1
|
Mahmood M, Kato N, Nakai S, Gotoh T, Nishijima W, Umehara A. Controlling organic carbon increase in oxygenated marine sediment by using decarburization slag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120820. [PMID: 38603849 DOI: 10.1016/j.jenvman.2024.120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The chemical oxygen demand (COD) in the Seto Inland Sea, Japan has increased in the recent decades due to the increase of bottom dissolved oxygen (DO) concentration which stimulated several autotrophic microorganisms, specially sulfur oxidizing bacteria (SOB). This increased SOB activity due to the oxygenation of the bottom sediment synthesized new organic matter (OM) which contributed dissolved organic carbon to the overlying seawater. This phenomenon further led to hypoxia in some subareas in the Seto Inland Sea. Higher pH or alkaline environment has been found to be an unfavorable condition for SOB. In this research, we used decarburization slag to elevate the pH of sediment to control the SOB activity and consequently reduce OM production in the sediment. Ignition loss of the surface sediment increased from 5.14% 6.38% after 21 days of incubation with aeration; whereas the sediment showed the less ignition loss of 5.71% after 21 days when the slag was incubated in the same experimental setup. Microbial community analysis showed less SOB activity in the slag added aerated sediment which accounts for the controlled increase of OM in the sediment. An additional experiment was conducted with magnesium oxide to confirm whether elevated pH can control the OM increase in sediment due to rising DO. All these results showed that decarburization slag can elevate the pH of the sediment to a certain level which can control the SOB activity followed by controlled increase of OM in the sediment. The findings may be beneficial to control accumulation of sedimentary OM which can act as a source of organic carbon in the overlying seawater.
Collapse
Affiliation(s)
- Mukseet Mahmood
- Department of Oceanography and Coastal Sciences, Louisiana State University, Louisiana, USA
| | - Natsuki Kato
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Satoshi Nakai
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan.
| | - Takehiko Gotoh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Wataru Nishijima
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| | - Akira Umehara
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Cram JA, Hollins A, McCarty AJ, Martinez G, Cui M, Gomes ML, Fuchsman CA. Microbial diversity and abundance vary along salinity, oxygen, and particle size gradients in the Chesapeake Bay. Environ Microbiol 2024; 26:e16557. [PMID: 38173306 DOI: 10.1111/1462-2920.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Marine snow and other particles are abundant in estuaries, where they drive biogeochemical transformations and elemental transport. Particles range in size, thereby providing a corresponding gradient of habitats for marine microorganisms. We used standard normalized amplicon sequencing, verified with microscopy, to characterize taxon-specific microbial abundances, (cells per litre of water and per milligrams of particles), across six particle size classes, ranging from 0.2 to 500 μm, along the main stem of the Chesapeake Bay estuary. Microbial communities varied in salinity, oxygen concentrations, and particle size. Many taxonomic groups were most densely packed on large particles (in cells/mg particles), yet were primarily associated with the smallest particle size class, because small particles made up a substantially larger portion of total particle mass. However, organisms potentially involved in methanotrophy, nitrite oxidation, and sulphate reduction were found primarily on intermediately sized (5-180 μm) particles, where species richness was also highest. All abundant ostensibly free-living organisms, including SAR11 and Synecococcus, appeared on particles, albeit at lower abundance than in the free-living fraction, suggesting that aggregation processes may incorporate them into particles. Our approach opens the door to a more quantitative understanding of the microscale and macroscale biogeography of marine microorganisms.
