1
|
Wang S, Dai J, Xu S, Li P, Fouda AM, Yilmaz B, Alhotan A. Surface characteristics, cytotoxicity, and microbial adhesion of 3D-printed hybrid resin-ceramic materials for definitive restoration. J Dent 2025; 152:105436. [PMID: 39488296 DOI: 10.1016/j.jdent.2024.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVE This study investigated the surface properties, cytotoxicity, and microbial adhesion of 3D-printed specimens made from hybrid resin-ceramic materials intended for use in definitive crowns. METHODS Disc-shaped specimens were 3D-printed using six different hybrid resin-ceramic materials recommended for definitive restorations: Crowntec (CT), VarseoSmile Crown Plus (VS), Tera Harz TC-80DP Graphy (TH), C&B Permanent ODS (CB), Formlabs Permanent Crown (FP), and HeyGears (HG). Surface topography, surface roughness, and water contact angle values were measured for each material (n = 6). Cytotoxicity was assessed using direct contact and extract tests on human gingival fibroblasts (n = 4). Additionally, the adhesion of mixed oral bacteria to the surfaces of the specimens was evaluated by counting colony-forming units (CFUs) after a 2-hour incubation period (n = 6). RESULTS The TH group exhibited significantly lower surface roughness (Ra: 0.28 ± 0.13 μm) compared to the other materials (CT: 1.87 ± 0.34 μm; VS: 1.13 ± 0.09 μm; CB: 2.91 ± 0.27 μm; FP: 2.50 ± 0.08 μm; HG: 1.50 ± 0.55 μm). The VS group had the highest water contact angle (129.5 ± 1.1°), indicating greater hydrophobicity, in contrast to the other groups (CT: 72.6 ± 2.1°; TH: 75.0 ± 0.3°; CB: 69.1 ± 0.2°; FP: 93.0 ± 1.6°; HG: 77.7 ± 0.3°). Cytotoxicity testing showed no harmful effects, as relative cell viability exceeded 70 %, and lactate dehydrogenase (LDH) release remained below 30 % for all materials. The TH specimens also demonstrated the lowest bacterial adhesion. CONCLUSIONS The surface characteristics of the tested resin-ceramic materials varied significantly, with TH showing the smoothest surface and the least bacterial adhesion. All materials were found to be non-toxic. Therefore, TH material has the potential to provide definitive restorations with less microbial adhesion. CLINICAL SIGNIFICANCE The type of resin-ceramic material significantly affects the surface properties of 3D-printed specimens. These findings are crucial for selecting the appropriate resin-ceramic material for definitive restorations.
Collapse
Affiliation(s)
- Suya Wang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou 510280, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou 510280, China.
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou 510280, China
| | - Ping Li
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Ahmed Mahmoud Fouda
- Department of Oral Technology, Medical Faculty, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany; Department of Fixed Prosthodontics, Suez Canal University, Ismailia, Egypt
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12372, Saudi Arabia
| |
Collapse
|
2
|
Tabata T, Nakagawa H, Matin K, Otsuki M, Aoki A, Sumi Y, Shimada Y. Analysis of cariogenic biofilms by using a swept-source optical coherence tomography in vitro. Arch Oral Biol 2024; 165:106009. [PMID: 38838513 DOI: 10.1016/j.archoralbio.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE The objective was to measure the thickness of Streptococcus mutans (S. mutans) biofilms forming in an oral biofilm reactor (OBR) by using a noninvasive swept-source optical coherence tomography (SS-OCT) system at every 4 h time interval until 20 h and analyze the correlations with the amounts of biofilms. METHODS S. mutans biofilms were formed on square-shaped bovine enamel blocks inside an OBR. Biofilms were analyzed at every 4 h stage (4 h, 8 h, 12 h, 16 h and 20 h) using a SS-OCT system and a laser scanning confocal microscope (LSCM). The amounts of biofilms were measured at each stage by separating the water insoluble glucan (WIG) and bacterial cells. Co-relationships between the SS-OCT measured biofilm thickness and the amounts of adhered biofilms were analyzed. RESULTS The thickness of biofilms detected on SS-OCT images at 4 h stage was 0.059 ± 0.029 (Av ± SD) mm which increased time-dependently in a linear fashion after 8 h stage and reached to 0.435 ± 0.159 mm at 20 h stage and the correlation coefficient was about 0.89. The amounts of biofilms; bacterial optical density (OD) and WIG concentration increased time-dependently were 0.035 ± 0.008 / mm2 and 10.328 ± 2.492 µg/ mm2 respectively at 20 h stage. Correlation coefficients of 0.66 between 'the amounts of bacteria' and 'biofilm thickness on OCT' and 0.67 between 'the amounts of WIG' and 'biofilm thickness on OCT' were obtained, suggesting that there was a relatively positive correlation between them. CONCLUSION The SS-OCT can be a useful tool to measure time-dependent growth of biofilms. Further studies are needed in order to assess biofilms using SS-OCT more accurately.
Collapse
Affiliation(s)
- Tomoko Tabata
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hisaichi Nakagawa
- Department of Oral Biomedical Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, Japan; Medoc International Co. Ltd., Tokyo, Japan.
| | - Masayuki Otsuki
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunori Sumi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
3
|
Ozer NE, Sahin Z, Yikici C, Duyan S, Kilicarslan MA. Bacterial adhesion to composite resins produced by additive and subtractive manufacturing. Odontology 2024; 112:460-471. [PMID: 37819468 DOI: 10.1007/s10266-023-00862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The aim of this study was to evaluate the surface roughness and contact angle of composite resins produced by CAD/CAM milling and three-dimensional (3D) printing for permanent restorations as well as the adhesion of S. mutans and S. sanguinis bacteria to these composites. Three CAD/CAM milling composite resins (Vita Enamic-VE, Cerasmart-CE, Lava Ultimate-LU) and three 3D printing resins (Varseo Smile Crown plus-VSC, Saremco print Crowntech-SPC, Formlabs 3B Permanent crown-FLP) were selected. Twenty samples were prepared for each group. Using a contact profilometer, the surface roughness was determined, and an optical goniometer was used to quantify the contact angle. To evaluate the bacterial adhesion, composite specimens were immersed in mucin containing artificial saliva. All samples were incubated for 24 h at 37°C in 5% CO2. CFUs were determined by counting colonies after the incubation period. Surface roughness values of test samples were the highest in the Group VSC [0.46 (0.14) µm], whereas the lowest values were found in the Group LU [0.23 (0.05) µm]. There was no statistically significant difference between the groups in contact angle values (p > 0.05). The S. mutans adhesion extent on the Group SPC was statistically higher compared to all other materials with p < 0.05. For S. sanguinis, the lowest bacterial adhesion value was recorded in Group CE (3.00 × 104 CFU/ml) and statistically significant differences were found with Group VE and VSC (p < 0.05). Different digital manufacturing techniques and material compositions can affect the surface roughnesses of composite resins. All composite resin samples have hydrophobic characteristics. Microbial adhesion of the tested composite resins may be varied depending on the bacterial species. S. mutans showed much more adhesion to these materials than S. sanguinis.
Collapse
Affiliation(s)
- Nazire Esra Ozer
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., 06510, Çankaya, Ankara, Turkey.
| | - Zeynep Sahin
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., 06510, Çankaya, Ankara, Turkey
| | - Cansu Yikici
- Department of Restorative Dentistry, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| | - Serhat Duyan
- Department of Medical Microbiology, Department of Microbiology, University of Health Sciences, Gülhane Training and Research Hospital, Etlik, Ankara, Turkey
| | - Mehmet Ali Kilicarslan
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
4
|
He X, Zhang S, Zhong Y, Huang X, Liu F, He J, Mai S. A low-shrinkage-stress and anti-bacterial adherent dental resin composite: physicochemical properties and biocompatibility. J Mater Chem B 2024; 12:814-827. [PMID: 38189164 DOI: 10.1039/d3tb01556d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Polymerisation shrinkage and biofilm accumulation are the two main problems associated with dental resin composites (DRCs) that induce secondary caries, which can cause restoration failure. Polymerisation shrinkage can lead to microleakage gaps between the tooth and the DRCs, causing the aggregation of bacteria and development of secondary caries. Reducing the shrinkage stress (SS) and improving the resistance to bacterial adhesion have always been the focus of this field in modifying DRCs. A thiol-ene resin system can effectively reduce the polymerisation SS via its step-growth mechanism for delaying the gel point. Fluorinated compounds can reduce the surface free energies, thereby reducing bacterial adhesion. Thus, in this study, a range of mass fractions (0, 10, 20, 30, and 40 wt%) of a fluorinated thiol-ene resin system were added to a fluorinated dimethacrylate resin system/tricyclo decanedimethanol diacrylate to create a fluorinated methacrylate-thiol-ene ternary resin matrix. DRCs were prepared using the obtained ternary resin matrix, and their physical and chemical properties, effect on bacterial adhesion, and biocompatibility were investigated. The results demonstrated that the volumetric shrinkage and SS of the DRCs were reduced with no reduction in conversion degree even after the thiol-ene resin system was added. All DRC-based fluorinated resin systems exhibited an excellent anti-bacterial adhesion effect, as evidenced by the colony-forming unit counts, live/dead bacterial staining, and crystal violet staining tests against Streptococcus mutans (S. mutans). The genetic expressions associated with the bacterial adhesion of S. mutans were substantially affected after being cultured with fluorinated DRCs. All fluorinated DRCs demonstrated good biocompatibility through the in vitro cytotoxicity test and live/dead staining images of the L-929 cells. The above results illustrate that the DRCs based on the fluorinated methacrylate-thiol-ene resin matrix can be potentially applied in clinical practice due to their low SS and anti-bacterial adhesion effect.
