1
|
Wang J, Haddis DZ, Xiao Q, Bressler DC, Chen G. Engineering Rhodosporidium toruloides for sustainable production of value-added punicic acid from glucose and wood residues. BIORESOURCE TECHNOLOGY 2024; 412:131422. [PMID: 39233183 DOI: 10.1016/j.biortech.2024.131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Rhodosporidium toruloides has emerged as a prominent candidate for producing single-cell oil from cost-effective feedstocks. In this study, the capability of R. toruloides to produce punicic acid (PuA), a representative plant unusual fatty acid, was investigated. The introduction of acyl lipid desaturase and conjugase (PgFADX) allowed R. toruloides to accumulate 3.7 % of total fatty acids as PuA. Delta-12 acyl lipid desaturase (PgFAD2) and diacylglycerol acyltransferase 2 were shown to benefit PuA production. The strain with PgFADX and PgFAD2 coexpression accumulated 12 % of its lipids as PuA from glucose, which translated into a PuA titer of 451.6 mg/L in shake flask condition. Utilizing wood hydrolysate as the feedstock, this strain produced 6.4 % PuA with a titer of 310 mg/L. Taken together, the results demonstrated that R. toruloides could serve as an ideal platform for the production of plant-derived high-value conjugated fatty acid using agricultural and forestry waste as feedstock.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Dagem Z Haddis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Qiong Xiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
2
|
Wang J, Chen G. Engineering Saccharomyces cerevisiae for the Production of Punicic Acid-Rich Yeast Biomass. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23917-23927. [PMID: 39431914 DOI: 10.1021/acs.jafc.4c08252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Punicic acid (PuA), an unusual conjugated linolenic acid found in pomegranate, offers diverse health benefits and has potential applications in the food industry. Due to the limited availability of PuA from natural plant sources, there is growing interest in producing it through microbial fermentation. In this study, the yeast Saccharomyces cerevisiae, which is classified as "generally recognized as safe", was engineered to produce PuA using a results-driven approach. Genes potentially involved in PuA synthesis were integrated directly into the yeast genome, targeting Ty retrotransposon sites. Screening of the yeast transformants, followed by optimization of culture conditions, resulted in the production of 26.7% PuA within the yeast's total fatty acids. Further analysis revealed that the strain's triacylglycerol fraction contained over 22% PuA. By incorporating this health-promoting lipid into the nutritional profile of S. cerevisiae, the engineered strain could serve as a sustainable source of yeast biomass with enhanced nutritional value.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
3
|
Poopanitpan N, Piampratom S, Viriyathanit P, Lertvatasilp T, Horiuchi H, Fukuda R, Kiatwuthinon P. SNF1 plays a crucial role in the utilization of n-alkane and transcriptional regulation of the genes involved in it in the yeast Yarrowia lipolytica. Heliyon 2024; 10:e32886. [PMID: 38975102 PMCID: PMC11226914 DOI: 10.1016/j.heliyon.2024.e32886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Yarrowia lipolytica is an ascomycetous yeast that can assimilate hydrophobic carbon sources including oil and n-alkane. The sucrose non-fermenting 1/AMP-activated protein kinase (Snf1/AMPK) complex is involved in the assimilation of non-fermentable carbon sources in various yeasts. However, the role of the Snf1/AMPK complex in n-alkane assimilation in Y. lipolytica has not yet been elucidated. This study aimed to clarify the role of Y. lipolytica SNF1 (YlSNF1) in the utilization of n-alkane. The deletion mutant of YlSNF1 (ΔYlsnf1) exhibited substantial growth defects on n-alkanes of various lengths (C10, C12, C14, and C16), and its growth was restored through the introduction of YlSNF1. Microscopic observations revealed that YlSnf1 tagged with enhanced green fluorescence protein showed dot-like distribution patterns in some cells cultured in the medium containing n-decane, which were not observed in cells cultured in the medium containing glucose or glycerol. The RNA sequencing analysis of ΔYlsnf1 cultured in the medium containing n-decane exhibited 302 downregulated and 131 upregulated genes compared with the wild-type strain cultured in the same medium. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that a significant fraction of the downregulated genes functioned in peroxisomes or were involved in the metabolism of n-alkane and fatty acids. Quantitative real-time PCR analysis confirmed the downregulation of 12 genes involved in the metabolism of n-alkane and fatty acid, ALK1-ALK3, ALK5, ADH7, PAT1, POT1, POX2, PEX3, PEX11, YAS1, and HFD3. Furthermore, ΔYlsnf1 exhibited growth defects on the medium containing the metabolites of n-alkane (fatty alcohol and fatty aldehyde). These findings suggest that YlSNF1 plays a crucial role in the utilization of n-alkane in Y. lipolytica. This study provides important insights into the advanced biotechnological applications of this yeast, including the bioconversion of n-alkane to useful chemicals and the bioremediation of petroleum-contaminated environments.
