by FWBP treatment; meanwhile, the relative abundance of NK4A214_group, Megasphaera, and Treponema showed a tendency to be higher than that of the control group. Furthermore, Spearman's correlation analysis revealed that the relative abundances of NK4A214_group, Treponema, and Lachnospiraceae_NK3A20_group were positively correlated with butyrate proportion. Collectively, FWBPs supplementation to MR on lambs altered the rumen bacterial community, promoted rumen development, and improved growth performance.
Collapse
Affiliation(s)
- Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
- *Correspondence: Yuan Wang
| | - Zhiwei Cui
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| | - Yi Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
- Xiaoping An
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| |
Collapse
|
11
|
Bhujbal SK, Ghosh P, Vijay VK, Rathour R, Kumar M, Singh L, Kapley A. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152773. [PMID: 34979222 DOI: 10.1016/j.scitotenv.2021.152773] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is an abundant resource with untapped potential for biofuel, enzymes, and chemical production. Its complex recalcitrant structure obstructs its bioconversion into biofuels and other value-added products. For improving its bioconversion efficiency, it is important to deconstruct its complex structure. In natural systems like rumen, diverse microbial communities carry out hydrolysis, acidogenesis, acetogenesis, and methanogenesis of lignocellulosic biomass through physical penetration, synergistic and enzymatic actions enhancing lignocellulose degradation activity. This review article aims to discuss comprehensively the rumen microbial ecosystem, their interactions, enzyme production, and applications for efficient bioconversion of lignocellulosic waste to biofuels. Furthermore, meta 'omics' approaches to elucidate the structure and functions of rumen microorganisms, fermentation mechanisms, microbe-microbe interactions, and host-microbe interactions have been discussed thoroughly. Additionally, feed additives' role in improving ruminal fermentation efficiency and reducing environmental nitrogen losses has been discussed. Finally, the current status of rumen microbiota applications and future perspectives for the development of rumen mimic bioreactors for efficient bioconversion of lignocellulosic wastes to biofuels and chemicals have been highlighted.
Collapse
Affiliation(s)
- Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashmi Rathour
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Manish Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Atya Kapley
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| |
Collapse
|
12
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
13
|
Leaf-FISH: In Situ Hybridization Method for Visualizing Bacterial Taxa on Plant Surfaces. Methods Mol Biol 2021. [PMID: 33576986 DOI: 10.1007/978-1-0716-1115-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
High-resolution, spatial characterization of microbial communities is critical for the accurate understanding of microbe-microbe and microbe-plant interactions in leaf surfaces (phyllosphere). However, leaves are specially challenging surfaces for imaging methods due to their high autofluorescence. In this chapter we describe the Leaf-FISH method. Leaf-FISH is a fluorescence in situ hybridization (FISH) method specially adapted to the requirements of plant tissues. Leaf-FISH uses a combination of leaf pretreatments coupled with spectral imaging confocal microscopy and image post-processing to visualize bacterial taxa on a structural-informed context recreated from the residual background autofluorescence of the tissues. Leaf-FISH is suitable for simultaneous identification of multiple bacterial taxa using multiple taxon-specific fluorescently labeled oligonucleotide probes (combinatorial labeling).
Collapse
|
14
|
Long C, Venema K. Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Front Microbiol 2020; 11:588264. [PMID: 33329463 PMCID: PMC7711092 DOI: 10.3389/fmicb.2020.588264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
The aim of current study was to investigate in an in vitro study how enzymatic and chemical pretreated rapeseed meal (RSM) influences the fiber fermentation and microbial community in the swine large intestine. RSM was processed enzymatically by a cellulase (CELL), two pectinases (PECT), or chemically by an alkaline (ALK) treatment. 16S rRNA gene sequencing data was performed to evaluate changes in the gut microbiota composition, whereas short-chain fatty acid (SCFA) production (ion-chromatography) and non-starch polysaccharides (NSP) composition (using monoclonal antibodies; mAbs) were used to assess fiber degradation. The results showed that ALK, CELL, PECT1, and PECT2 changed microbial community composition, increased the predicted abundance of microbial fiber-degrading enzymes and pathways, and increased acetic acid, propionic acid, butyric acid, and total SCFA production. The increased microbial genera positively correlated with SCFA production. Monoclonal antibody analyses showed that the cell wall polysaccharide structures of RSM shifted after ALK, CELL, PECT1, and PECT2 treatment. The degradation of NSP during the fermentation period was dynamic, and not continuous based on the epitope recognition by mAbs. This study provides the first detailed analysis of changes in the swine intestinal microbiota due to RSM modified by ALK, CELL, PECT1, and PECT2, which altered the microbial community structure, shifted the predicted functional metagenomic profile and subsequently increased total SCFA production. Our findings that ALK, CELL, PECT1, and PECT2 increased fiber degradability in RSM could help guide feed additive strategies to improve efficiency and productivity in swine industry. The current study gave insight into how enzymatic treatment of feed can alter microbial communities, which provides good opportunity to develop novel carbohydrase treatments, particularly in swine feed.