Collapse
Affiliation(s)
- Xinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Shengcan Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Yewen Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Xiangya Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| |
Collapse
|
5
|
Saleh Ismail H, Ibrahim Ali A. The Effect of Finishing and Polishing Systems on Surface Roughness and Microbial Adhesion of Bulk Fill Composites: A Systematic Review and Meta-Analysis. Front Dent 2023; 20:26. [PMID: 37701651 PMCID: PMC10493115 DOI: 10.18502/fid.v20i26.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/10/2022] [Indexed: 09/14/2023] Open
Abstract
Objectives: This paper presents a systematic review and meta-analysis of the effect of different finishing and polishing (F/P) systems on surface roughness (SR) and microbial adhesion to bulk fill (BF) composites. Materials and Methods: An electronic search of 3 databases (the National Library of Medicine [MEDLINE/PubMed], Scopus, and ScienceDirect) was conducted. Only in vitro studies that evaluated SR and microbial adhesion to BF composites were included. The included studies were individually evaluated for the risk of bias following predetermined criteria. A meta-analysis of the reviewed studies was conducted to compare the SR values of both Filtek Bulk Fill and Tetric EvoCeram Bulk Fill with and without F/P using the Comprehensive Meta-Analysis software. Results: A total of 12 studies fulfilled the inclusion criteria. The meta-analysis showed no significant difference between Filtek Bulk Fill and Tetric EvoCeram Bulk Fill without F/P or after F/P using multi-step systems. Different F/P systems affected the SR values, on the other hand, did not affect microbial adhesion values. Conclusion: Both Filtek Bulk Fill and Tetric EvoCeram Bulk Fill had comparable roughness results. Multi-step systems may be preferable for F/P of BF composites.
Collapse
Affiliation(s)
- Hoda Saleh Ismail
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
6
|
Daabash R, Alqahtani MQ, Price RB, Alshabib A, Niazy A, Alshaafi MM. Surface Properties and Streptococcus mutans Biofilm Adhesion of Ion-Releasing Resin-Based Composite Materials. J Dent 2023; 134:104549. [PMID: 37196686 DOI: 10.1016/j.jdent.2023.104549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
OBJECTIVE To evaluate the adhesion of Streptococcus mutans (S. mutans) and related surface properties of ion-releasing resin-based composite (RBC) restorative materials. METHODS Two ion-releasing RBCs, Activa (ACT) and Cention-N (CN), were compared to a conventional RBC (Z350) and a resin-modified glass ionomer cement (Fuji-II-LC). Ten disk-shaped specimens were fabricated for each material (n=40). After standardized surface polishing procedure, the surface properties of the specimens were evaluated using surface roughness measurements by a profilometer and hydrophobicity using water contact angle measurements. To assess bacterial adhesion, the number of S. mutans bacteria was calculated from colony-forming units (CFU). Confocal laser scanning microscope analysis was done for qualitative & quantitative assessment. The data were analyzed using One-way ANOVA followed by Tukey's post-hoc test to compare the mean values of surface roughness, water contact angle and CFU values. To compare the mean dead cell percentage Kruskal-Wallis rank test and Conover test were used. A p-value of ≤ 0.05 was used to report the statistical significance. RESULTS Z350 and ACT had the smoothest surfaces, followed by CN, and the roughest surface was seen in FUJI-II-LC. The lowest water contact angles were seen in CN, and Z350, and the highest were in ACT. S. mutans counts were the highest in ACT and the lowest in Z350 and CN. CN and Fuji-II-LC registered the highest percentage of dead bacterial cells, while the lowest were in ACT. SIGNIFICANCE Surface properties did not significantly influence bacterial adhesion. More S. mutans bacteria accumulated on ACT than on the nanofilled composite and on CN. CN had antibacterial effects against Streptococcus mutans biofilms.
Collapse
Affiliation(s)
- Rawan Daabash
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - Mohammed Q Alqahtani
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Richard Bengt Price
- Department of Dental Clinical Sciences, Dalhousie University, Faculty of Dentistry, Halifax, Nova Scotia, Canada
| | - Abdulrahman Alshabib
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdurahman Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Maan M Alshaafi
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Pezzotti G, Ofuji S, Imamura H, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Mazda O, Togo A, Kimura S, Iwata T, Shiba H, Ouhara K, Aoki T, Kawai T. In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in Streptococcus mutans and Streptococcus sanguinis Commensal Cultures. Int J Mol Sci 2023; 24:ijms24076694. [PMID: 37047667 PMCID: PMC10095091 DOI: 10.3390/ijms24076694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Satomi Ofuji
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Azusa Togo
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Aoki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
8
|
Alqarni D, Nakajima M, Tagami J, Alzahrani MS, Sá-Pinto AC, Alghamdi A, Hosaka K, Alzahrani F, Alsadon OA, Alharbi RA, Almalki SS, Alzahrani AAH. Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins. Cureus 2023; 15:e38090. [PMID: 37252523 PMCID: PMC10209747 DOI: 10.7759/cureus.38090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Biofilm deposit on the composite restoration is a common phenomenon and bacterial growth follows the deposition. The study aims to evaluate Streptococcus mutans (S. mutans) early biofilm formation on the surfaces of various dental composite resins by using the real-time quantitative polymerase chain reaction (qPCR) technique. MATERIALS AND METHODS Thirty-two discs, where eight discs were in each group of Filtek Supreme Ultra (FSU; 3M, St. Paul, MN), Clearfil AP-X (APX; Kuraray Noritake Dental Inc., Tokyo, Japan), Beautifil II (BE2; Shofu, Inc., Kyoto, Japan), and Estelite Sigma Quick (ESQ; Tokuyama Dental, Tokyo, Japan), were fabricated and subjected to S. mutans biofilm formation in an oral biofilm reactor for 12 hours. Contact angles (CA) were measured on the freshly fabricated specimen. The attached biofilms underwent fluorescent microscopy (FM). S. mutans from biofilms were analyzed using a qPCR technique. Surface roughness (Sa) measurements were taken before and after biofilm formation. Scanning electron microscopy (SEM), including energy dispersive X-ray spectrometer (EDS) analysis, was also performed for detecting relative elements on biofilms. RESULTS The study showed that FSU demonstrated the lowest CA while APX presented the highest values. FM revealed that condensed biofilm clusters were most on FSU. The qPCR results indicated the highest S. mutans DNA copies in the biofilm were on FSU while BE2 was the lowest (p < 0.05). Sa test signified that APX was significantly the lowest among all materials while FSU was the highest (p < 0.05). SEM displayed areas with apparently glucan-free S. mutans more on BE2 compared to APX and ESQ, while FSU had the least. Small white particles detected predominantly on the biofilms of BE2 appeared to be Si, Al, and F extruded from the resin. CONCLUSION Differences in early biofilm formation onto various composite resins are dependent on the differences in material compositions and their surface properties. BE2 showed the lowest quantity of biofilm accumulation compared to other resin composites (APX, ESQ, and FSU). This could be attributed to BE2 proprieties as a giomer and fluoride content.
Collapse
Affiliation(s)
- Dhaifallah Alqarni
- Restorative and Prosthodontic Department, Almikhawah Dental Center, Al-Baha, SAU
| | - Masatoshi Nakajima
- Department of Cariology and Operative Dentistry/Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, JPN
| | - Junji Tagami
- Department of Cariology and Operative Dentistry/Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, JPN
| | - Mohammed S Alzahrani
- Restorative Dental Sciences Department, School of Dentistry, Al-Baha University, Al-Baha, SAU
| | - Ana Clara Sá-Pinto
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, BRA
| | - Ali Alghamdi
- Restorative and Prosthodontic Department, Almikhawah Dental Center, Al-Baha, SAU
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, JPN
| | - Fouad Alzahrani
- Pulp Biology and Endodontic Department, Al-Baha Dental Center, Al-Baha, SAU
| | - Omar A Alsadon
- Department of Dental Health, School of Applied Medical Sciences, King Saud University, Riyadh, SAU
| | - Raed A Alharbi
- Department of Laboratory Medicine, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| | - Shaia S Almalki
- Department of Laboratory Medicine, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| | - Abdullah Ali H Alzahrani
- Department of Dental Health, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| |
Collapse
|
9
|
Preparation of a fluorinated dental resin system and its anti-adhesive properties against S. mutans. Dent Mater 2023; 39:402-409. [PMID: 36894413 DOI: 10.1016/j.dental.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The purpose of this study was to characterize physicochemical properties and investigate anti-bacterial adhesion effect of dental resins containing fluorinated monomers. METHOD Fluorinated dimethacrylate FDMA was mixed with commonly used reactive diluent triethylene- glycol dimethacrylate (TEGDMA) and fluorinated diluent 1 H,1 H-heptafluorobutyl methacrylate (FBMA) separately at a mass ratio of 60 wt./40 wt. to prepare fluorinated resin systems. Double bond conversion (DC), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL), contact angle and surface free energy, surface element concentration, and anti-adhesion effect against Streptococcus mutans (S. mutans) were investigated according to standard or referenced methods. 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA)/TEGDMA (60/40, wt./wt.) was used as control. RESULTS Both fluorinated resin systems had higher DC than Bis-GMA based resin (p < 0.05); compared with Bis-GMA based resin (FS, FDMA/TEGDMA resin system had higher FS (p < 0.05) and comparable FM (p > 0.05), while FDMA/FBMA resins system had lower FS and FM (p < 0.05). Both fluorinated resin systems had lower WS and SL than Bis-GMA based resin (p < 0.05), and FDMA/TEGDMA resin system had the lowest WS (p < 0.05) in all experimental resin systems. Only FDMA/FBMA resin system showed lower surface free energy than Bis-GMA based resin (p < 0.05). When the surface was smooth, FDMA/FBMA resin system had lower amount of adherent S. mutans than Bis-GMA based resin (p < 0.05), while after the surface became roughness, FDMA/FBMA resin system had comparable amount of adherent S. mutans as Bis-GMA based resin (p > 0.05). SIGNIFICANCE Resin system prepared exclusively with fluorinated methacrylate monomers reduced the S. mutans adhesion due to their increased hydrophobicity and decreased surface energy., while flexural properties of it should be improved.
