1
|
Saito N, Katayama T, Minami A, Oikawa H, Maruyama JI. Versatile filamentous fungal host highly-producing heterologous natural products developed by genome editing-mediated engineering of multiple metabolic pathways. Commun Biol 2024; 7:1263. [PMID: 39367037 PMCID: PMC11452556 DOI: 10.1038/s42003-024-06958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Natural secondary metabolites are medically, agriculturally, and industrially beneficial to humans. For mass production, a heterologous production system is required, and various metabolic engineering trials have been reported in Escherichia coli and Saccharomyces cerevisiae to increase their production levels. Recently, filamentous fungi, especially Aspergillus oryzae, have been expected to be excellent hosts for the heterologous production of natural products; however, large-scale metabolic engineering has hardly been reported. Here, we elucidated candidate metabolic pathways to be modified for increased model terpene production by RNA-seq and metabolome analyses in A. oryzae and selected pathways such as ethanol fermentation, cytosolic acetyl-CoA production from citrate, and the mevalonate pathway. We performed metabolic modifications targeting these pathways using CRISPR/Cas9 genome editing and demonstrated their effectiveness in heterologous terpene production. Finally, a strain containing 13 metabolic modifications was generated, which showed enhanced heterologous production of pleuromutilin (8.5-fold), aphidicolin (65.6-fold), and ophiobolin C (28.5-fold) compared to the unmodified A. oryzae strain. Therefore, the strain generated by engineering multiple metabolic pathways can be employed as a versatile highly-producing host for a wide variety of terpenes.
Collapse
Affiliation(s)
- Naoya Saito
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduated school of Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduated school of Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong, China
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Tong S, Hong R, Chen W, Chai M, Zhang Y, Sun Y, Wang Q, Li D. Synchronous Bioproduction of Betanin and Mycoprotein in the Engineered Edible Fungus Fusarium venenatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19462-19469. [PMID: 39185736 DOI: 10.1021/acs.jafc.4c06071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Sustainable production of edible microbial proteins and red food colorants is an important demand for future food. Therefore, creation of a chassis strain that can efficiently synthesize both products is extremely necessary and meaningful. To realize this envision, a CRISPR/Cas9-based visual multicopy integration system was successfully developed in Fusarium venenatum. Subsequently, the de novo synthesis of the red food colorant betanin was achieved in the engineered F. venenatum using the above system. After fermentation optimization, the final yields of betanin and mycoprotein reached 1.91 and 9.53 g/L, respectively, when the constant pH naturally decreased from 6 to 4 without the addition of acid after 48 h of fermentation. These results determine a highly suitable chassis strain for the microbial biomanufacturing of betanin, and the obtained engineered strain here is expected to expand the application prospect and improve economic returns of F. venenatum in the field of future food.
Collapse
Affiliation(s)
- Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ruru Hong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Mengdan Chai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Yifan Zhang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Benites-Pariente JS, Samolski I, Ludeña Y, Villena GK. CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa. Sci Rep 2024; 14:19661. [PMID: 39179646 PMCID: PMC11344075 DOI: 10.1038/s41598-024-70397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.
Collapse
Affiliation(s)
- J S Benites-Pariente
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - I Samolski
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - Y Ludeña
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - G K Villena
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru.
| |
Collapse
|
4
|
Singh A, Anwer M, Israr J, Kumar A. Advances in CRISPR-Cas systems for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:83-107. [PMID: 39266189 DOI: 10.1016/bs.pmbts.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Fungi contain a wide range of bioactive secondary metabolites (SMs) that have numerous applications in various fields, including agriculture, medicine, human health, and more. It is common for genes responsible for the production of secondary metabolites (SMs) to form biosynthetic gene clusters (BGCs). The identification and analysis of numerous unexplored gene clusters (BGCs) and their corresponding substances (SMs) has been significantly facilitated by the recent advancements in genomic and genetic technologies. Nevertheless, the exploration of secondary metabolites with commercial value is impeded by a variety of challenges. The emergence of modern CRISPR/Cas technologies has brought about a paradigm shift in fungal genetic engineering, significantly streamlining the process of discovering new bioactive compounds. This study begins with an examination of fungal biosynthetic gene clusters (BGCs) and their interconnections with the secondary metabolites (SMs) they generate. Following that, a brief summary of the conventional methods employed in fungal genetic engineering is provided. This study explores various sophisticated CRISPR/Cas-based methodologies and their utilization in examining the synthesis of secondary metabolites (SMs) in fungi. The chapter provides an in-depth analysis of the limitations and obstacles encountered in CRISPR/Cas-based systems when applied to fungal genetic engineering. It also proposes promising avenues for future research to optimize the efficiency of these systems.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Monisa Anwer
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India
| | - Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow, Barabanki, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
5
|
Tamano K, Takayama H. Double knockout of two target genes via genome co-editing using a nitrate transporter gene nrtA and a putative thiamine transporter gene thiI as selectable markers in Aspergillus oryzae. J Biosci Bioeng 2024; 138:36-43. [PMID: 38653596 DOI: 10.1016/j.jbiosc.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Genome co-editing technology is effective in breeding filamentous fungi for applications in the fermentation industry, achieving site-directed mutagenesis, the status of non-genetically modified organisms (non-GMOs), and wild-type-like growth phenotype. Prior to this study, thiI gene was found as a selectable marker for such genome co-editing in the filamentous fungus Aspergillus oryzae, while it cannot be reused via marker recycling. Therefore, we aimed to identify another marker gene to knock out another target gene via genome co-editing in A. oryzae. In this study, we focused on the membrane transporter gene nrtA (AO090012000623), which promotes uptake of nitrate (NO3-). It is known that, in nrtA knockout strain, chlorate (ClO3-), an analog of nitrate with antifungal activity, cannot be imported into the cytosol, which enables the mutant to grow in the presence of chlorate. Based on this information, knockout of the target gene wA was attempted using both nrtA- and wA-specific single-guide RNAs via genome co-editing with KClO3 supplementation in A. oryzae laboratory strain RIB40 and industrial strain KBN616. Resultantly, wA knockout mutant was generated, and nrtA was identified as a selectable marker. Moreover, this genome co-editing system using nrtA was compatible with that using thiI, and thus, a double knockout mutant of two target genes wA and yA was constructed in RIB40 while maintaining non-GMO status and wild-type-like growth. As nrtA homologs have been found in several industrial Aspergillus species, genome co-editing using homolog genes as selectable markers is plausible, which would contribute to the widespread breeding of industrial strains of Aspergilli.
Collapse
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan; AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, 5-20, Building 63, Nishi-Waseda Campus, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Haruka Takayama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
6
|
Huang L, Li N, Song Y, Gao J, Nian L, Zhou J, Zhang B, Liu Z, Zheng Y. Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi. Biotechnol J 2024; 19:e2400164. [PMID: 39014928 DOI: 10.1002/biot.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Iterative metabolic engineering of Fusarium fujikuroi has traditionally been hampered by its low homologous recombination efficiency and scarcity of genetic markers. Thus, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas9) system has emerged as a promising tool for precise genome editing in this organism. Some integrated CRISPR/Cas9 strategies have been used to engineer F. fujikuroi to improve GA3 production capabilities, but low editing efficiency and possible genomic instability became the major obstacle. Herein, we developed a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in F. fujikuroi. This system, based on an autonomously replicating sequence, demonstrated the capability of a single plasmid harboring all editing components to achieve 100%, 75%, and 37.5% editing efficiency for single, double, and triple gene targets, respectively. Remarkably, even with a reduction in homologous arms to 50 bp, we achieved a 12.5% gene editing efficiency. By employing this system, we successfully achieved multicopy integration of the truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase gene (tHMGR), leading to enhanced GA3 production. A key advantage of our plasmid-based gene editing approach was the ability to recycle selective markers through a simplified protoplast preparation and recovery process, which eliminated the need for additional genetic markers. These findings demonstrated that the single-plasmid CRISPR/Cas9 system enables rapid and precise multiple gene deletions/integrations, laying a solid foundation for future metabolic engineering efforts aimed at industrial GA3 production.