Collapse
Affiliation(s)
- Jacob A Cram
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Ashley Hollins
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Alexandra J McCarty
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
- Marine Advisory Program, Virginia Institute of Marine Science, Gloucester, Virginia, USA
| | | | - Minming Cui
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maya L Gomes
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| |
Collapse
|
3
|
Wilbert SA, Newman DK. The contrasting roles of nitric oxide drive microbial community organization as a function of oxygen presence. Curr Biol 2022; 32:5221-5234.e4. [PMID: 36306787 PMCID: PMC9772256 DOI: 10.1016/j.cub.2022.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022]
Abstract
Microbial assemblages are omnipresent in the biosphere, forming communities on the surfaces of roots and rocks and within living tissues. These communities can exhibit strikingly beautiful compositional structures, with certain members reproducibly occupying particular spatiotemporal microniches. Despite this reproducibility, we lack the ability to explain these spatial patterns. We hypothesize that certain spatial patterns in microbial communities may be explained by the exchange of redox-active metabolites whose biological function is sensitive to microenvironmental gradients. To test this, we developed a simple community consisting of synthetic Pseudomonas aeruginosa strains with a partitioned denitrification pathway: a strict consumer and strict producer of nitric oxide (NO), a key pathway intermediate. Because NO can be both toxic or beneficial depending on the amount of oxygen present, this system provided an opportunity to investigate whether dynamic oxygen gradients can tune metabolic cross-feeding and fitness outcomes in a predictable fashion. Using a combination of genetic analysis, controlled growth environments, and imaging, we show that oxygen availability dictates whether NO cross-feeding is deleterious or mutually beneficial and that this organizing principle maps to the microscale. More generally, this work underscores the importance of considering the double-edged and microenvironmentally tuned roles redox-active metabolites can play in shaping microbial communities.
Collapse
Affiliation(s)
- Steven A Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Gowda K, Kuehn S. Microbial biofilms: An ecological tale of Jekyll and Hyde. Curr Biol 2022; 32:R1349-R1351. [PMID: 36538887 DOI: 10.1016/j.cub.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecules of life can be double-edged, performing both beneficial and detrimental roles depending on the environmental context. New work reveals how the Jekyll and Hyde nature of nitric oxide shapes complexity in microbial biofilms, from ecological interactions to spatial structure.
Collapse
Affiliation(s)
- Karna Gowda
- Department of Ecology and Evolution and Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution and Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Arora-Williams K, Holder C, Secor M, Ellis H, Xia M, Gnanadesikan A, Preheim SP. Abundant and persistent sulfur-oxidizing microbial populations are responsive to hypoxia in the Chesapeake Bay. Environ Microbiol 2022; 24:2315-2332. [PMID: 35304940 PMCID: PMC9310604 DOI: 10.1111/1462-2920.15976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 01/04/2023]
Abstract
The number, size and severity of aquatic low‐oxygen dead zones are increasing worldwide. Microbial processes in low‐oxygen environments have important ecosystem‐level consequences, such as denitrification, greenhouse gas production and acidification. To identify key microbial processes occurring in low‐oxygen bottom waters of the Chesapeake Bay, we sequenced both 16S rRNA genes and shotgun metagenomic libraries to determine the identity, functional potential and spatiotemporal distribution of microbial populations in the water column. Unsupervised clustering algorithms grouped samples into three clusters using water chemistry or microbial communities, with extensive overlap of cluster composition between methods. Clusters were strongly differentiated by temperature, salinity and oxygen. Sulfur‐oxidizing microorganisms were found to be enriched in the low‐oxygen bottom water and predictive of hypoxic conditions. Metagenome‐assembled genomes demonstrate that some of these sulfur‐oxidizing populations are capable of partial denitrification and transcriptionally active in a prior study. These results suggest that microorganisms capable of oxidizing reduced sulfur compounds are a previously unidentified microbial indicator of low oxygen in the Chesapeake Bay and reveal ties between the sulfur, nitrogen and oxygen cycles that could be important to capture when predicting the ecosystem response to remediation efforts or climate change.