Collapse
|
10
|
He J, Lassila L, Garoushi S, Vallittu P. Tailoring the monomers to overcome the shortcomings of current dental resin composites - review. Biomater Investig Dent 2023; 10:2191621. [PMID: 37090482 PMCID: PMC10120559 DOI: 10.1080/26415275.2023.2191621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Dental resin composites (DRCs) have become the first choice among different restorative materials for direct anterior and posterior restorations in the clinic. Though the properties of DRCs have been improved greatly in recent years, they still have several shortcomings, such as volumetric shrinkage and shrinkage stress, biofilm development, lack of radio-opacity for some specific DRCs, and estrogenicity, which need to be overcome. The resin matrix, composed of different monomers, constitutes the continuous phase and determine the performance of DRCs. Thus, the chemical structure of the monomers plays an important role in modifying the properties of DRCs. Numerous researchers have taken to design and develop novel monomers with specific functions for the purpose of fulfilling the needs in dentistry. In this review, the development of monomers in DRCs were highlighted, especially focusing on strategies aimed at reducing volumetric shrinkage and shrinkage stress, endowing bacteriocidal and antibacterial adhesion activities as well as protein-repelling activity, increasing radio-opacity, and replacing Bis-GMA. The influences of these novel monomers on the properties of DRCs were also discussed.
Collapse
Affiliation(s)
- Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- CONTACT Jingwei He College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
11
|
Zhang S, Liao M, Liu F, Huang X, Mai S, He J. Preparation of Bis-GMA free dental resin composites with anti-adhesion effect against Streptococcus mutans using synthesized fluorine-containing methacrylate (DFMA). J Mech Behav Biomed Mater 2022; 131:105263. [DOI: 10.1016/j.jmbbm.2022.105263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 12/21/2022]
|
12
|
Chen Y, Yang B, Cheng L, Xu HHK, Li H, Huang Y, Zhang Q, Zhou X, Liang J, Zou J. Novel Giomers Incorporated with Antibacterial Quaternary Ammonium Monomers to Inhibit Secondary Caries. Pathogens 2022; 11:pathogens11050578. [PMID: 35631099 PMCID: PMC9147272 DOI: 10.3390/pathogens11050578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to develop novel modified giomers by incorporating the antibacterial quaternary ammonium monomers (QAMs), dimethylaminododecyl methacrylate (DMADDM) or dimethylaminohexadecyl methacrylate (DMAHDM) into a commercial giomer. The material performances including mechanical properties, surface characteristics, color data, cytotoxicity and fluoride release of the novel giomers were evaluated. Antibacterial activity against severe early childhood caries (S-ECC) saliva-derived biofilms was assessed by lactic acid production measurement, MTT assay, biofilm staining and 16S rRNA sequencing. A rat model was developed and the anti-caries effect was investigated by micro-CT scanning and modified Keyes’ scoring. The results showed that the material properties of the QAMs groups were comparable to those of the control group. The novel giomers significantly inhibited lactic acid production and biofilm viability of S-ECC saliva-derived biofilms. Furthermore, caries-related genera such as Streptococcus and Lactobacillus reduced in QAMs groups, which showed their potential to change the microbial compositions. In the rat model, lesion depth, mineral loss and scoring of the QAMs groups were significantly reduced, without side effects on oral tissues. In conclusion, the novel giomers incorporated with antibacterial QAMs could inhibit the cariogenic biofilms and help prevent secondary caries, with great potential for future application in restorative treatment.
Collapse
Affiliation(s)
- Yandi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (J.Z.)
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (J.Z.)
| |
Collapse
|
13
|
Hirohashi Y, Kamijo S, Khan M, Ikeda M, Oki M, Matin K, Rashed F, Aoki K. Tetracycline, an Appropriate Reagent for Measuring Bone-Formation Activity in the Murine Model of the Streptococcus mutans-Induced Bone Loss. Front Cell Infect Microbiol 2021; 11:714366. [PMID: 34589443 PMCID: PMC8473704 DOI: 10.3389/fcimb.2021.714366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Tetracycline is used as a fluorescent reagent to measure bone formation activity in bone histomorphometric analyses. However, there is a possibility to lead a different conclusion when it is used in a bacteria-infected murine model since the tetracycline is considered to work as an antibiotic reagent. There are non-antibiotic fluorescent reagents such as alizarin and calcein for measuring bone formation activity. The purpose of this study was to clarify whether tetracycline could be an appropriate reagent to measure bone formation activity in a murine bacterial model in the same way as a non-antibiotic fluorescent reagent. We used Streptococcus mutans (S. mutans), a normal inhabitant in the oral cavity and tetracycline-sensitive bacteria, for inducing the bacterial model. The murine bacterial model was generated by intravenously inoculating S. mutans to the tail vein, followed immediately by the injection of the first fluorescent reagent, and the second one was injected 2 days prior to euthanization. After one day of inoculation with S. mutans, the subcutaneously injected alizarin had a similar colony count derived from the liver and the bone marrow tissue compared to the phosphate buffered saline (PBS)-injected control group. On the other hand, subcutaneous injection of tetracycline led to a significantly lower colony count from the liver compared to alizarin- or calcein-injected group. However, on day seven, after S. mutans intravenous injections, bone mineral density of distal femurs was significantly reduced by the bacteria inoculation regardless of which fluorescent reagents were injected subcutaneously. Finally, S. mutans inoculation reduced bone-formation-activity indices in both the tetracycline-alizarin double-injected mice and the calcein-alizarin double-injected mice. These results suggested that a one-time injection of tetracycline did not affect bone formation indices in the S. mutans-induced bone loss model. Tetracycline could be used for measuring bone formation activity in the same way as non-antibiotic fluorescent reagent such as calcein and alizarin, even in a tetracycline-sensitive bacterium-infected model.
Collapse
Affiliation(s)
- Yuna Hirohashi
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shingo Kamijo
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaomi Ikeda
- Department of Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Endowed Department of International Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama, Japan
| | - Fatma Rashed
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oral Biology, Faculty of Dentistry, Damanhour University, El Behera, Egypt
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Lai YJ, Takahashi R, Lin PY, Kuo L, Zhou Y, Matin K, Chiang YC, Shimada Y, Tagami J. Anti-Demineralization Effects of Dental Adhesive-Composites on Enamel-Root Dentin Junction. Polymers (Basel) 2021; 13:polym13193327. [PMID: 34641143 PMCID: PMC8512347 DOI: 10.3390/polym13193327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
Oral biofilm reactor (OBR) and pH cycling (pHC) artificial caries model were employed to evaluate the anti-demineralization effects of four composite filling systems on enamel-root dentin junction. Sixty-four enamel-root dentin blocks (6 mm × 6 mm × 2 mm) each with a cylindrical cavity were randomly assigned to the pHC and OBR group, then four subgroups (n = 8) and filled with either the Beautifil II (BEF, SPRG-filler-containing) or Estelite (EST) composite after the adhesive (either Single Bond Universal (SBU) or FL Bond II (FL, SPRG-filler-containing)). The demineralization lesions of filling interface were examined by micro-computerized tomography (μCT) and swept-source-optical coherence tomography (SS-OCT). According to the degree of interface damage, the caries lesions were sorted into four types: Type A and B (no attachment loss); Type C and D (attachment loss). EST/SBU showed the worst demineralization lesion and attachment loss (100% Type D), while BEF/FL exhibited the shallowest lesion depth (p < 0.05, 145 ± 45 μm on enamel, 275 ± 35 μm on root dentin) and no attachment loss (75% Type A and 25% Type B). Using FL adhesive alone does not effectively reduce enamel demineralization. BEF plays a leading role in acid resistance. The combination of BEF and FL showed a cumulative synergistic effect on anti-demineralization.
Collapse
Affiliation(s)
- Yu-Jung Lai
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei 10048, Taiwan;
- Dental Department, Division of Restorative and Aesthetic Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Rena Takahashi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Po-Yen Lin
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ling Kuo
- Dental Department, Division of Restorative and Aesthetic Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Yuan Zhou
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Yu-Chih Chiang
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei 10048, Taiwan;
- Dental Department, Division of Restorative and Aesthetic Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan;
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel: +886-2-23123456; Fax: +886-2-23831346
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| |
Collapse
|
15
|
Influence of Curing Time on the Microbiological Behavior of Bulk-Fill Nanohybrid Resin Composites. Polymers (Basel) 2021; 13:polym13172948. [PMID: 34502989 PMCID: PMC8434565 DOI: 10.3390/polym13172948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
This in vitro study aimed to evaluate the influence of curing time on surface characteristics and microbiological behavior of three bulk-fill resin-based composites (RBCs). Materials were light-cured for either 10 s or 80 s, then finished using a standard clinical procedure. They were characterized by surface morphology (SEM), surface elemental composition (EDS), surface roughness (SR), and surface free energy (SFE). Microbiological behavior was assessed as S. mutans adherence (2 h) and biofilm formation (24 h) using a continuous-flow bioreactor. Statistical analysis included a two-way ANOVA and Tukey’s test (p < 0.05). Materials differed substantially as filler shape, dimension, elemental composition and resin matrix composition. Significant differences between materials were found for SR, SFE, and microbiological behavior. Such differences were less pronounced or disappeared after prolonged photocuring. The latter yielded significantly lower adherence and biofilm formation on all tested materials, similar to conventional RBCs. Improved photoinitiators and UDMA-based resin matrix composition may explain these results. No correlation between surface characteristics and microbiological behavior can explain the similar microbiological behavior of bulk-fill materials after prolonged photocuring. This different performance of bulk-fill materials compared with conventional RBCs, where surface characteristics, especially surface chemistry, influence microbiological behavior, may have important implications for secondary caries occurrence and restoration longevity.