Collapse
Affiliation(s)
- Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ningning Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yixin Song
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jie Gao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lu Nian
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Junping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
7
|
Tang T, Ding Y, Guo W. Development of an Efficient CRISPR/Cas9 System in Fusarium verticillioides and Its Application in Reducing Mycotoxin Contamination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14229-14240. [PMID: 38797952 DOI: 10.1021/acs.jafc.4c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fusarium verticillioides (F. verticillioides) is a globally recognized and highly impactful fungal pathogen of maize, causing yield losses and producing harmful mycotoxins that pose a threat to human and animal health. However, the genetic tools available for studying this crucial fungus are currently limited in comparison to other important fungal pathogens. To address this, an efficient CRISPR/Cas9 genome editing system based on an autonomously replicating plasmid with an AMA1 sequence was established in this study. First, gene disruption of pyrG and pyrE via nonhomologous end-joining (NHEJ) pathway was successfully achieved, with efficiency ranging from 66 to 100%. Second, precise gene deletions were achieved with remarkable efficiency using a dual sgRNA expression strategy. Third, the developed genome editing system can be applied to generate designer chromosomes in F. verticillioides, as evidenced by the deletion of a crucial 38 kb fragment required for fumonisin biosynthesis. Fourth, the pyrG recycling system has been established and successfully applied in F. verticillioides. Lastly, the developed ΔFUM1 and ΔFUM mutants can serve as biocontrol agents to reduce the fumonisin B1 (FB1) contamination produced by the toxigenic strain. Taken together, these significant advancements in genetic manipulation and biocontrol strategies provide valuable tools for studying and mitigating the impact of F. verticillioides on maize crops.
Collapse
Affiliation(s)
- Tingting Tang
- Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, P. R. China
| | - Yi Ding
- Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, P. R. China
| | - Wei Guo
- Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, P. R. China
| |
Collapse
|
8
|
Meng LH, Awakawa T, Li XM, Quan Z, Yang SQ, Wang BG, Abe I. Discovery of (±)-Penindolenes Reveals an Unusual Indole Ring Cleavage Pathway Catalyzed by P450 Monooxygenase. Angew Chem Int Ed Engl 2024; 63:e202403963. [PMID: 38635317 DOI: 10.1002/anie.202403963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.
Collapse
Affiliation(s)
- Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Zhiyang Quan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
9
|
Jia X, Song J, Wu Y, Feng S, Sun Z, Hu Y, Yu M, Han R, Zeng B. Strategies for the Enhancement of Secondary Metabolite Production via Biosynthesis Gene Cluster Regulation in Aspergillus oryzae. J Fungi (Basel) 2024; 10:312. [PMID: 38786667 PMCID: PMC11121810 DOI: 10.3390/jof10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.
Collapse
Affiliation(s)
- Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiayi Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang 110819, China
| | - Yijian Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Sai Feng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Zeao Sun
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Yan Hu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Mengxue Yu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Rui Han
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| |
Collapse
|
10
|
Todokoro T, Hata Y, Ishida H. CRISPR/Cas9 improves targeted knock-in efficiency in Aspergillus oryzae. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:58-63. [PMID: 39416697 PMCID: PMC11446390 DOI: 10.1016/j.biotno.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 10/19/2024]
Abstract
Aspergillus oryzae is an important fungus in food and industrial enzyme production. In A. oryzae, targeted knock-in transformation is primarily limited to homologous recombination (HR)-based systems, in which non-homologous end-joining (NHEJ)-disruptant hosts are required. However, preparation of hosts and transformation templates for such systems is laborious, in addition to other disadvantages. In the present study, we examined alternative targeted knock-in mediated by CRISPR/Cas9, in which a microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA) repair system was employed. This approach enabled the efficient development of targeted knock-in transformants without host preparation using only a short homology template. We conclude that this new method could be applied to facilitate the transformation of A. oryzae, and will make it easier to acquire targeted knock-in transformants, especially from industrially important non-model strains.
Collapse
Affiliation(s)
- Takehiko Todokoro
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| |
Collapse
|
11
|
Chen T, Chen Z, Zhang H, Li Y, Yao L, Zeng B, Zhang Z. Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae. Folia Microbiol (Praha) 2024; 69:373-382. [PMID: 37490214 DOI: 10.1007/s12223-023-01081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
CRISPR/Cas technology is a powerful tool for genome engineering in Aspergillus oryzae as an industrially important filamentous fungus. Previous study has reported the application of the CRISPR/Cpf1 system based on the Cpf1 (LbCpf1) from Lachnospiraceae bacterium in A. oryzae. However, multiplex gene editing have not been investigated using this system. Here, we presented a new CRISPR/Cpf1 multiplex gene editing system in A. oryzae, which contains the Cpf1 nuclease (FnCpf1) from Francisella tularensis subsp. novicida U112 and CRISPR-RNA expression cassette. The crRNA cassette consisted of direct repeats and guide sequences driven by the A. oryzae U6 promoter and U6 terminator. Using the constructed FnCpf1 gene editing system, the wA and pyrG genes were mutated successfully. Furthermore, simultaneous editing of wA and pyrG genes in A. oryzae was performed using two guide sequences targeting these gene loci in a single crRNA array. This promising CRISPR/Cpf1 genome-editing system provides a powerful tool for genetically engineering A. oryzae.
Collapse
Affiliation(s)
- Tianming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Ziming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yuzhen Li
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Lihua Yao
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
12
|
Shen Q, Ruan H, Zhang H, Wu T, Zhu K, Han W, Dong R, Ming T, Qi H, Zhang Y. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front Microbiol 2024; 15:1375120. [PMID: 38605715 PMCID: PMC11007153 DOI: 10.3389/fmicb.2024.1375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Filamentous fungi play a crucial role in environmental pollution control, protein secretion, and the production of active secondary metabolites. The evolution of gene editing technology has significantly improved the study of filamentous fungi, which in the past was laborious and time-consuming. But recently, CRISPR-Cas systems, which utilize small guide RNA (sgRNA) to mediate clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas), have demonstrated considerable promise in research and application for filamentous fungi. The principle, function, and classification of CRISPR-Cas, along with its application strategies and research progress in filamentous fungi, will all be covered in the review. Additionally, we will go over general matters to take into account when editing a genome with the CRISPR-Cas system, including the creation of vectors, different transformation methodologies, multiple editing approaches, CRISPR-mediated transcriptional activation (CRISPRa) or interference (CRISPRi), base editors (BEs), and Prime editors (PEs).
Collapse
Affiliation(s)
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maini Rekdal V, van der Luijt CRB, Chen Y, Kakumanu R, Baidoo EEK, Petzold CJ, Cruz-Morales P, Keasling JD. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat Commun 2024; 15:2099. [PMID: 38485948 PMCID: PMC10940619 DOI: 10.1038/s41467-024-46314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Casper R B van der Luijt
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA.