Collapse
Affiliation(s)
- Napapol Poopanitpan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Sorawit Piampratom
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Patthanant Viriyathanit
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Threesara Lertvatasilp
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Pichamon Kiatwuthinon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Sato R, Fujii Y, Ara S, Yamazaki H, Aburatani S, Ogasawara W, Takaku H. Deletion of LsSNF1 enhances lipid accumulation in the oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 2024; 137:260-267. [PMID: 38341331 DOI: 10.1016/j.jbiosc.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The oleaginous yeast, Lipomyces starkeyi can have diverse industrial applications due to its remarkable capacity to use various carbon sources for the biosynthesis intracellular triacylglycerides (TAGs). In L. starkeyi, TAG synthesis is enhanced through upregulation of genes involved in citrate-mediated acyl-CoA synthesis and Kennedy pathways through the transcriptional regulator LsSpt23p. High expression of LsSPT23 can considerably enhance TAG production. Altering the regulatory factors associated with lipid production can substantially augment lipid productivity. In this study, we identified and examined the L. starkeyi homolog sucrose nonfermenting 1 SNF1 (LsSNF1) of YlSNF1, which encodes a negative regulator of lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. The deletion of LsSNF1 enhanced TAG productivity in L. starkeyi, suggesting that LsSnf1p is a negative regulator in TAG production. The enhancement of TAG production following deletion of LsSNF1 can primarily be attributed to the upregulation of genes in the citrate-mediated acyl-CoA synthesis and Kennedy pathways, pivotal routes in TAG biosynthesis. The overexpression of LsSPT23 enhanced lipid productivity; strain overexpressing LsSPT23 and without LsSNF1 exhibited increased TAG production capacity per cell. LsSnf1p also has a significant role in the utilization of carbon sources, including xylose or glycerol, in L. starkeyi. Our study results elucidated the role of LsSnf1p in the negative regulation of TAG synthesis in L. starkeyi, which has not previously been reported.
Collapse
Affiliation(s)
- Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Yuuya Fujii
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Satoshi Ara
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| |
Collapse
|
5
|
Liu Y, Han X, Dai Y, Chen Z. bZIP transcription factor FabR: Redox-dependent mechanism controlling docosahexaenoic acid biosynthesis and H 2O 2 stress response in Schizochytrium sp. Free Radic Biol Med 2024; 210:246-257. [PMID: 38042223 DOI: 10.1016/j.freeradbiomed.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Schizochytrium sp. is an important industrial strain for commercial production of docosahexaenoic acid (DHA), which plays essential physiological roles in infant development and human health. The regulatory network for DHA biosynthesis and lipid accumulation in Schizochytrium remains poorly understood. FabR (fatty acid biosynthesis repressor), a basic leucine zipper (bZIP) transcription factor, was transcriptionally downregulated under low-nitrogen condition. Deletion of fabR gene (mutant ΔfabR) increased production of total lipids and DHA by 30.1% and 46.5%, respectively. ΔfabR displayed H2O2 stress resistance higher than that of parental strain or complementation strain CfabR. FabR bound specifically to 7-bp pseudo-palindromic sequence 5'-ATTSAAT-3' in upstream regions and repressed transcription of fatty acid biosynthesis genes (acl, fas, pfa) and antioxidant defense genes (cat, sod1, sod2, gpx). DNA binding activity of FabR was regulated in a redox-dependent manner. Under oxidative condition, FabR forms intermolecular disulfide bonds between two Cys46 residues of dimers; its DNA binding activity is thereby lost, and the transcription of its target genes is enhanced through derepression. Our findings clarify the redox-dependent mechanism that modulates FabR activity governing lipid and DHA biosynthesis and H2O2 stress response in Schizochytrium.