Collapse
Affiliation(s)
- Cheng Long
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Feizi LK, Zad SS, Jalali SAH, Rafiee H, Jazi MB, Sadeghi K, Kowsar R. Fermented soybean meal affects the ruminal fermentation and the abundance of selected bacterial species in Holstein calves: a multilevel analysis. Sci Rep 2020; 10:12062. [PMID: 32694544 PMCID: PMC7374609 DOI: 10.1038/s41598-020-68778-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/01/2020] [Indexed: 11/29/2022] Open
Abstract
The effect of soybean meal (SBM) replacement with fermented SBM (FSBM) on ruminal fermentation and bacterial abundance in Holstein calves was investigated in this study. Thirty nine calves were randomized to: (1) control: 27% SBM + 0% FSBM (FSBM0, n = 13); (2) 18% SBM + 9% FSBM (FSBM9, n = 13); and (3) 13.5% SBM + 13.5% FSBM (FSBM13, n = 13). SBM contained a greater amount of large peptides containing 3 to 10 amino acids (AAs), while FSBM had a greater amount of ammonia nitrogen (NH3-N), free AAs, and small peptides containing 2 to 3 AAs. The calves fed FSBM13 had the lowest acetic acid, NH3-N, and the ratio of acetate to propionate, with the greatest concentration of caproic acid, valeric acid and isovaleric acid in ruminal fluid. Compared to those fed FSBM9 or FSBM13, the calves fed FSBM0 had the greatest proportion of Butyrivibrio fibrisolvens and Ruminococcus albus in rumen fluid. However, the ruminal abundance of Prevotella ruminicola in calves fed FSBM13 was greater than in calves fed FSBM0. Network analysis showed that the abundance of the Ruminococcus albus was associated with large peptides, and butyric acid was correlated with small peptide. Taken together, our findings suggest that FSBM may have the potential to boost calf performance by changing the fermentation products and the relative abundance of some members of the bacterial community in the rumen.
Collapse
Affiliation(s)
- Leila Kaviani Feizi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Sabihe Soleymanian Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, 84156-83111, 10 Isfahan, Iran
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, 84156-83111, 10 Isfahan, Iran
- Department of Natural Resources, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Hassan Rafiee
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Masoud Boroumand Jazi
- Animal Science Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, 81846-35745, Esfahan, Iran
| | - Khaled Sadeghi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Rasoul Kowsar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| |
Collapse
|
16
|
Zhang Z, Wang S, Wang M, Shahzad K, Zhang X, Qi R, Shi L. Effects of Urtica cannabina to Leymus chinensis Ratios on Ruminal Microorganisms and Fiber Degradation In Vitro. Animals (Basel) 2020; 10:ani10020335. [PMID: 32093262 PMCID: PMC7070357 DOI: 10.3390/ani10020335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
The study was conducted in vitro to investigate the effects of different ratios of Urtica cannabina and Leymus chinensis on fiber microstructure and digestibility in ruminal fluid. The experiment was divided into five groups based on the U. cannabina/L. chinensis ratios: A (0:100), B (30:70), C (50:50), D (70:30), and E (100:0). The culture medium was collected at 0, 1, 3, 6, 12, and 24 h. The results showed that: (1) in vitro crude protein degradability (IVCPD) was higher in group A, whereas in vitro neutral detergent fiber degradability (IVNDFD) was higher in group C (p < 0.05); (2) protozoa count was increased from 1 h to 3 h and decreased afterwards, with significant differences observed in several genera (p < 0.05); (3) microbial crude protein (MCP) contents at 1, 3, 6, and 24 h were higher in groups A and C (p < 0.05); (4) the basic tissue of U. cannabina was gradually degraded. At 24h, the secondary xylem vessel structure was observed in groups B and C, but not in groups D and E. In summary, there was higher neutral detergent fiber (NDF) digestibility, higher rumen MCP contents, and lower protozoa count, showing the significance of the 50:50 ratio for microbial growth and fiber digestibility.
Collapse
Affiliation(s)
- Zhenbin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
- Correspondence: ; Tel.: +86-151-5273-4991
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan;
| | - Xiaoqing Zhang
- Institute of Grassland Science, Chinese Academy of Agricultural Sciences, Huhehote 010010, Inner Mongolia, China;
| | - Ruxin Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Liangfeng Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| |
Collapse
|
17
|
Mahmood T, Guo Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? ACTA ACUST UNITED AC 2019; 6:1-8. [PMID: 32211522 PMCID: PMC7082689 DOI: 10.1016/j.aninu.2019.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
The last few decades have been marked by a rapid genetic improvement in chicken growth rates. The modern-day chicken is more efficient in converting feed into muscle mass than their predecessors. This enhanced efficiency emanates from better nutrient digestion, absorption, and metabolism. The gut has therefore become a research focus especially after the ban on the use of antibiotics as growth promoters (AGP) in poultry. In pursuance of better gut health in the post-AGP era, many different strategies are being continuously sought and tested. The gut is inhabited by more than 900 bacterial species along with fungi and archaea, and they play an important role to maintain a conducive milieu for the host. A beneficial shift in the microbial ecosystem of the chicken can be promoted by many dietary and non-dietary interventions, however, diet is ranked as one of the most important and potent regulators of gut microbiota composition. Therefore, the constituents of the diet warrant special attention in the modulation of the gut ecosystem. Among dietary constituents, fiber possesses a significant ability to modulate the microbiota. In this review, we will highlight the importance of fiber in poultry nutrition and will also discuss the effects of fiber on gut microbiota and its resultant ramifications on the liver and brain.