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
14
|
Mizutani T, Oka H, Goto R, Tsurigami R, Maruyama JI, Shimizu M, Kato M, Nakano H, Kojima T. The Identification of a Target Gene of the Transcription Factor KojR and Elucidation of Its Role in Carbon Metabolism for Kojic Acid Biosynthesis in Aspergillus oryzae. J Fungi (Basel) 2024; 10:113. [PMID: 38392785 PMCID: PMC10890517 DOI: 10.3390/jof10020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
DNA-binding transcription factors are broadly characterized as proteins that bind to specific sequences within genomic DNA and modulate the expression of downstream genes. This study focused on KojR, a transcription factor involved in the metabolism of kojic acid, which is an organic acid synthesized in Aspergillus oryzae and is known for its tyrosinase-inhibitory properties. However, the regulatory mechanism underlying KojR-mediated kojic acid synthesis remains unclear. Hence, we aimed to obtain a comprehensive identification of KojR-associated genes using genomic systematic evolution of ligands by exponential enrichment with high-throughput DNA sequencing (gSELEX-Seq) and RNA-Seq. During the genome-wide exploration of KojR-binding sites via gSELEX-Seq and identification of KojR-dependent differentially expressed genes (DEGs) using RNA-Seq, we confirmed that KojR preferentially binds to 5'-CGGCTAATGCGG-3', and KojR directly regulates kojT, as was previously reported. We also observed that kojA expression, which may be controlled by KojR, was significantly reduced in a ΔkojR strain. Notably, no binding of KojR to the kojA promoter region was detected. Furthermore, certain KojR-dependent DEGs identified in the present study were associated with enzymes implicated in the carbon metabolic pathway of A. oryzae. This strongly indicates that KojR plays a central role in carbon metabolism in A. oryzae.
Collapse
Affiliation(s)
- Tomoka Mizutani
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Aichi, Japan (H.O.); (H.N.)
| | - Hiroya Oka
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Aichi, Japan (H.O.); (H.N.)
| | - Riko Goto
- Department of Agrobiological Resources, Faculty of Agriculture, Meijo University, Shiogamaguchi, Tempaku, Nagoya 468-8502, Aichi, Japan
| | - Ryoga Tsurigami
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Shiogamaguchi, Tempaku, Nagoya 468-8502, Aichi, Japan (M.S.); (M.K.)
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan;
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Motoyuki Shimizu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Shiogamaguchi, Tempaku, Nagoya 468-8502, Aichi, Japan (M.S.); (M.K.)
| | - Masashi Kato
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Shiogamaguchi, Tempaku, Nagoya 468-8502, Aichi, Japan (M.S.); (M.K.)
| | - Hideo Nakano
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Aichi, Japan (H.O.); (H.N.)
| | - Takaaki Kojima
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Aichi, Japan (H.O.); (H.N.)
- Department of Agrobiological Resources, Faculty of Agriculture, Meijo University, Shiogamaguchi, Tempaku, Nagoya 468-8502, Aichi, Japan
| |
Collapse
|
15
|
Yang H, Song C, Liu C, Wang P. Synthetic Biology Tools for Engineering Aspergillus oryzae. J Fungi (Basel) 2024; 10:34. [PMID: 38248944 PMCID: PMC10817548 DOI: 10.3390/jof10010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
For more than a thousand years, Aspergillus oryzae has been used in traditional culinary industries, including for food fermentation, brewing, and flavoring. In recent years, A. oryzae has been extensively used in deciphering the pathways of natural product synthesis and value-added compound bioproduction. Moreover, it is increasingly being used in modern biotechnology industries, such as for the production of enzymes and recombinant proteins. The investigation of A. oryzae has been significantly accelerated through the successive application of a diverse array of synthetic biology techniques and methodologies. In this review, the advancements in biological tools for the synthesis of A. oryzae, including DNA assembly technologies, gene expression regulatory elements, and genome editing systems, are discussed. Additionally, the challenges associated with the heterologous expression of A. oryzae are addressed.
Collapse
Affiliation(s)
- Hui Yang
- School of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chaonan Song
- School of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chengwei Liu
- School of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
16
|
Liu J, Zhu J, Zhang Q, Lv R, Liu H. Establishing a one-step marker-free CRISPR/Cas9 system for industrial Aspergillus niger using counter-selectable marker Ang-ace2. Biotechnol Lett 2023; 45:1477-1485. [PMID: 37805953 DOI: 10.1007/s10529-023-03434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To develop a one-step, marker-free CRISPR/Cas9 system for highly efficient genome editing in industrial Aspergillus niger, with a short genetic operation cycle. RESULTS Firstly, evaluation of different promoters for sgRNA expression revealed tRNAGly15 as the most efficient, achieving a remarkable 100% gene editing efficiency. Furthermore, a counter-selectable marker, Ang-ace2, was identified for A. niger. Subsequently, a CRISPR/Cas9 plasmid was developed, utilizing a truncated AMA1 element and the Ang-ace2 conditional expression cassette driven by a Tet-on promoter. In the presence of doxycycline, the plasmid demonstrated a 33% loss efficiency in the progeny of A. niger spores after a single generation, resulting in a shortened genetic operation cycle of 16 days for CRISPR/Cas9. CONCLUSIONS The one-step marker-free CRISPR/Cas9 system was successfully developed in industrial A. niger, allowing for efficient gene editing while simultaneously reducing the editing time.
Collapse
Affiliation(s)
- Jiao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jie Zhu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Qian Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruitong Lv
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
17
|
Yan Q, Han L, Liu Z, Zhou S, Zhou Z. Stepwise genetic modification for efficient expression of heterologous proteins in Aspergillus nidulans. Appl Microbiol Biotechnol 2023; 107:6923-6935. [PMID: 37698610 DOI: 10.1007/s00253-023-12755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
Filamentous fungi are widely used in food fermentation and therapeutic protein production due to their prominent protein secretion and post-translational modification system. Aspergillus nidulans is an important model strain of filamentous fungi, but not a fully developed cell factory for heterologous protein expression. One of the limitations is its relatively low capacity of protein secretion. To alleviate this limitation, in this study, the protein secretory pathway and mycelium morphology were stepwise modified. With eGFP as a reporter protein, protein secretion was significantly enhanced through reducing the degradation of heterologous proteins by endoplasmic reticulum-associated protein degradation (ERAD) and vacuoles in the secretory pathway. Elimination of mycelial aggregation resulted in a 1.5-fold and 1.3-fold increase in secretory expression of eGFP in typical constitutive and inducible expression systems, respectively. Combined with these modifications, high secretory expression of human interleukin-6 (HuIL-6) was achieved. Consequently, a higher yield of secretory HuIL-6 was realized by further disruption of extracellular proteases. Overall, a superior chassis cell of A. nidulans suitable for efficient secretory expression of heterologous proteins was successfully obtained, providing a promising platform for biosynthesis using filamentous fungi as hosts. KEY POINTS: • Elimination of mycelial aggregation and decreasing the degradation of heterologous protein are effective strategies for improving the heterologous protein expression. • The work provides a high-performance chassis host △agsB-derA for heterologous protein secretory expression. • Human interleukin-6 (HuIL-6) was expressed efficiently in the high-performance chassis host △agsB-derA.
Collapse
Affiliation(s)
- Qin Yan
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongmei Liu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Zhemin Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
18
|
Igarashi T, Katayama T, Maruyama JI. CRISPR/Cas9 genome editing for comparative genetic analysis related to soy sauce brewing in Aspergillus sojae industrial strains. Biosci Biotechnol Biochem 2023; 87:1236-1248. [PMID: 37500264 DOI: 10.1093/bbb/zbad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Aspergillus sojae has traditionally been used in soy sauce brewing. Genetic modification techniques have been established in A. sojae, but it is difficult to apply them to various industrial strains. Although we have previously developed a CRISPR/Cpf1 system for genetic modification of A. sojae, another genome editing system was required for versatile modification. In addition, repetitive genetic modification using the CRISPR system has not been established in A. sojae. In this study, we demonstrated mutagenesis, gene deletion/integration, and large deletion of a chromosomal region in A. sojae using the CRISPR/Cas9 system. We also successfully performed repetitive genetic modification using a method that involved forced recycling of genome-editing plasmids. Moreover, we demonstrated that the effects of genetic modification related to soy sauce brewing differed among A. sojae industrial strains. These results showed that our technique of using the CRISPR/Cas9 system is a powerful tool for genetic modification in A. sojae.