Collapse
Affiliation(s)
- Yana Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujie Dai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang Y, Yang Y, Liu Q, Li S, Song Y. Lipid Accumulation by Snf-β Engineered Mucor circinelloides Strains on Glucose and Xylose. Appl Biochem Biotechnol 2023; 195:7697-7707. [PMID: 37086376 DOI: 10.1007/s12010-023-04531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays the regulatory roles in the utilization of selective carbon sources and lipid metabolism. Previously, the role of β subunit of SNF1 in lipid accumulation was evaluated by overexpression and knockout of Snf-β in oleaginous fungus M. circinelloides. In the present study, the growth and lipid accumulation of Snf-β overexpression and knockout strains were further analyzed and compared with glucose or xylose as a single or mixed carbon sources. The results showed that the lipid contents in Snf-β knockout strain improved by 23.2% (for glucose), 28.4% (for xylose), and 30.5% (for mixed glucose and xylose) compared with that of the control strain, respectively. The deletion of Snf-β subunit also altered the transcriptional level of acetyl-CoA carboxylase (ACC). The highest transcriptional levels of ACC1 in Snf-β knockout strain at 24 h were increased by 2.4-fold (for glucose), 2.8-fold (for xylose), and 3.1-fold (for mixed glucose and xylose) compared with that of the control strain, respectively. Our results indicated that Snf-β subunit enhanced lipid accumulation through the regulation of ACC1 in response to xylose or mixed sugars of glucose and xylose more significantly than that of response to glucose. This is the first study to explore the effect of Snf-β subunit of M. circinelloides in regulating lipid accumulation responding to different carbon nutrient signals of glucose and xylose. This study provides a foundation for the future application of the Snf-β engineered strains in lipid production from lignocellulose.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
7
|
Ventorim RZ, Germano VKDC, Fontes PP, da Silveira WB. Effect of carbon and nitrogen concentrations on lipid accumulation and regulation of acetyl-CoA carboxylase in Papiliotrema laurentii. Antonie Van Leeuwenhoek 2023; 116:1161-1170. [PMID: 37676572 DOI: 10.1007/s10482-023-01874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023]
Abstract
Biodiesel is an interesting alternative to petroleum diesel as it is renewable, biodegradable, and has a low pollutant content. Yeast oils can be used for biodiesel production instead of edible oils, mitigating the use of arable land and water for biodiesel production. Maximum lipid accumulation is reached at 48 h of cultivation by the oleaginous yeast Papiliotrema laurentii UFV-1. Nevertheless, the effects of carbon and nitrogen concentrations on lipid accumulation, as well as the regulation of lipid metabolism in this yeast are still not well-characterised. Therefore, this work evaluated the effects of carbon and nitrogen concentrations on the lipid accumulation in P. laurentti, the expression of the ACC gene, and the activity of the enzyme acetyl-CoA carboxylase (ACCase) in different carbon:nitrogen ratios (C:N) and glucose concentrations. The variation of ammonium sulfate concentration did not affect the growth and lipid accumulation in P. laurentii UFV-1. On the other hand, glucose concentration remarkably influenced biomass and lipid production by this yeast. Therefore, the carbon concentration is more important than the nitrogen concentration for lipid production by P. laurentii UFV-1. Importantly, the levels of both ACC gene expression and ACCase activity were maximum during the late-exponential growth phase and decreased after reaching the highest lipid contents, which was easier evidenced during the accumulation and maximum lipid levels. As such, the reduction of ACCase enzyme activity seems to be related to the decrease in the expression level of the ACC gene.
Collapse
|
8
|
Li S, Tahiri G, Yang J, Mohamed H, Liu Q, Shi W, López-García S, Garre V, Song Y. Role of AMP Deaminase in Mucor circinelloides: Implications for Nitrogen Utilization and Lipid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15680-15691. [PMID: 37822229 DOI: 10.1021/acs.jafc.3c04574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Lipid accumulation in oleaginous organisms is initiated by AMP deaminase (AMPD) after nitrogen depletion because it mediates the concentration of intracellular adenosine monophosphate (AMP). However, the role of AMPD in lipogenesis in the oleaginous fungus Mucor circinelloides is largely unknown. Therefore, we identified the genes (ampd1 and ampd2) encoding AMPD and investigated the role of AMPD in lipid synthesis in this fungus by overexpressing and deleting ampd genes. Deletion of ampd1 and ampd2 caused 21 and 28% increments in lipid contents under N-limited conditions, respectively. These increases were correlated with the activation of enzymes involved in lipogenesis and the alteration of energy balance. Unexpectedly, overexpression of ampd genes affected nitrogen consumption in both N-limited and N-excess media, which resulted in an increase in cell growth and lipid accumulation compared with the control strain when nitrogen was available. Furthermore, the increased lipid accumulation in the ampd-overexpressing mutants in N-excess media was accompanied by enhanced activities of lipid biosynthetic enzymes. These data suggested that nitrogen metabolism and energy metabolism are affected by AMPD, and overexpression of ampd genes induced lipid accumulation under nitrogen-rich conditions by mimicking the nitrogen limitation response. This highlights an intriguing function of AMPD in M. circinelloides.