Collapse
|
18
|
Moraïs S, Mizrahi I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev 2019; 43:362-379. [PMID: 31050730 PMCID: PMC6606855 DOI: 10.1093/femsre/fuz007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
The herbivore rumen ecosystem constitutes an extremely efficient degradation machinery for the intricate chemical structure of fiber biomass, thus, enabling the hosting animal to digest its feed. The challenging task of deconstructing and metabolizing fiber is performed by microorganisms inhabiting the rumen. Since most of the ingested feed is comprised of plant fiber, these fiber-degrading microorganisms are of cardinal importance to the ecology of the rumen microbial community and to the hosting animal, and have a great impact on our environment and food sustainability. We summarize herein the enzymological fundamentals of fiber degradation, how the genes encoding these enzymes are spread across fiber-degrading microbes, and these microbes' interactions with other members of the rumen microbial community and potential effect on community structure. An understanding of these concepts has applied value for agriculture and our environment, and will also contribute to a better understanding of microbial ecology and evolution in anaerobic ecosystems.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| |
Collapse
|
19
|
Yamano H, Ichimura Y, Sawabe Y, Koike S, Suzuki Y, Kobayashi Y. Seasonal differences in rumen bacterial flora of wild Hokkaido sika deer and partial characterization of an unknown bacterial group possibly involved in fiber digestion in winter. Anim Sci J 2019; 90:790-798. [PMID: 30983093 DOI: 10.1111/asj.13203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/26/2019] [Indexed: 11/28/2022]
Abstract
Rumen digesta was obtained from wild Hokkaido sika deer to compare bacterial flora between summer and winter. Bacterial flora was characterized with molecular-based approaches and enrichment cultivation. Bacteroidetes was shown as a major phylum followed by Firmicutes, with similar proportions in both seasons. However, two phylogenetically unique groups in Bacteroidetes were found in each season: unknown group A in winter and unknown group B in summer. The ruminal abundance of unknown group A was the highest followed by Ruminococcus flavefaciens in winter. Moreover, the abundance of these two was higher in winter than in summer. In contrast, the abundance of unknown group B was higher in summer than in winter. In addition, this group showed the highest abundance in summer among the bacteria quantified. Unknown group A was successfully enriched by cultivating with oak bark and sterilized rumen fluid, particularly that from deer. Bacteria of this group were distributed in association with the solid rather than the liquid rumen fraction, and were detected as small cocci. Accordingly, unknown group A is assumed to be involved in degradation of fibrous materials. These results suggest that wild Hokkaido sika deer develop a rumen bacterial flora in response to changes in dietary conditions.
Collapse
Affiliation(s)
- Hidehisa Yamano
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Yasuhiro Ichimura
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Yoshihiko Sawabe
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Yutaka Suzuki
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
20
|
Wang C, Liu Q, Guo G, Huo W, Ma L, Zhang Y, Pei C, Zhang S, Wang H. Effects of dietary soybean oil and coated folic acid on ruminal digestion kinetics, fermentation, microbial enzyme activity and bacterial abundance in Jinnan beef steers. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Vermeulen K, Verspreet J, Courtin CM, Haesebrouck F, Baeyen S, Haegeman A, Ducatelle R, Van Immerseel F. Reduced-Particle-Size Wheat Bran Is Efficiently Colonized by a Lactic Acid-Producing Community and Reduces Levels of Enterobacteriaceae in the Cecal Microbiota of Broilers. Appl Environ Microbiol 2018; 84:e01343-18. [PMID: 30143505 PMCID: PMC6193378 DOI: 10.1128/aem.01343-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/24/2018] [Indexed: 01/16/2023] Open
Abstract
In the present study, we investigated whether reducing the particle size of wheat bran affects the colonizing microbial community using batch fermentations with cecal inocula from seven different chickens. We also investigated the effect of in-feed administration of regular wheat bran (WB; 1,690 μm) and wheat bran with reduced particle size (WB280; 280 μm) on the cecal microbial community composition of broilers. During batch fermentation, WB280 was colonized by a lactic acid-producing community (Bifidobacteriaceae and Lactobacillaceae) and by Lachnospiraceae that contain lactic acid-consuming butyric acid-producing species. The relative abundances of the Enterobacteriaceae decreased in the particle-associated communities for both WB and WB280 compared to that of the control. In addition, the community attached to wheat bran was enriched in xylan-degrading bacteria. When administered as a feed additive to broilers, WB280 significantly increased the richness of the cecal microbiota and the abundance of bacteria containing the butyryl-coenzyme A (CoA):acetate CoA-transferase gene, a key gene involved in bacterial butyrate production, while decreasing the abundances of Enterobacteriaceae family members in the ceca. Particle size reduction of wheat bran thus resulted in the colonization of the bran particles by a very specific lactic acid- and butyric acid-producing community and can be used to steer toward beneficial microbial shifts. This can potentially increase the resilience against pathogens and increase animal performance when the reduced-particle-size wheat bran is administered as a feed additive to broilers.IMPORTANCE Prebiotic dietary fibers are known to improve the gastrointestinal health of both humans and animals in many different ways. They can increase the bulking capacity, improve transit times, and, depending on the fiber, even stimulate the growth and activity of resident beneficial bacteria. Wheat bran is a readily available by-product of flour processing and is a highly concentrated source of (in)soluble dietary fiber. The intake of fiber-rich diets has been associated with increased Firmicutes and decreased Proteobacteria numbers. Here, we show that applying only 1% of a relatively simple substrate which was technically modified using relatively simple techniques reduces the concentration of Enterobacteriaceae This could imply that in future intervention studies, one should take the particle size of dietary fibers into account.