Collapse
Affiliation(s)
- Takayuki Igarashi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
19
|
Ozaki T. Structural diversification of fungal natural products by oxidative enzymes. Biosci Biotechnol Biochem 2023; 87:809-818. [PMID: 37197900 DOI: 10.1093/bbb/zbad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Ascomycota and basidiomycota fungi are prolific producers of biologically active natural products. Fungal natural products exhibit remarkable structural diversity and complexity, which are generated by the enzymes involved in their biosynthesis. After the formation of core skeletons, oxidative enzymes play a critical role in converting them into mature natural products. Besides simple oxidations, more complex transformations, such as multiple oxidations by single enzymes, oxidative cyclization, and skeletal rearrangement, are often observed. Those oxidative enzymes are of significant interest for the identification of new enzyme chemistry and have the potential to be biocatalysts for the synthesis of complex molecules. This review presents selected examples of unique oxidative transformations that have been found in the biosynthesis of fungal natural products. The development of strategies for refactoring the fungal biosynthetic pathways with an efficient genome-editing method is also introduced.
Collapse
Affiliation(s)
- Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
20
|
Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. J Fungi (Basel) 2023; 9:jof9030362. [PMID: 36983530 PMCID: PMC10058990 DOI: 10.3390/jof9030362] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Fungi represent an important source of bioactive secondary metabolites (SMs), which have wide applications in many fields, including medicine, agriculture, human health, and many other industries. The genes involved in SM biosynthesis are usually clustered adjacent to each other into a region known as a biosynthetic gene cluster (BGC). The recent advent of a diversity of genetic and genomic technologies has facilitated the identification of many cryptic or uncharacterized BGCs and their associated SMs. However, there are still many challenges that hamper the broader exploration of industrially important secondary metabolites. The recent advanced CRISPR/Cas system has revolutionized fungal genetic engineering and enabled the discovery of novel bioactive compounds. In this review, we firstly introduce fungal BGCs and their relationships with associated SMs, followed by a brief summary of the conventional strategies for fungal genetic engineering. Next, we introduce a range of state-of-the-art CRISPR/Cas-based tools that have been developed and review recent applications of these methods in fungi for research on the biosynthesis of SMs. Finally, the challenges and limitations of these CRISPR/Cas-based systems are discussed and directions for future research are proposed in order to expand their applications and improve efficiency for fungal genetic engineering.
Collapse
|
21
|
Katayama T, Maruyama JI. Trace copper-mediated asexual development via a superoxide dismutase and induction of AobrlA in Aspergillus oryzae. Front Microbiol 2023; 14:1135012. [PMID: 36970664 PMCID: PMC10030727 DOI: 10.3389/fmicb.2023.1135012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
The filamentous fungus Aspergillus oryzae, in which sexual reproduction remains to be discovered, proliferates mainly via asexual spores (conidia). Therefore, despite its industrial importance in food fermentation and recombinant protein production, breeding beneficial strains by genetic crosses is difficult. In Aspergillus flavus, which is genetically close to A. oryzae, structures known as sclerotia are formed asexually, but they are also related to sexual development. Sclerotia are observed in some A. oryzae strains, although no sclerotia formation has been reported in most strains. A better understanding of the regulatory mechanisms underlying sclerotia formation in A. oryzae may contribute to discover its sexual development. Some factors involved in sclerotia formation have been previously identified, but their regulatory mechanisms have not been well studied in A. oryzae. In this study, we found that copper strongly inhibited sclerotia formation and induced conidiation. Deletion of AobrlA encoding a core regulator of conidiation and ecdR involved in transcriptional induction of AobrlA suppressed the copper-mediated inhibition of sclerotia formation, suggesting that AobrlA induction in response to copper leads not only to conidiation but also to inhibition of sclerotia formation. In addition, deletion of the copper-dependent superoxide dismutase (SOD) gene and its copper chaperone gene partially suppressed such copper-mediated induction of conidiation and inhibition of sclerotia formation, indicating that copper regulates asexual development via the copper-dependent SOD. Taken together, our results demonstrate that copper regulates asexual development, such as sclerotia formation and conidiation, via the copper-dependent SOD and transcriptional induction of AobrlA in A. oryzae.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Jun-ichi Maruyama,
| |
Collapse
|
22
|
Chang PK. A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger. Microbiol Spectr 2023; 11:e0464822. [PMID: 36651760 PMCID: PMC9927283 DOI: 10.1128/spectrum.04648-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
23
|
Ferrando J, Filluelo O, Zeigler DR, Picart P. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system. Microb Cell Fact 2023; 22:21. [PMID: 36721198 PMCID: PMC9890709 DOI: 10.1186/s12934-023-02032-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite recent advances in genetic engineering tools for effectively regulating and manipulating genes, efficient simultaneous multigene insertion methods have not been established in Bacillus subtilis. To date, multilocus integration systems in B. subtilis, which is one of the main industrial enzyme producers and a GRAS (generally regarded as safe) microbial host, rely on iterative rounds of plasmid construction for sequential insertions of genes into the B. subtilis chromosome, which is tedious and time consuming. RESULTS In this study, we present development and proof-of-concept of a novel CRISPR-Cas9-based genome-editing strategy for the colorimetric detection of one-step multiple gene insertion in B. subtilis. First, up to three copies of the crtMN operon from Staphylococcus aureus, encoding a yellow pigment, were incorporated at three ectopic sites within the B. subtilis chromosome, rendering engineered strains able to form yellow colonies. Second, a single CRISPR-Cas9-based plasmid carrying a highly specific single guide RNA (sgRNA) targeting crtMN operon and a changeable editing template was constructed to facilitate simultaneous insertion of multiple gene-copies through homology-directed repair (HDR). Upon transformation of engineered strains with engineered plasmids, strains harboring up to three gene copies integrated into the chromosome formed white colonies because of the removal of the crtMN operon, clearly distinguishable from yellow colonies harboring undesired genetic modifications. As a result, construction of a plasmid-less, marker-free, high-expression stable producer B. subtilis strain can be completed in only seven days, demonstrating the potential that the implementation of this technology may bring for biotechnology purposes. CONCLUSIONS The novel technology expands the genome-editing toolset for B. subtilis and means a substantial improvement over current methodology, offering new application possibilities that we envision should significantly boost the development of B. subtilis as a chassis in the field of synthetic biology.
Collapse
Affiliation(s)
- Jordi Ferrando
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Oriana Filluelo
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | | | - Pere Picart
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| |
Collapse
|
24
|
Woodcraft C, Chooi YH, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2023; 40:158-173. [PMID: 36205232 DOI: 10.1039/d2np00055e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Covering: up to May 2022Fungal genetics has transformed natural product research by enabling the elucidation of cryptic metabolites and biosynthetic steps. The enhanced capability to add, subtract, modulate, and rewrite genes via CRISPR/Cas technologies has opened up avenues for the manipulation of biosynthetic gene clusters across diverse filamentous fungi. This review discusses the innovative and diverse strategies for fungal natural product discovery and engineering made possible by CRISPR/Cas-based tools. We also provide a guide into multiple angles of CRISPR/Cas experiment design, and discuss current gaps in genetic tool development for filamentous fungi and the promising opportunities for natural product research.