Collapse
|
16
|
The Influence of Modified Experimental Dental Resin Composites on the Initial In Situ Biofilm-A Triple-Blinded, Randomized, Controlled Split-Mouth Trial. Polymers (Basel) 2021; 13:polym13162814. [PMID: 34451352 PMCID: PMC8400102 DOI: 10.3390/polym13162814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/27/2023] Open
Abstract
The purpose of the study was to investigate the bacterial viability of the initial biofilm on the surface of experimental modified dental resin composites. Twenty-five healthy individuals with good oral hygiene were included in this study. In a split-mouth design, they received acrylic splints with five experimental composite resin specimens. Four of them were modified with either a novel polymeric hollow-bead delivery system or methacrylated polymerizable Irgasan (Antibacterial B), while one specimen served as an unmodified control (ST). A delivery system based on Poly-Pore® was loaded with one of the active agents: Tego® Protect 5000 (Antiadhesive A), Dimethicone (Antiadhesive B), or Irgasan (Antibacterial A). All study subjects refrained from toothbrushing during the study period. Specimens were detached from the splints after 8 h and given a live/dead staining before fluorescence microscopy. A Friedman test and a post hoc Nemenyi test were applied with a significance level at p < 0.05. In summary, all materials but Antibacterial B showed a significant antibacterial effect compared to ST. The results suggested the role of the materials’ chemistry in the dominance of cell adhesion. In conclusion, dental resin composites with Poly-Pore-loaded active agents showed antibacterial effectiveness in situ.
Collapse
|
17
|
Zhou Y, Matin K, Shimada Y, Sadr A, Wang G, Tagami J, Feng X. Characteristics of biofilm-induced degradation at resin-dentin interfaces using multiple combinations of adhesives and resins. Dent Mater 2021; 37:1260-1272. [PMID: 33965251 DOI: 10.1016/j.dental.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/04/2021] [Accepted: 04/24/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We aimed to evaluate morphological, mechanical and chemical characteristics at resin-dentin interfaces using multiple combinations of adhesives and resins after a short-term biofilm-induced degradation. METHODS Cervical cavities were prepared in bovine incisors, treated by Clearfil SE Bond 2 (SE) or FL-Bond II (FL), restored by Clearfil Majesty ES Flow (ES) or Beautifil Flow Plus (BFP) and grouped into SE-ES, SE-BFP, FL-ES and FL-BFP. After biofilm challenge, interfacial gaps and dentin wall lesions were examined by optical coherence tomography (OCT). Gap depth (GD), gap pattern scale (GPS) and dentin wall lesion depth (WLD) were evaluated from confocal laser scanning microscope. Microhardness of dentin lesions was measured with a Vickers microhardness tester. Chemical elements in resins and dentin wall lesions were analyzed by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Morphological structures of interfacial gaps were observed by SEM. RESULTS OCT could detect adhesive-dentin-bonded and adhesive-dentin-debonded gaps. SE-containing groups showed significantly lower GPS than FL-containing groups. FL-BFP showed significantly lower WLD than FL-ES. Microhardness of dentin wall lesions was higher than that of outer lesions and they showed significant differences in FL-BFP. SE-BFP showed a lower GPS curve and higher intensities of Ca and P in the upper half of dentin wall lesions than other groups. From SEM, microgaps between filler and matrix, break and loss of matrix, separation of adhesive matrix with hybrid layer occurred at interfacial gaps. SIGNIFICANCE The morphological, mechanical and chemical characteristics of resin-dentin interfacial degradation depend on the component and chemistry of restorative materials.
Collapse
Affiliation(s)
- Yuan Zhou
- Laboratory of Molecular and Preventive Dentistry, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200011, China.
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Endowed Department of International Oral Health Science (affiliated with Department of Translational Research), School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0063, Japan.
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Department of Operative Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| | - Alireza Sadr
- Biomimetics Biomaterials Biophotonics & Technology Laboratory, Department of Restorative Dentistry, University of Washington School of Dentistry, 1959 NE Pacific Street, Seattle, WA 98195-7456, USA.
| | - Guoqing Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Ave, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Xiping Feng
- Laboratory of Molecular and Preventive Dentistry, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200011, China.
| |
Collapse
|
18
|
Takahashi M, Matin K, Matsui N, Shimizu M, Tsuda Y, Uchinuma S, Hiraishi N, Nikaido T, Tagami J. Effects of silver diamine fluoride preparations on biofilm formation of Streptococcus mutans. Dent Mater J 2021; 40:911-917. [PMID: 33731542 DOI: 10.4012/dmj.2020-341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of silver diamine fluoride preparations (SDFs) on cariogenic biofilm formation on root dentin (RD) were investigated. Streptococcus mutans (S. mutans) biofilms were formed on bovine RD blocks coated with one of three the SDFs (38%-SDF, 3.8%-SDF and 35%-SDF+potassium-iodide; SDF+KI) and a non-coated Control which were quantified (spectrometric-measurement) and thickness measured (optical coherence tomography) after 20 h. Bacterial viability test (BacLight) and biofilm-morphometry (SEM) of 2 h biofilms were also performed. The amounts of biofilms (bacteria and water insoluble glucan) and the thickness of biofilm were minimum on 38%-SDF specimen; 3.8%-SDF and SDF+KI had significantly more than that, but had significantly less than Control (p<0.05). Most S. mutans cells found dead and morphology damaged by 38%-SDF. Some dead bacteria and remarkably damaged biofilms were observed in case of 3.8%-SDF and SDF+KI. Inhibition potential of 3.8%-SDF and SDF+KI on S. mutans biofilm formation is almost similar, although not equivalent to 38%-SDF.
Collapse
Affiliation(s)
- Motoi Takahashi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU).,Endowed Department of International Oral Health Science, Tsurumi University School of Dental Medicine
| | - Naoko Matsui
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Miyuki Shimizu
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Yuka Tsuda
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Shigeki Uchinuma
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Toru Nikaido
- Department of Operative Dentistry, Asahi University
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
19
|
Bilgili Can D, Dündar A, Barutçugil Ç, Koyuncu Özyurt Ö. Evaluation of surface characteristic and bacterial adhesion of low-shrinkage resin composites. Microsc Res Tech 2021; 84:1783-1793. [PMID: 33586287 DOI: 10.1002/jemt.23735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 11/10/2022]
Abstract
This study aimed to examine the surface characteristics of low shrinkage composites and adhesion of Streptococcus mutans and Streptococcus mitis to these materials. Control material (glass) and three low shrinkage composites (Charisma Diamond, Kalore GC, Beatiful II LS) were used. After polishing procedure was applied to composite specimens, surface roughness (SR), surface free energy (SFE), and contact angle measurements were performed. Surfaces of composite were analyzed using scanning electron microscope and energy-dispersive X-ray spectroscopy. After pellicle formation with artificial saliva, S. mutans and S. mitis biofilms were incubated in 5% CO2 for 24 h at 37°C and were analyzed using confocal laser scanning microscopy. The lowest SR and highest SFE values were found in the control group. While the contact angle of control was statistically lower than composites, statistically difference was not found between composite groups. S. mutans adhesion of composites was significantly lower than control group, but there was no significant difference between composites. S. mitis adhesion of all groups was statistically similar. SR did not affect the S. mutans and S. mitis adhesion. Less adherence of S. mutans to low shrinkage composites was associated with low SFE and high contact angle values. Even though the highest SR was observed in the Charisma Diamond, no difference was found between the composites in terms of bacterial adhesion.
Collapse
Affiliation(s)
- Dilber Bilgili Can
- Department of Restorative Dentistry, Faculty of Dentistry, Yüzüncü Yıl University, Van, Turkey
| | - Ayşe Dündar
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Çağatay Barutçugil
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Özlem Koyuncu Özyurt
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
20
|
Tong H, Yu X, Shi Z, Liu F, Yu Y, Deng F, He J. Physicochemical properties, bond strength and dual-species biofilm inhibition effect of dental resin composites with branched silicone methacrylate. J Mech Behav Biomed Mater 2021; 116:104368. [PMID: 33545416 DOI: 10.1016/j.jmbbm.2021.104368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Dental resin composites (DRCs) with 15 wt% (EC-15%) and 20 wt% (EC-20%) synthesized branched silicone methacrylate (BSM) in resin matrix have showed anti-adhesion effect against Streptococcus mutans. With the aim to evaluate the BSM containing DRCs further, water sorption (WS), solubility (SL), mechanical properties before and after water immersion, anti-adhesion effect against dual-species, bonding strength to adhesive treated dentin, and cytotoxicity of BSM containing DRCs were investigated. DRC without BSM was used as control. The WS and SL were obtained until the mass variation of composite in distilled water kept stable. Three-point bending test was used to evaluate flexural strength (FS) and modulus (FM) of composite before and after water immersion. Mixture of Streptococcus mutans and Lactobacillus acidophilus was used to study the anti-adhesion effect against dual-species. Bonding strength of composite to adhesive treated dentin was measured through macro-shear test. Extract of composite was used to evaluate its cytotoxicity effect on L-929 mouse fibroblasts, and cell viability was obtained by MTT assay. The results showed that EC-15% and EC-20% had similar WS and SL as control (p < 0.05); After water immersion, FS and FM of all composites decreased (p < 0.05), but there was no significant difference in value of FS and FM between different groups (p > 0.05); More bacteria were recovered from the surface of control than those from the surface of EC-15% and EC-20% (p < 0.05); Extract of EC-15% was less cytotoxic (higher cell viability) than those EC-20% and control (p < 0.05). All of results revealed that incorporation of 15 wt% or 20 wt% BSM in resin matrix could endow DRC with inhibition effect on dual-species biofilm formation without impairing physiochemical properties, bonding strength to adhesive treated dentin, and cytotoxicity of DRC.