Collapse
Affiliation(s)
- Karen Vermeulen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steve Baeyen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, Belgium
| | - Annelies Haegeman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
22
|
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, Roehe R, Watson M. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 2018; 9:870. [PMID: 29491419 PMCID: PMC5830445 DOI: 10.1038/s41467-018-03317-6] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022] Open
Abstract
The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiome. Here we present 913 draft bacterial and archaeal genomes assembled from over 800 Gb of rumen metagenomic sequence data derived from 43 Scottish cattle, using both metagenomic binning and Hi-C-based proximity-guided assembly. Most of these genomes represent previously unsequenced strains and species. The draft genomes contain over 69,000 proteins predicted to be involved in carbohydrate metabolism, over 90% of which do not have a good match in public databases. Inclusion of the 913 genomes presented here improves metagenomic read classification by sevenfold against our own data, and by fivefold against other publicly available rumen datasets. Thus, our dataset substantially improves the coverage of rumen microbial genomes in the public databases and represents a valuable resource for biomass-degrading enzyme discovery and studies of the rumen microbiome.
Collapse
Affiliation(s)
- Robert D Stewart
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | | | - Amanda Warr
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Andrew H Wiser
- Phase Genomics, 4000 Mason Road, Seattle, WA, 98195, USA
| | | | | | - Ivan Liachko
- Phase Genomics, 4000 Mason Road, Seattle, WA, 98195, USA
| | | | | | - Alan W Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Rainer Roehe
- Scotland's Rural College, Edinburgh, EH25 9RG, UK
| | - Mick Watson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| |
Collapse
|
23
|
Peredo EL, Simmons SL. Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere. Front Microbiol 2018; 8:2669. [PMID: 29375531 PMCID: PMC5767230 DOI: 10.3389/fmicb.2017.02669] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
Molecular methods for microbial community characterization have uncovered environmental and plant-associated factors shaping phyllosphere communities. Variables undetectable using bulk methods can play an important role in shaping plant-microbe interactions. Microscale analysis of bacterial dynamics in the phyllosphere requires imaging techniques specially adapted to the high autoflouresence and 3-D structure of the leaf surface. We present an easily-transferable method (Leaf-FISH) to generate high-resolution tridimensional images of leaf surfaces that allows simultaneous visualization of multiple bacterial taxa in a structurally informed context, using taxon-specific fluorescently labeled oligonucleotide probes. Using a combination of leaf pretreatments coupled with spectral imaging confocal microscopy, we demonstrate the successful imaging bacterial taxa at the genus level on cuticular and subcuticular leaf areas. Our results confirm that different bacterial species, including closely related isolates, colonize distinct microhabitats in the leaf. We demonstrate that highly related Methylobacterium species have distinct colonization patterns that could not be predicted by shared physiological traits, such as carbon source requirements or phytohormone production. High-resolution characterization of microbial colonization patterns is critical for an accurate understanding of microbe-microbe and microbe-plant interactions, and for the development of foliar bacteria as plant-protective agents.