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Ghizlane Tahiri
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 3100, Spain
| | - Junhuan Yang
- Department of Food Science, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wenyue Shi
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Sergio López-García
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 3100, Spain
| | - Victoriano Garre
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 3100, Spain
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
9
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Wang J, Yu X, Wang K, Lin L, Liu HH, Ledesma-Amaro R, Ji XJ. Reprogramming the fatty acid metabolism of Yarrowia lipolytica to produce the customized omega-6 polyunsaturated fatty acids. BIORESOURCE TECHNOLOGY 2023; 383:129231. [PMID: 37244310 DOI: 10.1016/j.biortech.2023.129231] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Omega-6 polyunsaturated fatty acids (ω6-PUFAs), such as γ-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), are indispensable nutrients for human health. Harnessing the lipogenesis pathway of Yarrowia lipolytica creates a potential platform for producing customized ω6-PUFAs. This study explored the optimal biosynthetic pathways for customized production of ω6-PUFAs in Y. lipolytica via either the Δ6 pathway from Mortierella alpina or the Δ8 pathway from Isochrysis galbana. Subsequently, the proportion of ω6-PUFAs in total fatty acids (TFAs) was effectively increased by bolstering the provision of precursors for fatty acid biosynthesis and carriers for fatty acid desaturation, as well as preventing fatty acid degradation. Finally, the proportions of GLA, DGLA and ARA synthesized by customized strains accounted for 22.58%, 46.65% and 11.30% of TFAs, and the corresponding titers reached 386.59, 832.00 and 191.76 mg/L in shake-flask fermentation, respectively. This work provides valuable insights into the production of functional ω6-PUFAs.
Collapse
Affiliation(s)
- Jinpeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
11
|
Zhang Y, Yang Y, Zhang S, Liu Q, Dang W, Song Y. Lipid accumulation and SNF1 transcriptional analysis of Mucor circinelloides on xylose under nitrogen limitation. Antonie Van Leeuwenhoek 2023; 116:383-391. [PMID: 36656419 DOI: 10.1007/s10482-023-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Sucrose non-fermenting 1 (SNF1) plays a crucial role in utilizing non-glucose carbon sources and regulating lipid metabolism. However, the mechanism by which SNF1 regulates lipid accumulation in oleaginous filamentous fungi in response to nutrient signals remains unclear. In the present study, by analysing the growth and lipid accumulation of M. circinelloides on xylose under nitrogen limitation, combined with the transcriptional changes of each subunit of SNF1, the regulation of SNF1 between nutrient signal and lipid accumulation was explored. The results showed that with the increase of carbon/nitrogen (C/N) ratio, the xylose consumption and cell growth of M. circinelloides decreased, and the lipid accumulation increased gradually. The optimal C/N ratio was 160:1, and the maximum lipid yield was 4.1 g/L. Two subunits of SNF1, Snf-α1 and Snf-β, are related to the regulation of lipid metabolism in response to nutrient signals from different external nitrogen sources. This is the first report on the transcriptional analysis of SNF1 subunits on xylose metabolism under nitrogen limitation. This study provides a basis for further understanding of lipid synthesis mechanism on xylose in oleaginous fungi, and it also lays a foundation for the genetic engineering of high-lipid strain.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Silu Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
12
|