Collapse
Affiliation(s)
- Keith Arora-Williams
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Christopher Holder
- Department of Earth and Planetary Sciences, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Maeve Secor
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Hugh Ellis
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Meng Xia
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Anand Gnanadesikan
- Department of Earth and Planetary Sciences, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah P Preheim
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
6
|
van Vliet DM, von Meijenfeldt FB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJ, Sánchez‐Andrea I. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol 2021; 23:2834-2857. [PMID: 33000514 PMCID: PMC8359478 DOI: 10.1111/1462-2920.15265] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
Dysoxic marine waters (DMW, < 1 μM oxygen) are currently expanding in volume in the oceans, which has biogeochemical, ecological and societal consequences on a global scale. In these environments, distinct bacteria drive an active sulfur cycle, which has only recently been recognized for open-ocean DMW. This review summarizes the current knowledge on these sulfur-cycling bacteria. Critical bottlenecks and questions for future research are specifically addressed. Sulfate-reducing bacteria (SRB) are core members of DMW. However, their roles are not entirely clear, and they remain largely uncultured. We found support for their remarkable diversity and taxonomic novelty by mining metagenome-assembled genomes from the Black Sea as model ecosystem. We highlight recent insights into the metabolism of key sulfur-oxidizing SUP05 and Sulfurimonas bacteria, and discuss the probable involvement of uncultivated SAR324 and BS-GSO2 bacteria in sulfur oxidation. Uncultivated Marinimicrobia bacteria with a presumed organoheterotrophic metabolism are abundant in DMW. Like SRB, they may use specific molybdoenzymes to conserve energy from the oxidation, reduction or disproportionation of sulfur cycle intermediates such as S0 and thiosulfate, produced from the oxidation of sulfide. We expect that tailored sampling methods and a renewed focus on cultivation will yield deeper insight into sulfur-cycling bacteria in DMW.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| | | | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science for LifeUtrecht University, Padualaan 8, 3584 CHUtrechtNetherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht University, Princetonlaan 8A, 3584 CBUtrechtNetherlands
| | - Alfons J.M. Stams
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de Gualtar, 4710‐057BragaPortugal
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| |
Collapse
|
7
|
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, Storelli N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021; 97:6123714. [PMID: 33512460 PMCID: PMC7947596 DOI: 10.1093/femsec/fiab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Clarisse Beney
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| |
Collapse
|
8
|
He P, Xie L, Zhang X, Li J, Lin X, Pu X, Yuan C, Tian Z, Li J. Microbial Diversity and Metabolic Potential in the Stratified Sansha Yongle Blue Hole in the South China Sea. Sci Rep 2020; 10:5949. [PMID: 32249806 PMCID: PMC7136235 DOI: 10.1038/s41598-020-62411-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/11/2020] [Indexed: 01/08/2023] Open
Abstract
The Sansha Yongle Blue Hole is the world’s deepest (301 m) underwater cave and has a sharp redox gradient, with oligotrophic, anoxic, and sulfidic bottom seawater. In order to discover the microbial communities and their special biogeochemical pathways in the blue hole, we analyzed the 16S ribosomal RNA amplicons and metagenomes of microbials from seawater depths with prominent physical, chemical, and biological features. Redundancy analysis showed that dissolved oxygen was the most important factor affecting the microbial assemblages of the blue hole and surrounding open sea waters, and significantly explained 44.7% of the total variation, followed by silicate, temperature, sulfide, ammonium, methane, nitrous oxide, nitrate, dissolved organic carbon, salinity, particulate organic carbon, and chlorophyll a. We identified a bloom of Alteromonas (34.9%) at the primary nitrite maximum occurring in close proximity to the chlorophyll a peak in the blue hole. Genomic potential for nitrate reduction of Alteromonas might contribute to this maximum under oxygen decrease. Genes that would allow for aerobic ammonium oxidation, complete denitrification, and sulfur-oxidization were enriched at nitrate/nitrite-sulfide transition zone (90 and 100 m) of the blue hole, but not anammox pathways. Moreover, γ-Proteobacterial clade SUP05, ε-Proteobacterial genera Sulfurimonas and Arcobacter, and Chlorobi harbored genes for sulfur-driven denitrification process that mediated nitrogen loss and sulfide removal. In the anoxic bottom seawater (100-300 m), high levels of sulfate reducers and dissimilatory sulfite reductase gene (dsrA) potentially created a sulfidic zone of ~200 m thickness. Our findings suggest that in the oligotrophic Sansha Yongle Blue Hole, O2 deficiency promotes nitrogen- and sulfur-cycling processes mediated by metabolically versatile microbials.