Collapse
Affiliation(s)
- Clara Woodcraft
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
25
|
Ozaki T, Minami A, Oikawa H. Biosynthesis of indole diterpenes: a reconstitution approach in a heterologous host. Nat Prod Rep 2023; 40:202-213. [PMID: 36321441 DOI: 10.1039/d2np00031h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2013 to 2022In this review, we provide an overview elucidating the biosynthetic pathway and heterologous production of fungal indole diterpenes (IDTs). Based on the studies of six IDT biosynthesis, we extracted nature's strategy: (1) two-stage synthesis for the core scaffold and platform intermediates, and (2) late-stage modifications for installing an additional cyclic system on the indole ring. Herein, we describe reconstitution studies applying this strategy to the synthesis of highly elaborated IDTs. We also discuss its potential for future biosynthetic engineering.
Collapse
Affiliation(s)
- Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. .,Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
26
|
Li Q, Lu J, Zhang G, Zhou J, Li J, Du G, Chen J. CRISPR/Cas9-Mediated Multiplexed Genome Editing in Aspergillus oryzae. J Fungi (Basel) 2023; 9:109. [PMID: 36675930 PMCID: PMC9864741 DOI: 10.3390/jof9010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Aspergillus oryzae has great potential and competitive advantages to be developed as an excellent expression system, owing to its powerful protein secretion ability, complex post-translational modification, and safety characteristics. However, the low efficiency of genetic modification and gene function analysis is an urgent problem to be solved in A. oryzae and other filamentous fungal systems. Therefore, establishing efficient genetic transformation and multiplexed genome editing tools is significant for developing A. oryzae expression systems, and revealing its intrinsic mechanisms. In this study, the high-efficiency transformation of A. oryzae was achieved by optimizing the preparation conditions of protoplasts, and the random editing efficiency of the CRISPR/Cas9 system in A. oryzae for single and double genes reached 37.6% and 19.8%, respectively. With the aid of the selection marker, such as color or resistance, the editing efficiency of single and double genes can reach 100%. Based on the developed CRISPR/Cas9 genome editing method, the heterologous lipase gene (TLL) achieves precise integration at different genetic loci in one step. The efficient and accurate acquisition of positive transformants indicated that the morphological gene yA could be used as a helpful selection marker for genome editing in A. oryzae. In conclusion, the developed system improves the efficiency of transformation and multiplexed genome editing for A. oryzae. It provides a practical method for developing the A. oryzae high-efficiency expression system for heterologous proteins.
Collapse
Affiliation(s)
- Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jinchang Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
27
|
Tong S, An K, Chen W, Chai M, Sun Y, Wang Q, Li D. Identification of neutral genome integration sites with high expression and high integration efficiency in Fusarium venenatum TB01. Synth Syst Biotechnol 2022; 8:141-147. [PMID: 36687472 PMCID: PMC9830034 DOI: 10.1016/j.synbio.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
CRISPR/Cas9-mediated homology-directed recombination is an efficient method to express target genes. Based on the above method, providing ideal neutral integration sites can ensure the reliable, stable, and high expression of target genes. In this study, we obtained a fluorescent transformant with neutral integration and high expression of the GFP expression cassette from the constructed GFP expression library and named strain FS. The integration site mapped at 4886 bp upstream of the gene FVRRES_00686 was identified in strain FS based on a Y-shaped adaptor-dependent extension, and the sequence containing 600 bp upstream and downstream of this site was selected as the candidate region for designing sgRNAs (Sites) for CRISPR/Cas9-mediated homology-directed recombination. PCR analysis showed that the integration efficiency of CRISPR/Cas9-mediated integration of target genes in designed sites reached 100%. Further expression stability and applicability analysis revealed that the integration of the target gene into the above designed sites can be stably inherited and expressed and has no negative effect on the growth of F. venenatum TB01. These results indicate the above designed neutral sites have the potential to accelerate the development of F. venenatum TB01 through overexpression of target genes in metabolic engineering.
Collapse
Affiliation(s)
- Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
- Corresponding author. Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Kexin An
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Mengdan Chai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yuanxia Sun
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Qinhong Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
- Corresponding author. Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
28
|
Meng G, Wang X, Liu M, Wang F, Liu Q, Dong C. Efficient CRISPR/Cas9 system based on autonomously replicating plasmid with an AMA1 sequence and precisely targeted gene deletion in the edible fungus, Cordyceps militaris. Microb Biotechnol 2022; 15:2594-2606. [PMID: 35829671 PMCID: PMC9518986 DOI: 10.1111/1751-7915.14107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cordyceps militaris is a popular edible fungus with important economic value worldwide. In this study, an efficient CRISPR/Cas9 genome-editing system based on an autonomously replicating plasmid with an AMA1 sequence was constructed. Further, a precisely targeted gene deletion via homology-directed repair was effectively introduced in C. militaris. Gene editing was successful, with efficiencies of 55.1% and 89% for Cmwc-1 and Cmvvd, respectively. Precisely targeted gene deletion was achieved at an efficiency of 73.9% by a single guide RNA supplementation with donor DNAs. Double genes, Cmwc-1 and Cmvvd, were edited simultaneously with an efficiency of 10%. Plasmid loss was observed under non-selective culture conditions, which could permit recycling of the selectable marker and avoid the adverse effects of the CRISPR/Cas9 system on the fungus, which is beneficial for the generation of new cultivars. RNA Pol III promoters, endogenous tRNAPro of C. militaris, and chimeric AfU6-tRNAGly can be used to improve the efficiency. Polyethylene glycol-mediated protoplast transformation was markedly more efficient than Agrobacterium tumefaciens-mediated transformation of C. militaris. To our knowledge, this is the first description of genome editing and precisely targeted gene deletion in mushrooms based on AMA1 plasmids. Our findings will enable the modification of multiple genes in both functional genomics research and strain breeding.