Zhang Y, Yang Y, Zhang H, Liu Q, Song Y. Effect of Different Carbons on Lipid Production and SNF1 Transcription in Mucor Circinelloides. Indian J Microbiol 2023; 63:146-151. [PMID: 37188240 PMCID: PMC10172402 DOI: 10.1007/s12088-023-01070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays an important role in the utilization of selective carbon sources and regulation of lipid metabolism. In order to further explore the function of SNF1 in regulating lipid accumulation by responding nutritional signals from non-glucose carbon sources, in the present study, the lipid production and SNF1 transcriptional levels of Mucor circinelloides were analyzed and compared on different carbon sources. The results indicated that M. circinelloides could effectively utilize some secondary metabolic carbon sources of monosaccharides and disaccharides for growth and lipids production, such as fructose, maltose and galactose. Snf-β subunit was associated with the regulation of lipid metabolism in response to nutritional signals from different carbon sources. This is the first report on the transcriptional analysis of SNF1 subunits on different carbons metabolism in oleaginous filamentous fungi. This research has suggested that genetic engineering of SNF1 subunits will alter the lipid production of M. circinelloides from alternative carbon sources. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01070-z.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022 People’s Republic of China
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Han Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Qiu Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| |
Collapse
|
13
|
LsSpt23p is a regulator of triacylglycerol synthesis in the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 2023; 107:1269-1284. [PMID: 36648525 DOI: 10.1007/s00253-023-12361-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
The oleaginous yeast Lipomyces starkeyi has considerable potential in industrial application, since it can accumulate a large amount of triacylglycerol (TAG), which is produced from sugars under nitrogen limitation condition. However, the regulation of lipogenesis in L. starkeyi has not been investigated in depth. In this study, we compared the genome sequences of wild-type and mutants with increased TAG productivity, and identified a regulatory protein, LsSpt23p, which contributes to the regulation of TAG synthesis in L. starkeyi. L. starkeyi mutants overexpressing LsSPT23 had increased TAG productivity compared with the wild-type strain. Quantitative real-time PCR analysis showed that LsSpt23p upregulated the expression of GPD1, which encodes glycerol 3-phosphate dehydrogenase; the Kennedy pathway genes SCT1, SLC1, PAH1, DGA1, and DGA2; the citrate-mediated acyl-CoA synthesis pathway-related genes ACL1, ACL2, ACC1, FAS1, and FAS2; and OLE1, which encodes ∆9 fatty acid desaturase. Chromatin immunoprecipitation-quantitative PCR assays indicated that LsSpt23p acts as a direct regulator of SLC1 and PAH1, all the citrate-mediated acyl-CoA synthesis pathway-related genes, and OLE1. These results indicate that LsSpt23p regulates TAG synthesis. Phosphatidic acid is a common substrate of phosphatidic acid phosphohydrolase, which is used for TAG synthesis, and phosphatidate cytidylyltransferase 1 for phospholipid synthesis in the Kennedy pathway. LsSpt23p directly regulated PAH1 but did not affect the expression of CDS1, suggesting that the preferred route of carbon is the Pah1p-mediated TAG synthesis pathway under nitrogen limitation condition. The present study contributes to understanding the regulation of TAG synthesis, and will be valuable in future improvement of TAG productivity in oleaginous yeasts. KEY POINTS: LsSpt23p was identified as a positive regulator of TAG biosynthesis LsSPT23 overexpression enhanced TAG biosynthesis gene expression and TAG production LsSPT23M1108T overexpression mutant showed fivefold higher TAG production than control.
Collapse
|
14
|
Zhu J, Gu Y, Yan Y, Ma J, Sun X, Xu P. Knocking out central metabolism genes to identify new targets and alternating substrates to improve lipid synthesis in Y. lipolytica. Front Bioeng Biotechnol 2023; 11:1098116. [PMID: 36714010 PMCID: PMC9880266 DOI: 10.3389/fbioe.2023.1098116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Systematic gene knockout studies may offer us novel insights on cell metabolism and physiology. Specifically, the lipid accumulation mechanism at the molecular or cellular level is yet to be determined in the oleaginous yeast Y. lipolytica. Methods: Herein, we established ten engineered strains with the knockout of important genes involving in central carbon metabolism, NADPH generation, and fatty acid biosynthetic pathways. Results: Our result showed that NADPH sources for lipogenesis include the OxPP pathway, POM cycle, and a trans-mitochondrial isocitrate-α-oxoglutarate NADPH shuttle in Y. lipolytica. Moreover, we found that knockout of mitochondrial NAD+ isocitrate dehydrogenase IDH2 and overexpression of cytosolic NADP+ isocitrate dehydrogenase IDP2 could facilitate lipid synthesis. Besides, we also demonstrated that acetate is a more favorable carbon source for lipid synthesis when glycolysis step is impaired, indicating the evolutionary robustness of Y. lipolytica. Discussion: This systematic investigation of gene deletions and overexpression across various lipogenic pathways would help us better understand lipogenesis and engineer yeast factories to upgrade the lipid biomanufacturing platform.