Collapse
Affiliation(s)
- Peiqing He
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China.
| | - Linping Xie
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xuelei Zhang
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiang Li
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China
| | - Xuezheng Lin
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China
| | - Xinming Pu
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chao Yuan
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ziwen Tian
- Research Center for Islands and Coastal Zone, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Jie Li
- Marine Engineering Environment and Geomatic Center, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| |
Collapse
|
9
|
Bhatnagar S, Cowley ES, Kopf SH, Pérez Castro S, Kearney S, Dawson SC, Hanselmann K, Ruff SE. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. ENVIRONMENTAL MICROBIOME 2020; 15:3. [PMID: 33902727 PMCID: PMC8066431 DOI: 10.1186/s40793-019-0348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
Collapse
Affiliation(s)
- Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Elise S. Cowley
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO USA
| | - Sherlynette Pérez Castro
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - Sean Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Scott C. Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA USA
| | | | - S. Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
10
|
Hudson JM, MacDonald DJ, Estes ER, Luther GW. A durable and inexpensive pump profiler to monitor stratified water columns with high vertical resolution. Talanta 2019; 199:415-424. [PMID: 30952278 DOI: 10.1016/j.talanta.2019.02.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
A pump profiling system for real time sample collection has been constructed for a cost of <$1000 (USD) and mated with a ship's rosette that has conductivity, temperature, depth (CTD) and other sensors. The system permits the collection of ~15 L of water in one minute without exposure to O2 from air for discrete sampling of chemical, microbial and other constituents as well as for real time analyses using sensors. We also coupled a shipboard voltammetry system with solid-state microelectrodes to detect dissolved O2 and H2S. Electrode O2 detection limits (DL) are ~3 µM and compare well with in situ Clark electrode O2 data (DL ~2 µM) from the ship's CTD rosette system. H2S measurements also were reliable, based on previously compared methods. Best resolution of the profiling system can be as small as its orifice of 2.54 cm (0.0254 m) in a quiet sea state, which is an improvement over the maximum resolution achievable using 10 L Niskin bottles that are 1 m in length.
Collapse
Affiliation(s)
- Jeffrey M Hudson
- Department of Civil & Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Daniel J MacDonald
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Emily R Estes
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - George W Luther
- Department of Civil & Environmental Engineering, University of Delaware, Newark, DE 19716, USA; School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA.
| |
Collapse
|
11
|
Berg JS, Pjevac P, Sommer T, Buckner CRT, Philippi M, Hach PF, Liebeke M, Holtappels M, Danza F, Tonolla M, Sengupta A, Schubert CJ, Milucka J, Kuypers MMM. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environ Microbiol 2019; 21:1611-1626. [PMID: 30689286 DOI: 10.1111/1462-2920.14543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022]
Abstract
Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light-independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high-resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 μM O2 ·h-1 . Single-cell analyses of lake water incubated with 13 CO2 in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40% of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single-cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments but also that organisms typically considered strict anaerobes may be involved.
Collapse
Affiliation(s)
- Jasmine S Berg
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zurich, 8092, Zurich, Switzerland
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Tobias Sommer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Caroline R T Buckner
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Miriam Philippi
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Philipp F Hach
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Manuel Liebeke
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Moritz Holtappels
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Anupam Sengupta
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A, Avenue de la Faencerie, L-1511, Luxembourg City, Luxembourg
| | - Carsten J Schubert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| |
Collapse
|
12
|
Physiological Studies of Chlorobiaceae Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria. mBio 2018; 9:mBio.01603-18. [PMID: 30482829 PMCID: PMC6282198 DOI: 10.1128/mbio.01603-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology. Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae. Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes. A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.