Collapse
Affiliation(s)
- Guoliang Meng
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuping Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- China National Research Institute of Food and Fermentation Industries Co., LtdBeijingChina
| | - Mengqian Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fen Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Qizheng Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Caihong Dong
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
29
|
Liu D, Liu Q, Guo W, Liu Y, Wu M, Zhang Y, Li J, Sun W, Wang X, He Q, Tian C. Development of Genetic Tools in Glucoamylase-Hyperproducing Industrial Aspergillus niger Strains. BIOLOGY 2022; 11:biology11101396. [PMID: 36290301 PMCID: PMC9599018 DOI: 10.3390/biology11101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glucoamylase is one of the most needed industrial enzymes in the food and biofuel industries. Aspergillus niger is a commonly used cell factory for the production of commercial glucoamylase. For decades, genetic manipulation has promoted significant progress in industrial fungi for strain engineering and in obtaining deep insights into their genetic features. However, genetic engineering is more laborious in the glucoamylase-producing industrial strains A. niger N1 and O1 because their fungal features of having few conidia (N1) or of being aconidial (O1) make them difficult to perform transformation on. In this study, we targeted A. niger N1 and O1 and successfully developed high-efficiency transformation tools. We also constructed a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 editing marker-free system using an autonomously replicating plasmid to express Cas9 protein and to guide RNA and the selectable marker. By using the genetic tools developed here, we generated nine albino deletion mutants. After three rounds of sub-culturing under nonselective conditions, the albino deletions lost the autonomously replicating plasmid. Together, the tools and optimization process above provided a good reference to manipulate the tough working industrial strain, not only for the further engineering these two glucoamylase-hyperproducing strains, but also for other industrial strains. Abstract The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes, particularly glucoamylase. Although a variety of genetic techniques have been successfully used in wild-type A. niger, the transformation of industrially used strains with few conidia (e.g., A. niger N1) or that are even aconidial (e.g., A. niger O1) remains laborious. Herein, we developed genetic tools, including the protoplast-mediated transformation and Agrobacterium tumefaciens-mediated transformation of the A. niger strains N1 and O1 using green fluorescent protein as a reporter marker. Following the optimization of various factors for protoplast release from mycelium, the protoplast-mediated transformation efficiency reached 89.3% (25/28) for N1 and 82.1% (32/39) for O1. The A. tumefaciens-mediated transformation efficiency was 98.2% (55/56) for N1 and 43.8% (28/64) for O1. We also developed a marker-free CRISPR/Cas9 genome editing system using an AMA1-based plasmid to express the Cas9 protein and sgRNA. Out of 22 transformants, 9 albA deletion mutants were constructed in the A. niger N1 background using the protoplast-mediated transformation method and the marker-free CRISPR/Cas9 system developed here. The genome editing methods improved here will accelerate the elucidation of the mechanism of glucoamylase hyperproduction in these industrial fungi and will contribute to the use of efficient targeted mutation in other industrial strains of A. niger.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yin Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Min Wu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc., Linyi 276400, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| |
Collapse
|
30
|
Evasion of Cas9 toxicity to develop an efficient genome editing system and its application to increase ethanol yield in Fusarium venenatum TB01. Appl Microbiol Biotechnol 2022; 106:6583-6593. [DOI: 10.1007/s00253-022-12178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
|
31
|
CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. J Fungi (Basel) 2022; 8:jof8050467. [PMID: 35628723 PMCID: PMC9143064 DOI: 10.3390/jof8050467] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus, a genus of filamentous fungi, is extensively distributed in nature and plays crucial roles in the decomposition of organic materials as an important environmental microorganism as well as in the traditional fermentation and food processing industries. Furthermore, due to their strong potential to secrete a large variety of hydrolytic enzymes and other natural products by manipulating gene expression and/or introducing new biosynthetic pathways, several Aspergillus species have been widely exploited as microbial cell factories. In recent years, with the development of next-generation genome sequencing technology and genetic engineering methods, the production and utilization of various homo-/heterologous-proteins and natural products in Aspergillus species have been well studied. As a newly developed genome editing technology, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been used to edit and modify genes in Aspergilli. So far, the CRISPR/Cas9-based approach has been widely employed to improve the efficiency of gene modification in the strain type Aspergillus nidulans and other industrially important and pathogenic Aspergillus species, including Aspergillus oryzae, Aspergillus niger, and Aspergillus fumigatus. This review highlights the current development of CRISPR/Cas9-based genome editing technology and its application in basic research and the production of recombination proteins and natural products in the Aspergillus species.
Collapse
|
32
|
|
33
|
Futagami T. The white koji fungus Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 2022; 86:574-584. [PMID: 35238900 DOI: 10.1093/bbb/zbac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
The white koji fungus, Aspergillus luchuensis mut. kawachii, is used in the production of shochu, a traditional Japanese distilled spirit. White koji fungus plays an important role in the shochu production process by supplying amylolytic enzymes such as α-amylase and glucoamylase. These enzymes convert starch contained in primary ingredients such as rice, barley, buckwheat, and sweet potato into glucose, which is subsequently utilized by the yeast Saccharomyces cerevisiae to produce ethanol. White koji fungus also secretes large amounts of citric acid, which lowers the pH of the shochu mash, thereby preventing the growth of undesired microbes and enabling stable production of shochu in relatively warm regions of Japan. This review describes the historical background, research tools, and recent advances in studies of the mechanism of citric acid production by white koji fungus.
Collapse
Affiliation(s)
- Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.,United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
34
|
Araki Y, Shinohara Y, Hara S, Sato A, Sakaue R, Gomi K, Kita K, Ito K. Heterologous production of ascofuranone and ilicicolin A in Aspergillus sojae. J GEN APPL MICROBIOL 2022; 68:10-16. [PMID: 35418536 DOI: 10.2323/jgam.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ascofuranone and its precursor, ilicicolin A, are secondary metabolites with various pharmacological activities that are produced by Acremonium egyptiacum. In particular, ascofuranone strongly inhibits trypanosome alternative oxidase and represents a potential drug candidate against African trypanosomiasis. However, difficulties associated with industrial production of ascofuranone by A. egyptiacum, specifically the co-production of ascochlorin, which inhibits mammalian respiratory chain complex III at low concentrations, has precluded its widespread application. Therefore, in this study, ascofuranone biosynthetic genes (ascA-E and H-J) were heterologously expressed in Aspergillus sojae, which produced very low-levels of endogenous secondary metabolites under conventional culture conditions. As a result, although we obtained transformants producing both ilicicolin A and ascofuranone, they were produced only when an adequate concentration of chloride ions was added to the medium. In addition, we succeeded in increasing the production of ilicicolin A, by enhancing the expression of the rate-determining enzyme AscD, using a multi-copy integration system. The heterologous expression approach described here afforded the production of both ascofuranone and ilicicolin A, allowing for their development as therapeutics.
Collapse
Affiliation(s)
- Yasuko Araki
- Research and Development Division, Kikkoman Corporation
| | | | - Seiichi Hara
- Research and Development Division, Kikkoman Corporation
| | - Atsushi Sato
- Research and Development Division, Kikkoman Corporation
| | | | - Keiko Gomi
- Research and Development Division, Kikkoman Corporation
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine
| | - Kotaro Ito
- Research and Development Division, Kikkoman Corporation
| |
Collapse
|
35
|
Tamano K. Concomitant knockout of target and transporter genes in filamentous fungi by genome co-editing. Microbiologyopen 2022; 11:e1280. [PMID: 35478291 PMCID: PMC9059231 DOI: 10.1002/mbo3.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
In most countries, genetically modified microorganisms are not approved for use for fermentation in the food industry. Therefore, random mutagenesis and subsequent screening are performed to improve the productivities of valuable metabolites and enzymes as well as other specific functions in an industrial microbial strain. In addition, targeted gene knockout is performed by genetic recombination using its enzyme genes as selectable markers to maintain self-cloning status. However, random mutagenesis has a drawback as it does not guarantee improvement of the targeted function. Conversely, self-cloning is rarely used to breed an industrial microbial strain. This is probably because a self-cloning strain is similar to a genetically modified strain, as both undergo homologous recombination, although exogenous genes are not introduced. In this article, I discuss the usefulness of genome editing technology as a substitute for conventional techniques to breed filamentous fungal strains. This article particularly focusses on "genome co-editing," a genome editing technology used for knocking out two genes concomitantly, as reported in Magnaporthe grisea and Aspergillus oryzae. Especially, when genome co-editing is applied to a target gene and a membrane transporter gene that aid the entry of toxic compounds into cells, the resulting clone can be categorized as an autotrophic and non-genetically modified clone. Such a clone should easily apply to industrial fermentation without being restricted by a genetically modified status. Genome co-editing will also be used to construct mutant strains with multiple target gene knockouts by eliminating multiple membrane transporter genes. This could substantially improve the productivities of valuable metabolites and enzymes in a stepwise manner. Thus, genome co-editing is considered a potentially powerful method to knock out single or multiple target genes that can contribute to the breeding of filamentous fungal strains in the food industry.