Collapse
Affiliation(s)
- Jiang Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,*Correspondence: Yang Gu, ; Peng Xu,
| | - Yijing Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jingbo Ma
- Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China,The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,*Correspondence: Yang Gu, ; Peng Xu,
| |
Collapse
|
15
|
Cao L, Yin M, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce nutritional fatty acids: Current status and future perspectives. Synth Syst Biotechnol 2022; 7:1024-1033. [PMID: 35801090 PMCID: PMC9249680 DOI: 10.1016/j.synbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Due to their vital physiological functions, nutritional fatty acids have great potential as nutraceutical food supplements for preventing an array of diseases such as inflammation, depression, arthritis, osteoporosis, diabetes and cancer. Microbial biosynthesis of fatty acids follows the trend of sustainable development, as it enables green, environmentally friendly and efficient production. As a natural oleaginous yeast, Yarrowia lipolytica is especially well-suited for the production of fatty acids. Moreover, it has a variety of genetic engineering tools and novel metabolic engineering strategies that make it a robust workhorse for the production of an array of value-added products. In this review, we summarize recent advances in metabolic engineering strategies for accumulating nutritional fatty acids in Y. lipolytica, including conjugated fatty acids and polyunsaturated fatty acids. In addition, the future prospects of nutritional fatty acid production using the Y. lipolytica platform are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
|
16
|
Ran Y, Xu H, Yang Q, Xu Y, Yang H, Qiao D, Cao Y. GATA-type transcriptional factor SpGAT1 interacts with SpMIG1 and promotes lipid accumulation in the oleaginous yeast [Formula: see text] zwy-2-3. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:103. [PMID: 36209175 PMCID: PMC9548168 DOI: 10.1186/s13068-022-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In oleaginous yeast, nitrogen limitation is a critical parameter for lipid synthesis. GATA-family transcriptional factor GAT1, a member of the target of rapamycin (TOR) pathway and nitrogen catabolite repression (NCR), regulates nitrogen uptake and utilization. Therefore, it is significant to study the SpGAT1 regulatory mechanism of lipid metabolism for conversion of biomass to microbial oil in [Formula: see text] zwy-2-3. RESULTS Compared with WT, [Formula: see text], and OE::gat1, the lipid yield of OE::gat1 increased markedly in the low carbon and nitrogen ratio (C/N ratio) mediums, while the lipid yield and residual sugar of [Formula: see text] decreased in the high C/N ratio medium. According to yeast two-hybrid assays, SpGAT1 interacted with SpMIG1, and its deletion drastically lowered SpMIG1 expression on the high C/N ratio medium. MIG1 deletion has been found in earlier research to affect glucose metabolic capacity, resulting in a prolonged lag period. Therefore, we speculated that SpGAT1 influenced glucose consumption rate across SpMIG1. Based on yeast one-hybrid assays and qRT-PCR analyses, SpGAT1 regulated the glyoxylate cycle genes ICL1, ICL2, and pyruvate bypass pathway gene ACS, irrespective of the C/N ratio. SpGAT1 also could bind to the ACAT2 promoter in the low C/N medium and induce sterol ester (SE) accumulation. CONCLUSION Our findings indicated that SpGAT1 positively regulated lipid metabolism in S.podzolica zwy-2-3, but that its regulatory patterns varied depending on the C/N ratio. When the C/N ratio was high, SpGAT1 interacted with SpMIG1 to affect carbon absorption and utilization. SpGAT1 also stimulated lipid accumulation by regulating essential lipid anabolism genes. Our insights might spur more research into how nitrogen and carbon metabolism interact to regulate lipid metabolism.
Collapse
Affiliation(s)
- Yulu Ran
- Microbiology and Metabolic Engineering key laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065 People’s Republic of China
| | - Hui Xu
- Microbiology and Metabolic Engineering key laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065 People’s Republic of China
| | - Qingzhuoma Yang
- Microbiology and Metabolic Engineering key laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065 People’s Republic of China
| | - Yi Xu
- Microbiology and Metabolic Engineering key laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065 People’s Republic of China
| | - Huahao Yang
- Microbiology and Metabolic Engineering key laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065 People’s Republic of China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering key laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065 People’s Republic of China
| | - Yi Cao
- Microbiology and Metabolic Engineering key laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065 People’s Republic of China
| |
Collapse
|
17
|
Jia YL, Wang YZ, Nong FT, Ma W, Huang PW, Sun XM. Identification and characterization of fatty acid desaturases in Schizochytrium sp. HX-308. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
18
|