Collapse
Affiliation(s)
- Elena L Peredo
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, United States
| | - Sheri L Simmons
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, United States
| |
Collapse
|
24
|
Boonsaen P, Kinjo M, Sawanon S, Suzuki Y, Koike S, Kobayashi Y. Partial characterization of phylogeny, ecology and function of the fibrolytic bacteriumRuminococcus flavefaciens OS14, newly isolated from the rumen of swamp buffalo. Anim Sci J 2017; 89:377-385. [DOI: 10.1111/asj.12927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Phoompong Boonsaen
- Department of Animal Science; Faculty of Agriculture at Kamphaeng Saen; Kasetsart University; Nakhon Pathom Thailand
- Center for Advanced Studies for Agriculture and Food; Kasetsart University Institute for Advanced Studies; Kasetsart University; Bangkok Thailand
| | - Madoka Kinjo
- Laboratory of Animal Function and Nutrition; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Suriya Sawanon
- Department of Animal Science; Faculty of Agriculture at Kamphaeng Saen; Kasetsart University; Nakhon Pathom Thailand
- Center for Advanced Studies for Agriculture and Food; Kasetsart University Institute for Advanced Studies; Kasetsart University; Bangkok Thailand
| | - Yutaka Suzuki
- Laboratory of Animal Function and Nutrition; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Satoshi Koike
- Laboratory of Animal Function and Nutrition; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Yasuo Kobayashi
- Laboratory of Animal Function and Nutrition; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| |
Collapse
|
25
|
Azad E, Narvaez N, Derakhshani H, Allazeh AY, Wang Y, McAllister TA, Khafipour E. Effect of Propionibacterium acidipropionici P169 on the rumen and faecal microbiota of beef cattle fed a maize-based finishing diet. Benef Microbes 2017; 8:785-799. [PMID: 28856906 DOI: 10.3920/bm2016.0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Direct fed microbial supplementation with lactic acid utilising bacteria (i.e. Propionibacterium acidipropionici P169) has been shown to alleviate the severity of subacute ruminal acidosis in high-grain fed beef cattle. This study was carried out to explore the impact of P169 supplementation on modulating rumen and hindgut microbiota of high-grain fed steers. Seven ruminally-canulated high-grain fed steers were randomly assigned to two treatment groups: control diet (n=3) and the same diet supplemented with P169 added at a rate of 1×1011 cfu/head/d (n=4). Samples were collected every 28 days for a 101 d period (5 time points) and subjected to qPCR quantification of P169 and high-throughput sequencing of bacterial V4 16S rRNA genes. Ruminal abundance of P169 was maintained at elevated levels (P=0.03) both in liquid and solid fractions post supplementation. Concomitant with decreased proportion of amylolytic (such as Prevotella) and key lactate-utilisers (such as Veillonellaceae and Megasphaera), the proportions of cellulolytic bacterial lineages (such as Ruminococcaceae, Lachnospiraceae, Clostridiaceae, and Christensenellaceae) were enriched in the rumen microbiota of P169-supplemented steers. These, coupled with elevated molar proportions of branched-chain fatty acids and increased concentration of ammonia in the rumen content of P169-supplemented steers, indicated an improved state of fibrolytic and proteolytic activity in response to P169 supplementation. Further, exploring the hindgut microbiota of P169-supplemented steers revealed enrichment of major amylolytic bacterial lineages, such as Prevotella, Blautia, and Succinivibrionaceae, which might be indicative of an increased availability of carbohydrates in the hindgut ecosystem following P169 supplementation. Collectively, the present study provides insights into the microbiota dynamics that underlie the P169-associated shifts in the rumen fermentation profile of high-grain fed steers.
Collapse
Affiliation(s)
- E Azad
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada
| | - N Narvaez
- 2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada
| | - H Derakhshani
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada
| | - A Y Allazeh
- 2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada.,4 Department of Clinical Nutrition, College of Applied Medical Sciences, P.O. Box 2440, University of Hail, Saudi Arabia
| | - Y Wang
- 2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada
| | - T A McAllister
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada.,2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada
| | - E Khafipour
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada.,3 Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
26
|
De Paepe K, Kerckhof F, Verspreet J, Courtin CM, Van de Wiele T. Inter‐individual differences determine the outcome of wheat bran colonization by the human gut microbiome. Environ Microbiol 2017; 19:3251-3267. [DOI: 10.1111/1462-2920.13819] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/03/2017] [Accepted: 06/07/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhent Belgium
| | - Frederiek‐Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhent Belgium
| | - Joran Verspreet
- Faculty of Bioscience Engineering, KU LeuvenLaboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe)Heverlee Belgium
| | - Christophe M. Courtin
- Faculty of Bioscience Engineering, KU LeuvenLaboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe)Heverlee Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhent Belgium
| |
Collapse
|
27
|
Kobayashi Y, Oh S, Myint H, Koike S. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. J Anim Sci Biotechnol 2016; 7:70. [PMID: 28018590 PMCID: PMC5159970 DOI: 10.1186/s40104-016-0126-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in 2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids, plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice.
Collapse
Affiliation(s)
- Yasuo Kobayashi
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Seongjin Oh
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Htun Myint
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Satoshi Koike
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
28
|
Effects of corn silage and grass silage in ruminant rations on diurnal changes of microbial populations in the rumen of dairy cows. Anaerobe 2016; 42:6-16. [DOI: 10.1016/j.anaerobe.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/15/2016] [Accepted: 07/17/2016] [Indexed: 11/22/2022]
|
29
|
Harun NLA, Alimon AR, Jahromi MF, Samsudin AA. Effects of feeding goats with Leucaena leucocephala and Manihot esculenta leaves supplemented diets on rumen fermentation profiles, urinary purine derivatives and rumen microbial population. JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2016.1205499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nur Liyana Akmal Harun
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Razak Alimon
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
30
|
Wang J, Chung SH, Peiffer M, Rosa C, Hoover K, Zeng R, Felton GW. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. J Chem Ecol 2016; 42:463-74. [PMID: 27294415 DOI: 10.1007/s10886-016-0712-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/08/2016] [Accepted: 05/28/2016] [Indexed: 11/30/2022]
Abstract
Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.