Collapse
Affiliation(s)
- Koichi Tamano
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoHokkaidoJapan
- AIST‐Waseda University Computational Bio Big‐Data Open Innovation Laboratory (CBBD‐OIL), AISTWaseda UniversityTokyoJapan
| |
Collapse
|
36
|
Li Q, Lu J, Zhang G, Liu S, Zhou J, Du G, Chen J. Recent advances in the development of Aspergillus for protein production. BIORESOURCE TECHNOLOGY 2022; 348:126768. [PMID: 35091037 DOI: 10.1016/j.biortech.2022.126768] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Aspergillus had been widely used in the industrial production of recombinant proteins. In addition to the safety and broad substrate utilization spectrum, its efficient post-translational modification and strong protein secretion capacity have significant advantages for developing an excellent protein-producing cell factory in industrial production. However, the difficulties in genetic manipulation of Aspergillus and varying expression levels of different heterologous proteins hampered its further development and application. Recently, the development of CRISPR genome editing and high-throughput screening platforms has facilitated the Aspergillus development of a wide range of modifications and applications. Meanwhile, multi-omics analysis and multiplexed genetic engineering have promoted effective knowledge mining. This paper provides a comprehensive and updated review of these advances, including high-throughput screening, genome editing, protein expression modules, and fermentation optimization. It also highlights and discusses the latest significant progress, aiming to provide a practical guide for implementing Aspergillus as an efficient protein-producing cell factory.
Collapse
Affiliation(s)
- Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jinchang Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
37
|
Development of versatile and efficient genetic tools for the marine-derived fungus Aspergillus terreus RA2905. Curr Genet 2022; 68:153-164. [DOI: 10.1007/s00294-021-01218-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
|
38
|
Li Y, Zhang H, Chen Z, Fan J, Chen T, Zeng B, Zhang Z. Construction of single, double, or triple mutants within kojic acid synthesis genes kojA, kojR, and kojT by the CRISPR/Cas9 tool in Aspergillus oryzae. Folia Microbiol (Praha) 2022; 67:459-468. [PMID: 35034313 DOI: 10.1007/s12223-022-00949-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/03/2022] [Indexed: 01/12/2023]
Abstract
Kojic acid is an industrially important secondary metabolite produced by Aspergillus oryzae. The construction of genetic materials for kojic acid related genes is important for understanding the mechanism of kojic acid synthesis in A. oryzae. However, multigene simultaneous knockout mutants for kojic acid synthesis genes remain limited because A. oryzae is multinuclear and good selectable markers are scarce. Here, we firstly successfully obtained single mutants of kojA, kojR, and kojT by our previously constructed CRISPR/Cas9 system in A. oryzae, which demonstrated the feasibility of the targeting sgRNAs for kojA, kojR, and kojT. Then, the AMA1-based genome-editing system for multiplex gene editing was developed in A. oryzae. In the multiplex gene-editing system, two guide RNA expression cassettes were ligated in tandem and driven by two U6 promoters in the AMA1-based autonomously replicating plasmid with the Cas9-expression cassette. Moreover, the multiplex gene-editing technique was applied to target the kojic acid synthesis genes kojA, kojR, and kojT, and the double and triple mutants within kojA, kojR, and kojT were obtained successfully. Additionally, the selectable marker pyrG was knocked out in the single and triple mutants of kojA, kojR, and kojT to obtain the auxotrophic strains, which can facilitate to introduce a target gene into the single and triple mutants of kojA, kojR, and kojT for investigating their relationship. The multiplex gene-editing system and release of these materials provide a foundation for further kojic acid research and utilization.
Collapse
Affiliation(s)
- Yuzhen Li
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ziming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Junxia Fan
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Tianming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
39
|
Katayama T, Maruyama JI. CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae. J Biosci Bioeng 2022; 133:353-361. [DOI: 10.1016/j.jbiosc.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
|
40
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
41
|
Paul M, Mohapatra S, Kumar Das Mohapatra P, Thatoi H. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. BIORESOURCE TECHNOLOGY 2021; 340:125710. [PMID: 34365301 DOI: 10.1016/j.biortech.2021.125710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity. Further, maintaining the stability of cellulases by the preservation of their secondary structures using immobilization techniques will also play an integral role in its industrial production. In silico approaches for increasing the catalytic activity of cellulase enzymes is also significant along with a range of substrate specificity. In addition, enhanced productivity of cellulases by tailoring the related genes through the process of genetic engineering and higher cellulase recovery after saccharification seems to be promising areas for efficient and large-scale enzyme production concepts.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India
| | - Sonali Mohapatra
- Department of Biotechnology, College of Engineering & Technology, Bhubaneswar 751003, Odisha, India
| | - Pradeep Kumar Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India; PAKB Environment Conservation Centre, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India.
| |
Collapse
|
42
|
Zou G, Xiao M, Chai S, Zhu Z, Wang Y, Zhou Z. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents. Microb Biotechnol 2021; 14:2343-2355. [PMID: 32841542 PMCID: PMC8601184 DOI: 10.1111/1751-7915.13652] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand break (DSB) repair induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing. Direct genome editing via Cas9-CRISPR gRNA (guide RNA) ribonucleoprotein (RNP) complexes assembled in vitro has also been successful in some fungi. However, the efficiency of direct RNP transformation into fungal protoplasts is currently too low. Here, we report an optimized genome editing approach for filamentous fungi based on RNPs facilitated by adding chemical reagents. We increased the transformation efficiency of RNPs significantly by adding Triton X-100 and prolonging the incubation time, and the editing efficiency reached 100% in Trichoderma reesei and Cordyceps militaris. The optimized RNP-based method also achieved efficient (56.52%) homologous recombination integration with short homology arms (20 bp) and gene disruption (7.37%) that excludes any foreign DNA (selection marker) in T. reesei. In particular, after adding reagents related to mitosis and cell division, the further optimized protocol showed an increased ratio of edited homokaryotic transformants (from 0% to 40.0% for inositol and 71.43% for benomyl) from Aspergillus oryzae, which contains multinucleate spores and protoplasts. Furthermore, the multi-target engineering efficiency of the optimized RNP transformation method was similar to those of methods based on in vivo expression of Cas9. This newly established genome editing system based on RNPs may be widely applicable to construction of genome-edited fungi for the food and medical industries, and has good prospects for commercialization.
Collapse
Affiliation(s)
- Gen Zou
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- Shanghai Key Laboratory of Agricultural Genetics and BreedingInstitute of Edible FungiShanghai Academy of Agriculture Science1000 Jinqi Rd, FengxianShanghai201403China
| | - Meili Xiao
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shunxing Chai
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihua Zhu
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and BreedingInstitute of Edible FungiShanghai Academy of Agriculture Science1000 Jinqi Rd, FengxianShanghai201403China
| | - Zhihua Zhou
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
| |
Collapse
|
43
|
Tomico-Cuenca I, Mach RL, Mach-Aigner AR, Derntl C. An overview on current molecular tools for heterologous gene expression in Trichoderma. Fungal Biol Biotechnol 2021; 8:11. [PMID: 34702369 PMCID: PMC8549263 DOI: 10.1186/s40694-021-00119-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
Fungi of the genus Trichoderma are routinely used as biocontrol agents and for the production of industrial enzymes. Trichoderma spp. are interesting hosts for heterologous gene expression because their saprotrophic and mycoparasitic lifestyles enable them to thrive on a large number of nutrient sources and some members of this genus are generally recognized as safe (GRAS status). In this review, we summarize and discuss several aspects involved in heterologous gene expression in Trichoderma, including transformation methods, genome editing strategies, native and synthetic expression systems and implications of protein secretion. This review focuses on the industrial workhorse Trichoderma reesei because this fungus is the best-studied member of this genus for protein expression and secretion. However, the discussed strategies and tools can be expected to be transferable to other Trichoderma species.