Li S, Yang J, Mohamed H, Wang X, Pang S, Wu C, López-García S, Song Y. Identification and Functional Characterization of Adenosine Deaminase in Mucor circinelloides: A Novel Potential Regulator of Nitrogen Utilization and Lipid Biosynthesis. J Fungi (Basel) 2022; 8:jof8080774. [PMID: 35893142 PMCID: PMC9332508 DOI: 10.3390/jof8080774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme distributed in a wide variety of organisms that cleaves adenosine into inosine. Since inosine plays an important role in nitrogen metabolism, ADA may have a critical function in the regulation of fatty acid synthesis. However, the role of ADA in oleaginous fungi has not been reported so far. Therefore, in this study, we identified one ada gene encoding ADA (with ID scaffold0027.9) in the high lipid-producing fungus, Mucor circinelloides WJ11, and investigated its role in cell growth, lipid production, and nitrogen metabolism by overexpressing and knockout of this gene. The results showed that knockout of the ada altered the efficiency of nitrogen consumption, which led to a 20% increment in the lipid content (25% of cell dry weight) of the engineered strain, while overexpression of the ada showed no significant differences compared with the control strain at the final growth stage; however, interestingly, it increased lipid accumulation at the early growth stage. Additionally, transcriptional analysis was conducted by RT-qPCR and our findings indicated that the deletion of ada activated the committed steps of lipid biosynthesis involved in acetyl-CoA carboxylase (acc1 gene), cytosolic malic acid enzyme (cme1 gene), and fatty acid synthases (fas1 gene), while it suppressed the expression of AMP-activated protein kinase (ampk α1 and ampk β genes), which plays a role in lipolysis, whereas the ada-overexpressed strain displayed reverse trends. Conclusively, this work unraveled a novel role of ADA in governing lipid biosynthesis and nitrogen metabolism in the oleaginous fungus, M. circinelloides.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Junhuan Yang
- Department of Food Sciences, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Sergio López-García
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 3100 Murcia, Spain;
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Correspondence: ; Tel.: +86-13964463099
| |
Collapse
|
19
|
Morimoto Y, Saitoh S, Takayama Y. Growth conditions inducing G1 cell cycle arrest enhance lipid production in the oleaginous yeast Lipomyces starkeyi. J Cell Sci 2022; 135:276362. [PMID: 35833504 DOI: 10.1242/jcs.259996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid droplets are cytoplasmic organelles that store lipids for energy and membrane synthesis. The oleaginous yeast Lipomyces starkeyi is one of the most promising lipid producers and has attracted attention as a biofuel source. It is known that the expansion of lipid droplets is enhanced under nutrient-poor conditions. Therefore, we prepared a novel nitrogen-depleted medium (N medium) in which to culture L. starkeyi cells. Lipid accumulation was rapidly induced, and this was reversed by the addition of ammonium. In this condition, cell proliferation stopped and cells with giant lipid droplets were arrested in G1 phase. We investigated whether cell cycle arrest at a specific phase is required for lipid accumulation. Lipid accumulation was repressed in hydroxyurea-synchronized S phase cells and was increased in nocodazole-arrested G2/M phase cells. Moreover, the enrichment of G1 phase cells by rapamycin induced massive lipid accumulation. From these results, we conclude that L. starkeyi cells store lipids from G2/M phase and then arrest cell proliferation in the subsequent G1 phase, where lipid accumulation is enhanced. Cell cycle control is an attractive approach for biofuel production.
Collapse
Affiliation(s)
| | - Shigeaki Saitoh
- Department of Cell Biology, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Yuko Takayama
- Department of Biosciences, Teikyo University, Tochigi, Japan.,Graduate School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
20
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
21
|
Cai Y, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. The relationship between amino acid and lipid metabolism in oleaginous eukaryotic microorganism. Appl Microbiol Biotechnol 2022; 106:3405-3417. [PMID: 35503470 DOI: 10.1007/s00253-022-11931-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Amino acids are the building blocks of protein, promoting the balance between growth and lipid synthesis. However, the accumulation of microbial lipids involves multiple pathways, which requires the analysis of the global cellular metabolic network in which amino acid metabolism is involved. This review illustrates the dependence patterns of intracellular amino acids and lipids of oleaginous eukaryotic microorganisms in different environments and points out the contribution of amino acid metabolic precursors to the de novo synthesis of fatty acids. We emphasized the key role of amino acid metabolism in lipid remodeling and autophagy behavior and highlighted the regulatory effects of amino acids and their secondary metabolites as signal factors for microbial lipid synthesis. The application prospects of omics technology and genetic engineering technology in the field of microbial lipids are described. KEY POINTS: • Overview of microbial lipid synthesis mediated by amino acid metabolism • Insight into metabolic mechanisms founding multiple regulatory networks is provided • Description of microbial lipid homeostasis mediated by amino acid excitation signal.