Collapse
Affiliation(s)
- Jie Wang
- Department of Ecology, South China Agricultural University, Guangzhou, Guangdong, 510640, China. .,Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rensen Zeng
- Department of Ecology, South China Agricultural University, Guangzhou, Guangdong, 510640, China.,Department of Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
31
|
Shinkai T, Mitsumori M, Sofyan A, Kanamori H, Sasaki H, Katayose Y, Takenaka A. Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen. Anim Sci J 2016; 87:1363-1370. [PMID: 26875748 DOI: 10.1111/asj.12585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
Abstract
To find the abundant and characteristic fibrolytic enzyme-coding gene expressed in fiber-associating microbiota, a metatranscriptomic data set was obtained from fiber-associating microbiota, and it was compared with that of rumen fluid-floating microbiota and two metagenomic data sets. Fibrolytic rumen bacteria associate with plant polysaccharide and hydrolyze it in the rumen. We obtained a metatranscriptomic assembly from fiber-associating microbiota in three ruminally fistulated Holstein cows fed timothy (Phleum pratense) hay. Each metatranscriptomic data set involved over a thousand of the glycoside hydrolase (GH) gene transcripts that accounted for about 1% of total protein coding gene transcripts. Three-quarters of the total GH gene transcripts were dominated by non-structural oligosaccharide-acting hydrolase gene transcripts. In the fiber-associating microbiota, endo-cellulase coding gene families, especially GHs 9 and 5, were abundantly detected, and GHs 9, 11, 30 and 43, carbohydrate esterase 8 and carbohydrate-binding module 6 were characteristically detected. Most fibrolytic gene transcripts assigned to Fibrobacter succinogenes were detected in fiber-associating sections, and GHs 45, 44, 74, 11, 30 and 16 were Fibrobacter-characteristically detected. The metatranscriptomic assembly highlighted the characteristic fibrolytic enzymes expressed in the fiber-associated rumen microbiota and offered access to the fibrolytic activities in each fibrolytic bacteria.
Collapse
Affiliation(s)
| | - Makoto Mitsumori
- NARO Institute of Livestock and Grassland Science.,Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Ahmad Sofyan
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Harumi Sasaki
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yuichi Katayose
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akio Takenaka
- NARO Institute of Livestock and Grassland Science.,National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
32
|
Visualization of microbe-dietary remnant interactions in digesta from pigs, by fluorescence in situ hybridization and staining methods; effects of a dietary arabinoxylan-rich wheat fraction. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Abstract
Physically effective fiber is needed by dairy cattle to prevent ruminal acidosis. This study aimed to examine the effects of different sources of physically effective fiber on the populations of fibrolytic bacteria and methanogens. Five ruminally cannulated Holstein cows were each fed five diets differing in physically effective fiber sources over 15 weeks (21 days/period) in a Latin Square design: (1) 44.1% corn silage, (2) 34.0% corn silage plus 11.5% alfalfa hay, (3) 34.0% corn silage plus 5.1% wheat straw, (4) 36.1% corn silage plus 10.1% wheat straw, and (5) 34.0% corn silage plus 5.5% corn stover. The impact of the physically effective fiber sources on total bacteria and archaea were examined using denaturing gradient gel electrophoresis. Specific real-time PCR assays were used to quantify total bacteria, total archaea, the genus Butyrivibrio, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and three uncultured rumen bacteria that were identified from adhering ruminal fractions in a previous study. No significant differences were observed among the different sources of physical effective fiber with respect to the microbial populations quantified. Any of the physically effective fiber sources may be fed to dairy cattle without negative impact on the ruminal microbial community.
Collapse
|
34
|
Morrell-Falvey JL, Elkins JG, Wang ZW. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate. J Environ Sci (China) 2015; 34:212-218. [PMID: 26257364 DOI: 10.1016/j.jes.2015.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
This study took advantage of resorufin cellobioside as a fluorescent substrate to determine the distribution of cellulase activity in cellulosic biomass fermentation systems. Cellulolytic biofilms were found to express nearly four orders greater cellulase activity compared to planktonic cultures of Clostridium thermocellum and Caldicellulosiruptor obsidiansis, which can be primarily attributed to the high cell concentration and surface attachment. The formation of biofilms results in cellulases being secreted close to their substrates, which appears to be an energetically favorable stategy for insoluble substrate utilization. For the same reason, cellulases should be closely associated with the surfaces of suspended cell in soluble substrate-fed culture, which has been verified with cellobiose-fed cultures of C. thermocellum and C. obsidiansis. This study addressed the importance of cellulase activity distribution in cellulosic biomass fermentation, and provided theoretical foundation for the leading role of biofilm in cellulose degradation. System optimization and reactor designs that promote biofilm formation in cellulosic biomass hydrolysis may promise an improved cellulosic biofuel process.