Collapse
Affiliation(s)
- Hui Tong
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhifeng Shi
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, PR China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
21
|
Ali S, Sangi L, Kumar N, Kumar B, Khurshid Z, Zafar MS. Evaluating antibacterial and surface mechanical properties of chitosan modified dental resin composites. Technol Health Care 2021; 28:165-173. [PMID: 31594266 DOI: 10.3233/thc-181568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The antibacterial properties are beneficial and desired for dental restorative composite materials. The incorporation of various antimicrobial agents into resin composites may compromise their physical and mechanical properties hence limiting their applications. OBJECTIVE The aim of the current study is to evaluate the antibacterial activity and the hardness of microhybrid and flowable resin based composites (RBCs) modified using novel antimicrobial agent chitosan (CS). METHODS The antibacterial activity of microhybrid and flowable RBCs modified with 0, 0.25, 0.5 and 1% w/w chitosan (CS) against Actinomyces viscous bacteria was explored using agar diffusion test and direct contact methods. The hardness of control and experimental RBCs was determined by Vickers hardness (VH) tester. RESULTS The results revealed that control and experimental flowable and microhybrid RBCs did not demonstrate growth inhibition zone in the lawn growth of Actinomyces viscous. The direct contact test revealed that colony forming unit (CFU) count of Actinomyces viscous was comparable among the experimental and control materials. The flowable RBCs containing 1% CS had significantly higher VH compared to control and other experimental flowable RBC groups. The microhybrid RBCs consisting of 0.50% CS exhibited significantly higher VH compared to experimental microhybrid RBC group containing 1% CS.
Collapse
Affiliation(s)
- Shahid Ali
- Department of Science of Dental Materials, Bibi Aseefa Dental College, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
| | - Laila Sangi
- Department of Operative Dentistry, Institute of Dentistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Bharat Kumar
- Department of Prosthodontics, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Biomaterials, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwarah, Saudi Arabia.,Department of Dental Material, RIPHAH International University, Islamabad, Pakistan
| |
Collapse
|
22
|
Ismail HS, Ali AI, Abo El-Ella MA, Mahmoud SH. Effect of different polishing techniques on surface roughness and bacterial adhesion of three glass ionomer-based restorative materials: In vitro study. J Clin Exp Dent 2020; 12:e620-e625. [PMID: 32905005 PMCID: PMC7462382 DOI: 10.4317/jced.56616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although many reports concluded that polishing of glass ionomers is crucial for smoother surface and limiting the adhesion of cariogenic bacteria, there is no specific surface treatment protocol recommended. A novel material in the same category was released recently claimed to have surface smoothness comparable to resin composite and bacterial adhesion less than other types of glass ionomers. In this study, different polishing systems were tested with three glass ionomers one of them is the novel material to find the most appropriate polishing protocol. Objectives: To evaluate and compare the surface roughness and bacterial adhesion to resin modified glass ionomer, bioactive ionic resin and conventional glass ionomer restorative materials after different polishing protocols in vitro. Material and Methods The materials tested includes resin modified glass ionomer, bioactive ionic resin, and conventional glass ionomer. The polishing protocols were divided into four groups: group 1 = (Mylar matrix strips, Control), group 2 = (one-step, PoGo), group 3 = (two-step, Prisma Gloss) and group 4 = (three-step, Sof-Lex). From each material, eleven cylindrical specimens were prepared for each group according to the manufacturers' instructions. The surface roughness for all specimens was measured using atomic force microscope in tapping mode. the same specimens were subjected to bacterial adhesion testing after being coated with artificial saliva. Data were analyzed with two-way analysis of variance followed by Post hoc multiple comparisons. Results The highest Ra and S. mutans adhesion values were recorded for all materials in two-step group. The lowest Ra and S. mutans adhesion values were seen in one-step and three step groups. Conclusions One-step polishing system was more effective and may be preferable for polishing of the three studied glass ionomer-based materials compared to two-step and three-step systems. Key words:Activa bioactive restorative, glass ionomer, surface roughness, bacterial adhesion, surface treatment.
Collapse
Affiliation(s)
- Hoda S Ismail
- Assistant Lecturer, Operative Dentistry Dept, Faculty of Dentistry, Mansoura University, Egypt
| | - Ashraf I Ali
- Associate Professor, Operative Dentistry Dept, Faculty of Dentistry, Mansoura University, Egypt
| | | | - Salah H Mahmoud
- Clinical Professor and Chairman of Operative Dentistry, Faculty of Dentistry, Mansoura University, Egypt
| |
Collapse
|
23
|
Prado MM, Kovalski DJ, Torrez WB, Bueno-Silva B, Feres M, de Almeida J, Porto LM. Development of a multispecies periodontal biofilm model within a stirred bioreactor. BIOFOULING 2020; 36:725-735. [PMID: 32781835 DOI: 10.1080/08927014.2020.1805600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The objective of this work was to develop a subgingival biofilm model using a stirred bioreactor. Discs of bovine teeth were adapted to a stirred bioreactor filled with a culture medium containing bacterial species associated with periodontal health or disease. After anaerobic incubation, the biofilms growing on the substratum surfaces were collected and analyzed. The mean number of Colony-forming Units (CFUs) varied, but with no difference between 3 and 7 days of biofilm formation (p > 0.05). Scanning Electron Microscopy (SEM) analysis showed a uniform biofilm layer covering the cement layer of the root surface containing bacteria with diverse morphology. In checkerboard DNA-DNA hybridization, bacterial species were identified in both biofilms. In conclusion, a subgingival biofilm model was developed using a stirred bioreactor, allowing the in vitro reproduction of complex microbial communities. This is an advanced model that may be useful to mimic complex clinical periodontal biofilms.
Collapse
Affiliation(s)
- Maick Meneguzzo Prado
- LiEB - Integrated Laboratory of Biological Engineering, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Davi J Kovalski
- LiEB - Integrated Laboratory of Biological Engineering, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Josiane de Almeida
- LiEB - Integrated Laboratory of Biological Engineering, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Faculty of Dentistry, Department of Endodontics, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Luismar M Porto
- LiEB - Integrated Laboratory of Biological Engineering, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
24
|
Bilgili D, Dündar A, Barutçugil Ç, Tayfun D, Özyurt ÖK. Surface properties and bacterial adhesion of bulk-fill composite resins. J Dent 2020; 95:103317. [PMID: 32165185 DOI: 10.1016/j.jdent.2020.103317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES The aim of the present study was to evaluate the Streptococcus mutans and Streptococcus mitis adhesion and related surface properties of bulk-fill resin composite. METHODS Four novel bulk-fill composite with different composition were used; Sonic Fill-2 (KSF), Filtek BulkFill (FBF), Admira Fusion X-tra (AFX), Beautifil Bulk Restorative (SBB) and a control group (glass) were included in the study. After standardized surface polishing procedure, surface properties of composite specimens were evaluated using surface roughness (SR) measurements by a profilometer, hydrophobicity and surface free energy (SFE) analyses, elemental and topographic analyses by SEM-EDS. To evaluate the bacterial adhesion, composite specimens were immersed in artificial saliva and mucin for pellicle development. After 1-h immersion, bacterial suspension was added to the pellicle-coated specimens, which were incubated at 37 °C in 5% CO2 atmosphere for 24 h. Adhered bacteria counts were determined as x108 Cfu/ml. Bacterial adhesion was also investigated using confocal laser scanning microscopy. RESULTS No statistically significant differences were found among bulk fill composites in terms of surface roughness while glass showed the lowest Ra values. The lowest contact angle values were found in the control group and Sonic Fill-2 while the highest SFE values were observed in these materials. No statistically significant differences were found between the S. mutans counts. For S. Mitis adhesion, the highest value was found in Sonic Fill-2 and no significant differences were observed between the other groups. CONCLUSIONS SR of bulk-fill composite resins had no effect on bacterial adhesion. However, bacterial adhesion increased with higher SFE values. CLINICAL SIGNIFICANCE Although the surface roughness of composites used in the study is similar, in clinically, S. mitis adhesion may be more in the KSF group because of high surface free energy.
Collapse
Affiliation(s)
| | - Ayşe Dündar
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Çağatay Barutçugil
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey.
| | | | - Özlem Koyuncu Özyurt
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
25
|
De-la-Pinta I, Cobos M, Ibarretxe J, Montoya E, Eraso E, Guraya T, Quindós G. Effect of biomaterials hydrophobicity and roughness on biofilm development. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:77. [PMID: 31218489 DOI: 10.1007/s10856-019-6281-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Most hospitalized patients are carriers of biomedical devices. Infections associated with these devices cause great morbidity and mortality, especially in patients in intensive care units. Numerous strategies have been designed to prevent biofilm development on biodevices. However, biofilm formation is a complex process not fully clarified. In the current study, roughness and hydrophobicity of different biomaterials was analyzed to assess their influences on the biofilm formation of four leading etiological causes of healthcare-associated infections, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Candida albicans, using a CDC biofilm reactor. Hydrophobic materials allowed the formation of more abundant and profuse biofilms. Roughness had effect on biofilm formation, but its influence was not significant when material hydrophobicity was considered.