Collapse
Affiliation(s)
- Irene Tomico-Cuenca
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria
| | - Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria.
| |
Collapse
|
44
|
Abstract
The resistance markers could ensure the entry of the CRISPR/Cas9 system into Aspergillus niger cells instead of gene editing. To increase the efficiency of positive colony screening on the primary transformation plates, we designed a visualized multigene editing system (VMS) via a unique tRNA-guide RNA (gRNA) array containing the gRNAs of a pigment gene albA and target genes. Disruption of albA produces white colonies, and the sequences of the endogenous tRNAAla, tRNAPhe, tRNAArg, tRNAIle, and tRNALeu enhance gRNA release. The disruption efficiencies of multigene were analyzed in the A. niger strain AG11 using ammA, amyA, prtT, kusA, and glaA as reporters. In white colonies on the primary transformation plates, the disruption rates of one-, two-, three-, four-, and five-target genes reached 89.2, 70.91, 50, 22.41, and 4.17%, respectively. The VMS developed here provides an effective method for screening homokaryotic multigene editing strains of A. niger.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
45
|
Genome Editing Technology and Its Application Potentials in the Industrial Filamentous Fungus Aspergillus oryzae. J Fungi (Basel) 2021; 7:jof7080638. [PMID: 34436177 PMCID: PMC8399504 DOI: 10.3390/jof7080638] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/25/2023] Open
Abstract
Aspergillus oryzae is a filamentous fungus that has been used in traditional Japanese brewing industries, such as the sake, soy sauce, and miso production. In addition, A. oryzae has been used in heterologous protein production, and the fungus has been recently used in biosynthetic research due to its ability to produce a large amount of heterologous natural products by introducing foreign biosynthetic genes. Genetic manipulation, which is important in the functional development of A. oryzae, has mostly been limited to the wild strain RIB40, a genome reference suitable for laboratory analysis. However, there are numerous industrial brewing strains of A. oryzae with various specialized characteristics, and they are used selectively according to the properties required for various purposes such as sake, soy sauce, and miso production. Since the early 2000s, genome editing technologies have been developed; among these technologies, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) have been applied to gene modification in A. oryzae. Notably, the CRISPR/Cas9 system has dramatically improved the efficiency of gene modification in industrial strains of A. oryzae. In this review, the development of genome editing technology and its application potentials in A. oryzae are summarized.
Collapse
|
46
|
Arnesen JA, Hoof JB, Kildegaard HF, Borodina I. Genome Editing of Eukarya. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
A highly efficient identification of mutants generated by CRISPR/Cas9 using the non‑functional DsRed assisted selection in Aspergillus oryzae. World J Microbiol Biotechnol 2021; 37:132. [PMID: 34240255 DOI: 10.1007/s11274-021-03100-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
The CRISPR/Cas9 system has become a great tool for target gene knock-out in filamentous fungi. It is laborious and time-consuming that identification mutants from a large number of transformants through PCR or enzyme-cut method. Here, we first developed a CRISPR/Cas9 system in Aspergillus oryzae using AMA1-based autonomously replicating plasmid and Cas9 under the control of the Aspergillus nidulans gpdA promoter. By the genome editing technique, we successfully obtained mutations within each target gene in Aspergillus oryzae. Then, we put the protospacer sequence of a target gene and its protospacer adjacent motif (PAM) behind the start codon "ATG" of DsRed, yielding the non‑functional DsRed (nDsRed) reporter gene, and the nDsRed reporter gene could be rescued after successful targeted editing. Moreover, this method was also applied by targeting the kojic acid synthesis gene kojA, and the transformants with DsRed activity were found to harbor targeted mutations in kojA. These results suggest that the nDsRed can be used as a powerful tool to facilitate the identification of mutants generated by CRISPR/Cas9 in Aspergillus oryzae.
Collapse
|
48
|
Higuchi Y. Membrane Traffic in Aspergillus oryzae and Related Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7070534. [PMID: 34356913 PMCID: PMC8303533 DOI: 10.3390/jof7070534] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
The industrially important filamentous fungus Aspergillus oryzae, known as the yellow Koji mold and also designated the Japanese National fungus, has been investigated for understanding the intracellular membrane trafficking machinery due to the great ability of valuable enzyme production. The underlying molecular mechanisms of the secretory pathway delineate the main secretion route from the hyphal tip via the vesicle cluster Spitzenkörper, but also there is a growing body of evidence that septum-directed and unconventional secretion occurs in A. oryzae hyphal cells. Moreover, not only the secretory pathway but also the endocytic pathway is crucial for protein secretion, especially having a role in apical endocytic recycling. As a hallmark of multicellular filamentous fungal cells, endocytic organelles early endosome and vacuole are quite dynamic: the former exhibits constant long-range motility through the hyphal cells and the latter displays pleiomorphic structures in each hyphal region. These characteristics are thought to have physiological roles, such as supporting protein secretion and transporting nutrients. This review summarizes molecular and physiological mechanisms of membrane traffic, i.e., secretory and endocytic pathways, in A. oryzae and related filamentous fungi and describes the further potential for industrial applications.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
49
|
Awakawa T, Abe I. Reconstitution of Polyketide-Derived Meroterpenoid Biosynthetic Pathway in Aspergillus oryzae. J Fungi (Basel) 2021; 7:jof7060486. [PMID: 34208768 PMCID: PMC8235479 DOI: 10.3390/jof7060486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
The heterologous gene expression system with Aspergillus oryzae as the host is an effective method to investigate fungal secondary metabolite biosynthetic pathways for reconstruction to produce un-natural molecules due to its high productivity and genetic tractability. In this review, we focus on biosynthetic studies of fungal polyketide-derived meroterpenoids, a group of bioactive natural products, by means of the A. oryzae heterologous expression system. The heterologous expression methods and the biosynthetic reactions are described in detail for future prospects to create un-natural molecules via biosynthetic re-design.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: (T.A.); (I.A.)
| | - Ikuro Abe
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: (T.A.); (I.A.)
| |
Collapse
|
50
|
Yoshioka I, Kirimura K. Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A. niger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs. J Biosci Bioeng 2021; 131:579-588. [PMID: 33612423 DOI: 10.1016/j.jbiosc.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 01/19/2023]
Abstract
Strains belonging to Aspergillus section Nigri, including Aspergillus niger, are used for industrial production of citric acid from carbohydrates such as molasses and starch. The objective of this study was to construct the genome editing system that could enable rapid and efficient gene replacement in citric acid-producing fungi for genetic breeding. Using the citric acid-hyperproducer A. tubingensis (formerly A. niger) WU-2223L as a model strain, we developed a CRISPR/Cas9 system-based genome editing technique involving co-transformation of Cas9 and the DNA fragment encoding single guide RNA (sgRNA). Using this system, ATP-sulfurylase gene (sC) knock-out strain derived from WU-2223L was generated; the knock-out efficiency was 29 transformants when 5 μg Cas9 was added to 5 × 105 protoplasts. In the gene replacement method based on this system, a DNA fragment encoding sgRNAs that target both the gene of interest and marker gene was used, and replacement of nitrate reductase gene (niaD) using sC gene as a marker gene was attempted. More than 90% of the sC-knock-out transformants exhibited replaced niaD, indicating efficient gene replacement. Moreover, one-step marker rescue of the sC marker gene was accomplished by excising the knock-in donor via intramolecular homologous recombination, enabling marker-free genome editing and drastically shortening the gene replacement period by circumventing the transformation procedure to recover the sC gene. Thus, we succeeded in constructing a CRISPR/Cas9 system-based rapid and marker-free gene replacement system for the citric acid-hyperproducer strain WU-2223L.
Collapse
Affiliation(s)
- Isato Yoshioka
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kohtaro Kirimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|