Collapse
Affiliation(s)
- Jennifer L Morrell-Falvey
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James G Elkins
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhi-Wu Wang
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Ohio State University ATI, 1328 Dover Rd, Wooster, OH 44691, USA.
| |
Collapse
|
35
|
Firkins JL, Yu Z. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition1,2. J Anim Sci 2015; 93:1450-70. [DOI: 10.2527/jas.2014-8754] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- J. L. Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Z. Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
36
|
Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.09.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Ransom-Jones E, Jones DL, Edwards A, McDonald JE. Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Syst Appl Microbiol 2014; 37:502-9. [DOI: 10.1016/j.syapm.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
38
|
In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species. Anaerobe 2014; 28:168-77. [DOI: 10.1016/j.anaerobe.2014.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022]
|
39
|
Sun W, Xia C, Xu M, Guo J, Wang A, Sun G. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China. Microbiol Res 2014; 169:897-906. [PMID: 24932882 DOI: 10.1016/j.micres.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/16/2014] [Accepted: 05/14/2014] [Indexed: 01/21/2023]
Abstract
Anaerobic ammonium-oxidizing (anammox) process has recently been recognized as an important pathway for removing fixed nitrogen (N) from aquatic ecosystems. Anammox organisms are widely distributed in freshwater environments. However, little is known about their presence in the water column of riverine ecosystems. Here, the existence of a diverse anammox community was revealed in the water column of the Dongjiang River by analyzing 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Phylogenetic analyses of hzo genes showed that Candidatus Jettenia related clades of anammox bacteria were dominant in the river, suggesting the ecological microniche distinction from freshwater/estuary and marine anammox bacteria with Ca. Brocadia and Kuenenia genera mainly detected in freshwater/estuary ecosystems, and Ca. Scalindua genus mainly detected in marine ecosystems. The abundance and diversity of anammox bacteria along the river were both significantly correlated with concentrations of NH4(+)-N based on Pearson and partial correlation analyses. Redundancy analyses showed the contents of NH4(+)-N, NO3(-)-N and the ratio of NH4(+)-N to NO2(-)-N significantly influenced the spatial distributions of anammox bacteria in the water column of the Dongjiang River. These results expanded our understanding of the distribution and potential roles of anammox bacteria in the water column of the river ecosystem.
Collapse
Affiliation(s)
- Wei Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Chunyu Xia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China.
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Aijie Wang
- Harbin Institute of Technology, Harbin 150090, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China.
| |
Collapse
|
40
|
Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats. PLoS One 2014; 9:e95713. [PMID: 24756125 PMCID: PMC3995791 DOI: 10.1371/journal.pone.0095713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/28/2014] [Indexed: 11/21/2022] Open
Abstract
Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.
Collapse
|
41
|
Singh KM, Pandya PR, Tripathi AK, Patel GR, Parnerkar S, Kothari RK, Joshi CG. Study of rumen metagenome community using qPCR under different diets. Meta Gene 2014; 2:191-9. [PMID: 25606402 PMCID: PMC4287863 DOI: 10.1016/j.mgene.2014.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to detect the major bacteria present in rumen microbiota. Here, we performed qPCR based absolute quantitation of selected rumen microbes in rumen fluid of river buffalo adapted to varying proportion of concentrate to roughage diets. Animals were adapted to roughage-to-concentrate ratio in the proportion of 100:00 (T1), 75:25 (T2), 50:50 (T3) and 25:75 (T4) respectively for 30 days. At the end of each treatment, rumen fluid was collected at 0 h and 2 h after feeding. It was found that among fibrolytic bacteria Ruminococcus flavefaciens (2.22 × 10(8) copies/ml) were highest in T2 group and followed by 1.11 × 10(8) copies/ml for Fibrobacter succinogenes (T2), 2.56 × 10(7) copies/ml for Prevotella ruminicola (T1) and 1.25 × 10(7) copies/ml for Ruminococcus albus (T4). In non-fibrolytic bacteria, the Selenomonas ruminantium (2.62 × 10(7) copies/ml) was predominant in group T3 and followed by Treponema bryantii (2.52 × 10(7)copies/ml) in group T1, Ruminobacter amylophilus (1.31 × 10(7)copies/ml) in group T1 and Anaerovibrio lipolytica (2.58 × 10(6) copies/ml) in group T4. It is most notable that R. flavefaciens were the highest in population in the rumen of Surti buffalo fed wheat straw as roughage source.