Collapse
Affiliation(s)
- Iker De-la-Pinta
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Mónica Cobos
- Departamento de Ciencia y Tecnología de Polímeros, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, San Sebastián, Spain
| | - Julen Ibarretxe
- Departamento de Física aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | | | - Elena Eraso
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Teresa Guraya
- Departamento de Ingeniería Minera y Metalúrgica y Ciencia de los Materiales, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain.
| |
Collapse
|
26
|
Cierech M, Osica I, Kolenda A, Wojnarowicz J, Szmigiel D, Łojkowski W, Kurzydłowski K, Ariga K, Mierzwińska-Nastalska E. Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E305. [PMID: 29734781 PMCID: PMC5977319 DOI: 10.3390/nano8050305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
AIM The aim of this study was to investigate the selected properties of zinc oxide- polymethyl methacrylate (ZnO-PMMA) nanocomposites that can influence the microorganism deposition on their surface. MATERIALS AND METHODS Non-commercial ZnO-NPs were prepared, characterized and used for the preparation of PMMA nanocomposite. Roughness, absorbability, contact angle and hardness of this new nanomaterial were evaluated. PMMA without ZnO-NPs served as control. OUTCOMES Compared to unenriched PMMA, incorporation of ZnO-NPs to 7.5% for PMMA nanocomposite increases the hardness (by 5.92%) and the hydrophilicity. After modification of the material with zinc oxide nanoparticles the roughness parameter did not change. All tested materials showed absorption within the range of 1.82 to 2.03%, which meets the requirements of International Organization for Standardization (ISO) standards for denture base polymers. CONCLUSIONS The results showed no significant deterioration in the properties of acrylic resin that could disqualify the nanocomposite for clinical use. Increased hydrophilicity and hardness with absorbability within the normal range can explain the reduced microorganism growth on the denture base, as has been proven in a previous study.
Collapse
Affiliation(s)
- Mariusz Cierech
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland.
| | - Izabela Osica
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-504 Warsaw, Poland.
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Adam Kolenda
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland.
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland.
| | - Dariusz Szmigiel
- Division of Silicon Microsystem and Nanostructure Technology, Institute of Electron Technology, 02-668 Warsaw, Poland.
| | - Witold Łojkowski
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland.
| | - Krzysztof Kurzydłowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-504 Warsaw, Poland.
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | |
Collapse
|
27
|
Microhardness of different esthetic restorative materials: Evaluation and comparison after exposure to acidic drink. Dent Res J (Isfahan) 2018; 15:166-172. [PMID: 29922334 PMCID: PMC5958532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Acidic beverages, such as soft drinks (orange juice and cola), can produce erosion of resin composites. The aim of this in vitro study was to evaluate the effect of immersion in acidic drink on the Vickers microhardness (VK) of different esthetic restorative materials (one nanohybrid Ormocer-based composite, one nanoceramic composite, one nanofilled composite, and one microfilled hybrid composite). MATERIALS AND METHODS In this in vitro study, thirty specimens of each esthetic restorative material were divided into three subgroups (n = 10): specimens of group 1 were used as control, specimens of group 2 were immersed in 50 ml of acidic drink for 1 day, specimens of group 3 were immersed in 50 ml of acidic drink for 7 days. Data were analyzed by Shapiro-Wilk test to assess the normality of the distributions followed by nonparametric Kruskal-Wallis analysis of variance and Mann-Whitney U-test comparison test among groups. A significant level of α = 0.05 was set for comparison between the groups. RESULTS Mann-Whitney U-test showed that each material showed lower microhardness values after immersion in acidic solution (P < 0.05). Paired t-test confirmed that microhardness for each composite did not change after immersion in distilled water (Control group) (P > 0.05). Significant changes were registered for all restorative materials after immersion in acidic solution for 1 day and 7 days (P < 0.05). CONCLUSION The Filtek Supreme XTE, a nanofilled composite, and Admira Fusion, a nanohybrid ormocer-based composite, showed the best behavior. The Ceram X Universal (nanoceramic composite) although reached lower hardness values than the previous materials, but resisted well to the 1 week immersion in soft-drink. Finally, the Gradia Direct achieved the most disappointing results: Low microhardness values are justified by the nature of its filling (microfilled hybrid composite).
Collapse
|
28
|
Biodegradation Studies of Novel Fluorinated Di-Vinyl Urethane Monomers and Interaction of Biological Elements with Their Polymerized Films. Polymers (Basel) 2017; 9:polym9080365. [PMID: 30971044 PMCID: PMC6418586 DOI: 10.3390/polym9080365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022] Open
Abstract
The monomeric components of resin composites in dental restorative materials are susceptible to hydrolysis in the oral cavity. The main objective of this study was to assess the bio-stability of fluorinated urethane dimethacrylates and determine the nature of fluoro-chemistry interactions with protein and bacterial adhesion (both sources of hydrolytic activity) onto cured resin. Degradation studies were performed in the presence of either albumin (in a mildly alkaline pH) or cholesterol esterase (CE). The surface chemistry of the polymers was assessed by water contact angle measurements, pre- and post- incubation with albumin. Adhesion of Streptococcus mutans to cured resin was investigated. The fluorinated monomers were more stable against degradation when compared to the commercial monomer bisphenol A-diglycidyl methacrylate (BisGMA). While fluorinated monomers showed hydrolytic stability with respect to CE, all fluorinated monomers underwent some degree of degradation with albumin. The fluoro-chemistry did not reduce protein and/or bacterial adhesion onto the surface, however post incubation with albumin, the fluorinated surfaces still presented hydrophobic character as determined by the high contact angle values ranging from 79° to 86°. These monomers could potentially be used to increase the hydrophobicity of polymeric composites and provide a means to moderate esterolytic degradation associated with the monomeric component of the polymers within the oral cavity.
Collapse
|
29
|
Antibacterial and anti-biofilm efficacy of fluoropolymer coating by a 2,3,5,6-tetrafluoro-p-phenylenedimethanol structure. Colloids Surf B Biointerfaces 2016; 151:363-371. [PMID: 28056438 DOI: 10.1016/j.colsurfb.2016.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022]
Abstract
Fluorinated polymers generally function as antibacterial agents, but their anti-biofilm effect remains unresolved. This study investigates the efficacy of fluoropolymers containing 2,3,5,6-tetrafluoro-p-phenylenedimethanol (TFPDM) in preventing biofilm formation by Bacillus subtilis and Escherichia coli (Gram-positive and Gram-negative bacterial species). To this end, TFPDM-based acrylate and epoxy polymers (AF and EF, respectively) and their structural analogues without TFPDM (A and E, respectively) were synthesized. All polymers were coated onto polyethylene terephthalate (PET) sheets. Relative to pristine PET, sheets coated with AF reduced the initial bacterial adhesion (72h) and biofilm formation (30days) of B. subtilis by 27.6% and 68.7% and of E. coli by 89.2% and 93.8%, respectively. The comparable antibacterial and anti-biofilm efficacies were obtained by sheets with EF. The biofilm detachment was substantially facilitated from the AF, compared with the structural analogue without TFPDM (A). In this comprehensive study, the bacterial adhesion and subsequent biofilm formation were prevented by TFPDM-containing polymers effectively.
Collapse
|
30
|
Yuan C, Wang X, Gao X, Chen F, Liang X, Li D. Effects of surface properties of polymer-based restorative materials on early adhesion of Streptococcus mutans in vitro. J Dent 2016; 54:33-40. [DOI: 10.1016/j.jdent.2016.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022] Open
|
31
|
Fleischmann L, Crismani A, Falkensammer F, Bantleon HP, Rausch-Fan X, Andrukhov O. Behavior of osteoblasts on TI surface with two different coating designed for orthodontic devices. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5335. [PMID: 25577216 DOI: 10.1007/s10856-014-5335-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/28/2014] [Indexed: 06/04/2023]
Abstract
In the present study we coated Ti surfaces with polytetrafluorethylene (PTFE) and titanium nitride (TiN) and investigated in vitro the behavior of osteoblasts on these surfaces. MG-63 osteoblasts were cultured on titanium discs with different surface treatment: uncoated Ti6Al4V, TiN-coated, PTFE-coated. Cell viability/proliferation was detected by MTT assay. Gene-expression levels of alkaline phosphatase (ALP), osteocalcin (OC), type I collagen, receptor activator of nuclear factor-kappa-B ligand (RANKL), and osteoprotegerin (OPG) were determined by qPCR. Cell behavior on different surfaces was observed by time-lapse microscopy. Cells grown on PTFE-coated Ti surface exhibited delayed surface attachment and decreased proliferation after 48 h. However, after 168 h of culture cells grown on PTFE-coated surface exhibited higher viability/proliferation, higher expression levels of ALP and OC, and higher OPG/RANKL ratio compared to uncoated surface. No effect of TiN-coating on any investigated parameter was found. Our results shows that PTFE coating exhibits no toxic effect on MG-63 cells and slightly stimulates expression of several genes associated with osteogenesis. We propose that PTFE coating could be considered as a possible choice for a surface treatment of temporary skeletal anchorage devices in orthodontics.