Collapse
|
13
|
Roush D, Couradeau E, Guida B, Neuer S, Garcia-Pichel F. A New Niche for Anoxygenic Phototrophs as Endoliths. Appl Environ Microbiol 2018; 84:e02055-17. [PMID: 29222097 PMCID: PMC5795078 DOI: 10.1128/aem.02055-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/29/2017] [Indexed: 02/01/2023] Open
Abstract
Anoxygenic phototrophic bacteria (APBs) occur in a wide range of aquatic habitats, from hot springs to freshwater lakes and intertidal microbial mats. Here, we report the discovery of a novel niche for APBs: endoliths within marine littoral carbonates. In a study of 40 locations around Isla de Mona, Puerto Rico, and Menorca, Spain, 16S rRNA high-throughput sequencing of endolithic community DNA revealed the presence of abundant phylotypes potentially belonging to well-known APB clades. An ad hoc phylogenetic classification of these sequences enabled us to refine the assignments more stringently. Even then, all locations contained such putative APBs, often reaching a significant proportion of all phototrophic sequences. In fact, in some 20% of samples, their contribution exceeded that of oxygenic phototrophs, previously regarded as the major type of endolithic microbe in carbonates. The communities contained representatives of APBs in the Chloroflexales, various proteobacterial groups, and Chlorobi The most abundant phylotypes varied with geography: on Isla de Mona, Roseiflexus and Chlorothrix-related phylotypes dominated, whereas those related to Erythrobacter were the most common in Menorca. The presence of active populations of APBs was corroborated through an analysis of photopigments: bacteriochlorophylls were detected in all samples, bacteriochlorophyll c and a being most abundant. We discuss the potential metabolism and geomicrobial roles of endolithic APBs. Phylogenetic inference suggests that APBs may be playing a role as photoheterotrophs, adding biogeochemical complexity to our understanding of such communities. Given the global extent of coastal carbonate platforms, they likely represent a very large and unexplored habitat for APBs.IMPORTANCE Endolithic microbial communities from carbonates, which have been explored for over 2 centuries in predominantly naturalistic studies, were thought to be primarily composed of eukaryotic algae and cyanobacteria. Our report represents a paradigm shift in this regard, at least for the marine environment, demonstrating the presence of ubiquitous and abundant populations of APBs in this habitat. It raises questions about the role of these organisms in the geological dynamics of coastal carbonates, including coral reefs.
Collapse
Affiliation(s)
- Daniel Roush
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Estelle Couradeau
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Laboratoire Biogéosciences, UMR6282, Université de Bourgogne, Dijon, France
| | - Brandon Guida
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Susanne Neuer
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
14
|
de Beer D, Weber M, Chennu A, Hamilton T, Lott C, Macalady J, M. Klatt J. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring. Environ Microbiol 2017; 19:1251-1265. [DOI: 10.1111/1462-2920.13654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Dirk de Beer
- Microsensor Group; Max-Planck-Institute for Marine Microbiology; Celsiusstrasse 1 Bremen 28359 Germany
| | - Miriam Weber
- HYDRA Institute for Marine Sciences; Via del Forno 80, 57034 Campo nell'Elba (LI) Italy
| | - Arjun Chennu
- Microsensor Group; Max-Planck-Institute for Marine Microbiology; Celsiusstrasse 1 Bremen 28359 Germany
| | - Trinity Hamilton
- Department of Biological Sciences; University of Cincinnati; Cincinnati OH 45221 USA
| | - Christian Lott
- HYDRA Institute for Marine Sciences; Via del Forno 80, 57034 Campo nell'Elba (LI) Italy
| | - Jennifer Macalady
- Department of Geosciences; Pennsylvania State University; University Park PA 16802 USA
| | - Judith M. Klatt
- Microsensor Group; Max-Planck-Institute for Marine Microbiology; Celsiusstrasse 1 Bremen 28359 Germany
- Geomicrobiology Laboratory, Dept. of Earth & Environmental Sciences; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
15
|
Grim SL, Dick GJ. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium. Front Microbiol 2016; 7:1546. [PMID: 27790189 PMCID: PMC5061849 DOI: 10.3389/fmicb.2016.01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the regulation, evolutionary context, and biogeochemical implications of these co-occurring metabolisms in Earth history.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
16
|
Findlay AJ. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol Lett 2016; 363:fnw103. [DOI: 10.1093/femsle/fnw103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/12/2022] Open
|