Collapse
Affiliation(s)
- K M Singh
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - P R Pandya
- Animal Nutrition Research Station, AAU, Anand, Gujarat, India
| | - A K Tripathi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - G R Patel
- Animal Nutrition Research Station, AAU, Anand, Gujarat, India
| | - S Parnerkar
- Animal Nutrition Research Station, AAU, Anand, Gujarat, India
| | - R K Kothari
- Department of Microbiology, Christ College, Rajkot, Gujarat, India
| | - C G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| |
Collapse
|
42
|
Shinkai T, Ueki T, Koike S, Kobayashi Y. Determination of bacteria constituting ruminal fibrolytic consortia developed on orchard grass hay stem. Anim Sci J 2013; 85:254-61. [DOI: 10.1111/asj.12145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Takumi Shinkai
- Graduate School of Agriculture; Hokkaido University; Sapporo Japan
| | - Takaaki Ueki
- Graduate School of Agriculture; Hokkaido University; Sapporo Japan
| | - Satoshi Koike
- Graduate School of Agriculture; Hokkaido University; Sapporo Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture; Hokkaido University; Sapporo Japan
| |
Collapse
|
43
|
Soto E, Molina-Alcaide E, Khelil H, Yáñez-Ruiz D. Ruminal microbiota developing in different in vitro simulation systems inoculated with goats’ rumen liquor. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Martin C, Mirande C, Morgavi D, Forano E, Devillard E, Mosoni P. Methionine analogues HMB and HMBi increase the abundance of cellulolytic bacterial representatives in the rumen of cattle with no direct effects on fibre degradation. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Gulino LM, Ouwerkerk D, Kang AYH, Maguire AJ, Kienzle M, Klieve AV. Shedding light on the microbial community of the macropod foregut using 454-amplicon pyrosequencing. PLoS One 2013; 8:e61463. [PMID: 23626688 PMCID: PMC3634081 DOI: 10.1371/journal.pone.0061463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022] Open
Abstract
Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as ‘shared’ OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry.
Collapse
Affiliation(s)
- Lisa-Maree Gulino
- Rumen Ecology Unit, Department of Agriculture, Forestry and Fisheries, Queensland, Dutton Park, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The role of microbes in fiber degradation and the relations among the microbes in sheep rumen were explored by in vivo elimination of fungi. The experiment was conducted on 6 Mongolian sheep with fistulae approximately 1.5 years old (35kg). The sheep were randomly divided into two groups, treatment group (n=3) and control group (n=3). The rumen fluids were collected from the rumen though fistulae. The results showed that the total numbers of bacteria, cellulolytic bacteria and protozoa in the rumen were significantly increased (P<0.05) after fungus elimination. Among the three main cellulolytic bacteria, the number of R.flavefaciens and F.succinogenes increased significant (P<0.05). Elimination of fungi significantly reduced the degradation of DM, NDF and ADF, and the activity of CMCase in sheep rumen (P<0.05). The number of total rumen bacteria and fungi detected by real-time PCR were about 10 times and 1,000 times higher than that of the traditional anaerobic culture method, suggesting that real-time PCR is superior to the traditional roller tube culture method.
Collapse
|
47
|
FUMA R, OYAIZU S, NUKUI Y, NGWE T, SHINKAI T, KOIKE S, KOBAYASHI Y. Use of bean husk as an easily digestible fiber source for activating the fibrolytic rumen bacteriumFibrobacter succinogenesand rice straw digestion. Anim Sci J 2012; 83:696-703. [DOI: 10.1111/j.1740-0929.2012.01017.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Gudla P, AbuGhazaleh A, Ishlak A, Jones K. The effect of level of forage and oil supplement on biohydrogenation intermediates and bacteria in continuous cultures. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2011.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Chanthakhoun V, Wanapat M, Kongmun P, Cherdthong A. Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE. The Fibrobacteres: an important phylum of cellulose-degrading bacteria. MICROBIAL ECOLOGY 2012; 63:267-81. [PMID: 22213055 DOI: 10.1007/s00248-011-9998-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/12/2011] [Indexed: 05/05/2023]
Abstract
The phylum Fibrobacteres currently comprises one formal genus, Fibrobacter, and two cultured species, Fibrobacter succinogenes and Fibrobacter intestinalis, that are recognised as major bacterial degraders of lignocellulosic material in the herbivore gut. Historically, members of the genus Fibrobacter were thought to only occupy mammalian intestinal tracts. However, recent 16S rRNA gene-targeted molecular approaches have demonstrated that novel centres of variation within the genus Fibrobacter are present in landfill sites and freshwater lakes, and their relative abundance suggests a potential role for fibrobacters in cellulose degradation beyond the herbivore gut. Furthermore, a novel subphylum within the Fibrobacteres has been detected in the gut of wood-feeding termites, and proteomic analyses have confirmed their involvement in cellulose hydrolysis. The genome sequence of F. succinogenes rumen strain S85 has recently suggested that within this group of organisms a "third" way of attacking the most abundant form of organic carbon in the biosphere, cellulose, has evolved. This observation not only has evolutionary significance, but the superior efficiency of anaerobic cellulose hydrolysis by Fibrobacter spp., in comparison to other cellulolytic rumen bacteria that typically utilise membrane-bound enzyme complexes (cellulosomes), may be explained by this novel cellulase system. There are few bacterial phyla with potential functional importance for which there is such a paucity of phenotypic and functional data. In this review, we highlight current knowledge of the Fibrobacteres phylum, its taxonomy, phylogeny, ecology and potential as a source of novel glycosyl hydrolases of biotechnological importance.
Collapse
Affiliation(s)
- Emma Ransom-Jones
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | | | | |
Collapse
|