Collapse
Affiliation(s)
- Leonardo Fleischmann
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
32
|
Rüttermann S, Beikler T, Janda R. Contact angle and surface free energy of experimental resin-based dental restorative materials after chewing simulation. Dent Mater 2014; 30:702-7. [DOI: 10.1016/j.dental.2014.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 12/01/2022]
|
33
|
Degradation in the dentin-composite interface subjected to multi-species biofilm challenges. Acta Biomater 2014; 10:375-83. [PMID: 24008178 DOI: 10.1016/j.actbio.2013.08.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 11/23/2022]
Abstract
Oral biofilms can degrade the components in dental resin-based composite restorations, thus compromising marginal integrity and leading to secondary caries. This study investigates the mechanical integrity of the dentin-composite interface challenged with multi-species oral biofilms. While most studies used single-species biofilms, the present study used a more realistic, diverse biofilm model produced directly from plaques collected from donors with a history of early childhood caries. Dentin-composite disks were made using bovine incisor roots filled with Z100(TM) or Filtek(TM) LS (3M ESPE). The disks were incubated for 72 h in paired CDC biofilm reactors, using a previously published protocol. One reactor was pulsed with sucrose, and the other was not. A sterile saliva-only control group was run with sucrose pulsing. The disks were fractured under diametral compression to evaluate their interfacial bond strength. The surface deformation of the disks was mapped using digital image correlation to ascertain the fracture origin. Fracture surfaces were examined using scanning electron microscopy/energy-dispersive X-ray spectroscopy to assess demineralization and interfacial degradation. Dentin demineralization was greater under sucrose-pulsed biofilms, as the pH dropped <5.5 during pulsing, with LS and Z100 specimens suffering similar degrees of surface mineral loss. Biofilm growth with sucrose pulsing also caused preferential degradation of the composite-dentin interface, depending on the composite/adhesive system used. Specifically, Z100 specimens showed greater bond strength reduction and more frequent cohesive failure in the adhesive layer. This was attributed to the inferior dentin coverage by Z100 adhesive, which possibly led to a higher level of chemical and enzymatic degradation. The results suggested that factors other than dentin demineralization were also responsible for interfacial degradation. A clinically relevant in vitro biofilm model was therefore developed, which would effectively allow assessment of the degradation of the dentin-composite interface subjected to multi-species biofilm challenge.
Collapse
|
34
|
Rüttermann S, Trellenkamp T, Bergmann N, Beikler T, Ritter H, Janda R. Bacterial viability and physical properties of antibacterially modified experimental dental resin composites. PLoS One 2013; 8:e79119. [PMID: 24223890 PMCID: PMC3815119 DOI: 10.1371/journal.pone.0079119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the antibacterial effect and the effect on the material properties of a novel delivery system with Irgasan as active agent and methacrylated polymerizable Irgasan when added to experimental dental resin composites. MATERIALS AND METHODS A delivery system based on novel polymeric hollow beads, loaded with Irgasan and methacrylated polymerizable Irgasan as active agents were used to manufacture three commonly formulated experimental resin composites. The non-modified resin was used as standard (ST). Material A contained the delivery system providing 4 % (m/m) Irgasan, material B contained 4 % (m/m) methacrylated Irgasan and material C 8 % (m/m) methacrylated Irgasan. Flexural strength (FS), flexural modulus (FM), water sorption (WS), solubility (SL), surface roughness Ra, polymerization shrinkage, contact angle Θ, total surface free energy γS and its apolar γS (LW), polar γS (AB), Lewis acid γS (+)and base γS (-) term as well as bacterial viability were determined. Significance was p < 0.05. RESULTS The materials A to C were not unacceptably influenced by the modifications and achieved the minimum values for FS, WS and SL as requested by EN ISO 4049 and did not differ from ST what was also found for Ra. Only A had lower FM than ST. Θ of A and C was higher and γS (AB) of A and B was lower than of ST. Materials A to C had higher γS (+) than ST. The antibacterial effect of materials A to C was significantly increased when compared with ST meaning that significantly less vital cells were found. CONCLUSION Dental resin composites with small quantities of a novel antibacterially doped delivery system or with an antibacterial monomer provided acceptable physical properties and good antibacterial effectiveness. The sorption material being part of the delivery system can be used as a vehicle for any other active agent.
Collapse
Affiliation(s)
- Stefan Rüttermann
- Heinrich-Heine-University, Medical Faculty, Centre of Dentistry, Department of Operative Dentistry, Periodontology and Endodontics, Düsseldorf, Germany
- * E-mail:
| | - Taina Trellenkamp
- Heinrich-Heine-University, Institute of Organic Chemistry and Macromolecular Chemistry, Düsseldorf, Germany
| | - Nora Bergmann
- Heinrich-Heine-University, Medical Faculty, Centre of Dentistry, Department of Operative Dentistry, Periodontology and Endodontics, Düsseldorf, Germany
| | - Thomas Beikler
- Heinrich-Heine-University, Medical Faculty, Centre of Dentistry, Department of Operative Dentistry, Periodontology and Endodontics, Düsseldorf, Germany
| | - Helmut Ritter
- Heinrich-Heine-University, Institute of Organic Chemistry and Macromolecular Chemistry, Düsseldorf, Germany
| | - Ralf Janda
- Heinrich-Heine-University, Medical Faculty, Centre of Dentistry, Department of Operative Dentistry, Periodontology and Endodontics, Düsseldorf, Germany
| |
Collapse
|
35
|
Bacterial viability on surface-modified resin-based dental restorative materials. Arch Oral Biol 2012; 57:1512-21. [DOI: 10.1016/j.archoralbio.2012.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/25/2012] [Accepted: 05/07/2012] [Indexed: 11/22/2022]
|
36
|
Poggio C, Dagna A, Chiesa M, Colombo M, Scribante A. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks. J Conserv Dent 2012; 15:137-40. [PMID: 22557811 PMCID: PMC3339007 DOI: 10.4103/0972-0707.94581] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 11/03/2011] [Accepted: 12/13/2011] [Indexed: 12/02/2022] Open
Abstract
Aim: The aim of this study is to evaluate the surface roughness of four flowable resin composites following exposure to acidic and alcoholic drinks. Materials and Methods: SureFil SDR flow, TetricEvoFlow, Esthet-X Flow and Amaris Flow HT samples were immersed in artificial saliva, Coca Cola and Chivas Regal Whisky. Each specimen was examined using a Leica DCM 3D microscope: Arithmetical mean height of the surface profiles was measured (Sa). Results: Kruskal-Wallis test showed significant differences among various groups (P<0,001). Mann Whitney test was applied and control groups showed significantly lower Sa values than other groups (P=0,008). Coca Cola groups showed highest Sa values (P<0,021). No significant differences (P=0,14) in surface texture were found among the specimens of the different materials. No significant differences were found among TetricEvoFlow, Esthet-X Flow and Amaris Flow under control conditions nor after Coca Cola application. Under control condition and after Coca Cola application SureFil SDR flow showed significantly higher Sa values. Moreover, after whisky application Amaris Flow showed significantly lower Sa values then the other three groups that showed no significant differences among them. Conclusions: Acidic and alcoholic drinks eroded the surface roughness of all evaluated flowable resin composites.
Collapse
Affiliation(s)
- Claudio Poggio
- Department of Operative Dentistry, University of Pavia, Piazzale Golgi 3, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
37
|
Rudney JD, Chen R, Lenton P, Li J, Li Y, Jones RS, Reilly C, Fok AS, Aparicio C. A reproducible oral microcosm biofilm model for testing dental materials. J Appl Microbiol 2012; 113:1540-53. [PMID: 22925110 DOI: 10.1111/j.1365-2672.2012.05439.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 12/28/2022]
Abstract
AIMS Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. METHODS AND RESULTS Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together. CONCLUSIONS This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.
Collapse
Affiliation(s)
- J D Rudney
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Oyanagi T, Tagami J, Matin K. Potentials of mouthwashes in disinfecting cariogenic bacteria and biofilms leading to inhibition of caries. Open Dent J 2012; 6:23-30. [PMID: 22303415 PMCID: PMC3269010 DOI: 10.2174/1874210601206010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/25/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the effects of certain commercially available mouthwashes on cariogenic bacteria and biofilms, following the acquisition of inhibition potentials of caries. MATERIALS AND METHODS Mouthwashes containing I) chlorhexidine gluconate (CHG; 0.0005% w/v), II) benzethonium chloride (BTC; 0.01% w/v), III) an essential oil (Listerine), and IV) povidone-iodine (PVP-I; 0.035% w/v) were tested on planktonic cariogenic bacteria, biofilms, and an ex vivo caries model. Bacterial aliquots were inoculated with each solution separately and vortexed for 10 seconds at room temperature. Bacterial viability was subsequently investigated by fluorescence microscopy (FM) after staining with a BacLight viability kit and the number of colony-forming units (CFUs) was counted. Similarly, mouthwash solutions were applied to artificial cariogenic biofilms, and bacterial viability of the biofilms was investigated as stated above. Inhibition potentials of two selected mouthwashes of carious lesions were investigated using biofilm-induced caries and a secondary caries model. In all steps, a phosphate-buffered saline (PBS) solution was included as a control. RESULTS Planktonic cariogenic bacteria and bacteria embedded in biofilms were killed in remarkably large numbers with Listerine and PVP-I treatment compared to PBS and other gargles. CFU counts also showed significant reduction after treatment with Listerine and PVP-I compared to other solutions (P<0.05). Listerine also displayed significant (P<0.05) inhibition effects in preventing the progression of demineralization. CONCLUSION Bactericidal potencies of the mouthwashes varied significantly, suggesting that mouthwashes like Listerine can be useful for the prevention of caries and secondary caries.
Collapse
Affiliation(s)
- Takehiro Oyanagi
- Cariology and Operative Dentistry, Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | | | | |
Collapse
|
39
|
Kuribayashi M, Kitasako Y, Matin K, Sadr A, Shida K, Tagami J. Intraoral pH measurement of carious lesions with qPCR of cariogenic bacteria to differentiate caries activity. J Dent 2012; 40:222-8. [PMID: 22222970 DOI: 10.1016/j.jdent.2011.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVES A low pH environment is created by cariogenic bacteria. This study was aimed to measure pH of carious lesions intraorally using a micro-pH sensor, and assess predominant acid-producing cariogens by qPCR to differentiate caries activities. METHODS 103 dentine lesions classified as active or arrested caries based on the clinical and radiological examinations were collected from patients after intraoral measurement of the lesion surface pH using a micro-pH sensor. Quantitative detection of genomic DNA copies of target cariogenic bacteria (mutans streptococci and Lactobacillus spp.) in each lesion was performed using real-time PCR. Correlation between the pH ranges and the number of bacterial species was examined by Spearman test. RESULTS 50 samples were diagnosed as active and 53 as arrested lesions. Statistically significant difference was observed on average surface pH value between active and arrested lesions (p<0.05). Prevalence of Lactobacillus spp. was higher in active lesions than in arrested lesions (76% vs. 58% of samples, respectively). When the carious lesions were categorised into four different pH ranges (up to 5.5, from 5.6 to 5.8, from 5.9 to 6.1 and 6.2 or above), increased prevalence of Lactobacillus spp. was observed with decrease of pH levels. A significant negative relationship was found between pH value and number of Lactobacillus spp. (r=-0.209, p<0.05) but no such correlation was found for mutans streptococci. CONCLUSIONS Intraoral pH measurement might be clinically useful to determine acidity of the local environment of carious lesions as one aspect of the caries activity assessment. CLINICAL SIGNIFICANCE The population of certain bacteria may indicate activity of carious lesions. Intraoral pH measurement of the carious lesions using a micro-pH sensor may be a clinically feasible method for assessment of lesion acidity.
Collapse
Affiliation(s)
- Megumi Kuribayashi
- Cariology and Operative Dentistry, Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Farronato G, Maijer R, Carìa MP, Esposito L, Alberzoni D, Cacciatore G. The effect of Teflon coating on the resistance to sliding of orthodontic archwires. Eur J Orthod 2011; 34:410-7. [PMID: 21478301 DOI: 10.1093/ejo/cjr011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Teflon is an anti-adherent and aesthetic material. The aim of this study was to evaluate, in vitro, the influence of Teflon coating on the resistance to sliding (RS) of orthodontic archwires. For this purpose, Teflon-coated archwires were examined using frictional resistance tests by means of a universal testing machine and compared with conventional uncoated wires. Twelve types of archwires with round and rectangular sections (0.014, 0.018, and 0.018 × 0.025 inches) and of different materials (stainless steel and nickel-titanium) were tested with two passive self-ligating brackets (SmartClip™ and Opal(®)) and one active self-ligating bracket (Quick(®)). Each archwire-bracket combination was tested 10 times under 8 simulated clinical scenarios. Statistical comparisons were conducted between the uncoated and Teflon-coated archwires using Wilcoxon and Mann-Whitney tests, and linear regression analysis. For all bracket-archwire combinations, Teflon-coated archwires resulted lower friction than the corresponding uncoated archwires (P < 0.01). The results showed that Teflon coating has the potential to reduce RS of orthodontic archwires.
Collapse
Affiliation(s)
- Giampietro Farronato
- Department of Surgical, Reconstructive, and Diagnostic Sciences, University of Milan, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
A new approach to influence contact angle and surface free energy of resin-based dental restorative materials. Acta Biomater 2011; 7:1160-5. [PMID: 20933616 DOI: 10.1016/j.actbio.2010.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/04/2010] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to identify novel delivery systems and active agents which increase the water contact angle and reduce the surface free energy when added to resin-based dental restorative materials. Two delivery systems based on zeolite or novel polymeric hollow beads (Poly-Pore), loaded with two low surface tension active agents (hydroxy functional polydimethylsiloxane and polydimethylsiloxane) or a polymerizable active agent (silicone polyether acrylate) were used to modify commonly formulated experimental dental resin composites. The non-modified resin was used as a standard (ST). Flexural strength, flexural modulus, water sorption, solubility, polymerization shrinkage, surface roughness Ra, contact angle θ, total surface free energy γS, and the apolar γSLW, polar γSAB, Lewis acid γS+ and base γS- components, and the active agents surface tensions γL were determined (P<0.05). The active agents did not differ in γL. The modified materials had significantly higher θ but significantly lower γS, γSAB and γS- than the ST. A Poly-Pore/polydimethyl siloxane delivery system yielded the highest θ (110.9±3.5°) acceptable physical properties and the lowest values for γSLW and γS-. Among the modified materials the polymerizable materials containing active agents had the lowest γAB and the highest γS+ and γS-. Although not significant, both of the zeolite delivery systems yielded higher γSLW, γS+ and γS- but lower γSAB than the Poly-Pore delivery systems. Poly-Pore based delivery systems highly loaded with low surface tension active agents were found not to influence the physical properties but to significantly increase the water contact angle and thus reduce surface free energy of dental resin composites.
Collapse
|
42
|
Nikaido T, Inoue G, Takagaki T, Waidyasekera K, Iida Y, Shinohara MS, Sadr A, Tagami J. New strategy to create “Super Dentin” using adhesive technology: Reinforcement of adhesive–dentin interface and protection of tooth structures. JAPANESE DENTAL SCIENCE REVIEW 2011. [DOI: 10.1016/j.jdsr.2010.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
43
|
D’Ercole S, Di Giulio M, Grande R, Di Campli E, Di Bartolomeo S, Piccolomini R, Cellini L. Effect of 2-hydroxyethyl methacrylate on Streptococcus spp. biofilms. Lett Appl Microbiol 2011; 52:193-200. [DOI: 10.1111/j.1472-765x.2010.02985.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Hayati F, Okada A, Kitasako Y, Tagami J, Matin K. An artificial biofilm induced secondary caries model for in vitro studies. Aust Dent J 2011; 56:40-7. [DOI: 10.1111/j.1834-7819.2010.01284.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Tanaka Y, Matin K, Gyo M, Okada A, Tsutsumi Y, Doi H, Nomura N, Tagami J, Hanawa T. Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium. J Biomed Mater Res A 2010; 95:1105-13. [PMID: 20878986 DOI: 10.1002/jbm.a.32932] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/19/2010] [Accepted: 05/21/2010] [Indexed: 11/07/2022]
Abstract
Protein-resistant coatings have been studied for inhibiting biofilm formation on implant devices. In this study, titanium (Ti) surfaces were biofunctionalized with poly(ethylene glycol) (PEG) by electrodeposition and were evaluated as biofilm substrates under an oral simulated environment. Streptococcus gordonii, an early colonizer of oral biofilms, was inoculated on Ti and PEG-electrodeposited Ti (PEG-Ti) surfaces and was analyzed quantitatively and topographically. Streptococcus mutans supplemented with sucrose, a late colonizer mainly found in dental plaque, was also used to form biofilms on the surfaces of Ti and PEG-Ti for 20 h followed by sonication as a means of detaching the biofilms. The results indicated that the attachment of S. gordonii on PEG-Ti surfaces was inhibited compared with Ti, and the S. mutans biofilm was easier to be detached from the surface of PEG-Ti than that of Ti. Moreover, the presence of PEG electrodeposited on Ti surface inhibited salivary protein adsorption. The degree of detachment of biofilms from PEG-Ti was associated with the inhibition of the salivary protein adsorption, suggesting weak basal attachment of the biofilms to the electrodeposited surfaces. Therefore, controlling protein adsorption at the initial stage of biofilm formation may be an effective strategy to protect metal surfaces from bacterial contamination not only in dental manipulations but also in orthopedic applications.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Metals, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zeiger DN, Stafford CM, Cheng Y, Leigh SD, Lin-Gibson S, Lin NJ. Effects of sample preparation on bacterial colonization of polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:2659-2664. [PMID: 19839634 PMCID: PMC3032611 DOI: 10.1021/la902920n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Characterization of materials developed for medical usage frequently includes studies in which the materials are inoculated with bacteria in order to assess bacterial colonization and biofilm formation. Observed differences in bacterial growth are typically considered to be due to the material or the incubation conditions. To our knowledge, the method used to prepare the materials has generally not been considered with regard to its influence on bacterial colonization. The objective of this study was to determine the effects that various preparation methods exert on bacterial colonization of polymer disks. Polymer disks of the same dimethacrylate composition were photopolymerized: (1) between untreated glass slides, (2) between polyester release film, (3) between glass slides treated with an alkyl silane, (4) between glass slides treated with a perfluorinated silane, or (5) with one free surface in an argon-purged chamber. Surface chemistry was quantified using X-ray photoelectron spectroscopy, hydrophobicity was assessed by water contact angle, and topography was characterized using atomic force microscopy. The disks were inoculated with Streptococcus mutans for 4 h, fixed, and visualized using confocal laser scanning microscopy. Differences among all groups were found with regard to surface chemistry, hydrophobicity, topography, and bacteria morphology, density, and coverage, indicating that the method of sample preparation strongly affects both the surface properties and the initial bacterial colonization. Polymerization on untreated slides was selected as the preferred method of preparation due to minimal material transfer to the polymer and consistent, reproducible bacterial colonization.
Collapse
Affiliation(s)
- Diana N. Zeiger
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Yajun Cheng
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Stefan D. Leigh
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Sheng Lin-Gibson
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Nancy J. Lin
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
47
|
KONDO Y, TAKAGAKI T, OKUDA M, IKEDA M, KADOMA Y, YAMAUCHI J, OKADA K, SADR A, NIKAIDO T, TAGAMI J. Effect of PMMA filler particles addition on the physical properties of resin composite. Dent Mater J 2010; 29:596-601. [DOI: 10.4012/dmj.2009-141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
TAJIMA K, NIKAIDO T, INOUE G, IKEDA M, TAGAMI J. Effects of coating root dentin surfaces with adhesive materials. Dent Mater J 2009; 28:578-86. [DOI: 10.4012/dmj.28.578] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
OKADA A, NIKAIDO T, IKEDA M, OKADA K, YAMAUCHI J, FOXTON RM, SAWADA H, TAGAMI J, MATIN K. Inhibition of Biofilm Formation using Newly Developed Coating Materials with Self-cleaning Properties. Dent Mater J 2008; 27:565-72. [DOI: 10.4012/dmj.27.565] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|