Collapse
Affiliation(s)
- Yibo Cai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 5: , 27127, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
22
|
Mohamed H, Awad MF, Shah AM, Nazir Y, Naz T, Hassane A, Nosheen S, Song Y. Evaluation of Different Standard Amino Acids to Enhance the Biomass, Lipid, Fatty Acid, and γ-Linolenic Acid Production in Rhizomucor pusillus and Mucor circinelloides. Front Nutr 2022; 9:876817. [PMID: 35592629 PMCID: PMC9112836 DOI: 10.3389/fnut.2022.876817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, 18 standard amino acids were tested as a single nitrogen source on biomass, total lipid, total fatty acid (TFA) production, and yield of γ-linolenic acid (GLA) in Rhizomucor pusillus AUMC 11616.A and Mucor circinelloides AUMC 6696.A isolated from unusual habitats. Grown for 4 days at 28°C, shaking at 150 rpm, the maximum fungal biomass for AUMC 6696.A was 14.6 ± 0.2 g/L with arginine and 13.68 ± 0.1 g/L with asparagine, when these amino acids were used as single nitrogen sources, while AUMC 11616.A maximum biomass was 10.73 ± 0.8 g/L with glycine and 9.44 ± 0.6 g/L with valine. These were significantly higher than the ammonium nitrate control (p < 0.05). The highest levels of TFA were achieved with glycine for AUMC 11616.A, 26.2 ± 0.8% w/w of cell dry weight, and glutamic acid for AUMC 6696.A, 23.1 ± 1.3%. The highest GLA yield was seen with proline for AUMC 11616.A, 13.4 ± 0.6% w/w of TFA, and tryptophan for AUMC 6696.A, 12.8 ± 0.3%, which were 38% and 25% higher than the ammonium tartrate control. The effects of environmental factors such as temperature, pH, fermentation time, and agitation speed on biomass, total lipids, TFA, and GLA concentration of the target strains have also been investigated. Our results demonstrated that nitrogen assimilation through amino acid metabolism, as well as the use of glucose as a carbon source and abiotic factors, are integral to increasing the oleaginicity of tested strains. Few studies have addressed the role of amino acids in fermentation media, and this study sheds light on R. pusillus and M. circinelloides as promising candidates for the potential applications of amino acids as nitrogen sources in the production of lipids.
Collapse
Affiliation(s)
- Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- *Correspondence: Hassan Mohamed,
| | - Mohamed F. Awad
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Aabid Manzoor Shah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Abdallah Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Shaista Nosheen
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Yuanda Song,
| |
Collapse
|
23
|
Zinc finger protein LipR represses docosahexaenoic acid and lipid biosynthesis in Schizochytrium sp. Appl Environ Microbiol 2022; 88:e0206321. [PMID: 35108079 DOI: 10.1128/aem.02063-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterotrophic marine microalgae Schizochytrium sp. is an important industrial producer of docosahexaenoic acid (DHA). Increased production of DHA and lipids in Schizochytrium sp. have been achieved by standard fermentation optimization and metabolic engineering methods; however, regulatory mechanisms for DHA and lipid biosynthesis remain unknown. In this study, the C2H2 zinc finger protein LipR was identified in Schizochytrium sp. ATCC20888 by transcriptional analysis. Deletion of the lipR gene significantly (p< 0.001) increased production of total lipids and DHA by (respectively) 33% and 48%. LipR repressed DHA and lipid production by directly inhibiting transcription of polyunsaturated fatty acid (PUFA) and fatty acid synthase (FAS) genes (pfa1, pfa2, pfa3, fas). Specific binding of LipR to 9-bp recognition sequence 5'-(C/A)(A/G)CCATCTT-3' in upstream regions of target genes was demonstrated by electrophoretic mobility shift assays (EMSAs) and DNase I footprinting assays. Expression of several key genes (acc, acl, ampD, fabD, mae, zwf, dga1) related to levels of precursors and NADPH, and to triacylglycerol storage rate, were also directly repressed by LipR. Our findings, taken together, indicate that the evolutionarily unique regulator LipR is an essential repressor of DHA and saturated fatty acid biosynthesis in Schizochytrium sp. Importance Regulatory mechanisms for DHA and saturated fatty acid biosynthesis in the heterotrophic marine microalgae Schizochytrium sp. are unclear. We demonstrate here that deletion of the gene (lipR) encoding the C2H2 zinc finger protein LipR promotes DHA and saturated fatty acid production in this genus. LipR acts as a key repressor of such production by binding to 9-bp consensus sequence 5'-(C/A)(A/G)CCATCTT-3' in the upstream regions of polyunsaturated fatty acid and fatty acid synthase genes (pfa1, pfa2, pfa3, fas), and genes related to levels of precursors and NADPH (acc, acl, ampD, fabD, mae, zwf), and to triacylglycerol storage rate (dga1). This is the first demonstration that a regulator inhibits synthesis of DHA and lipids in Schizochytrium sp. by directly controlling transcription of PUFA synthase and fas genes. Manipulation of the lipR gene provides a potential strategy for enhancing accumulation of polyunsaturated fatty acids and lipids in thraustochytrids.
Collapse
|
24
|
Wei H, Wang W, Knoshaug EP, Chen X, Van Wychen S, Bomble YJ, Himmel ME, Zhang M. Disruption of the Snf1 Gene Enhances Cell Growth and Reduces the Metabolic Burden in Cellulase-Expressing and Lipid-Accumulating Yarrowia lipolytica. Front Microbiol 2022; 12:757741. [PMID: 35003001 PMCID: PMC8733397 DOI: 10.3389/fmicb.2021.757741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Abstract
Yarrowia lipolytica is known to be capable of metabolizing glucose and accumulating lipids intracellularly; however, it lacks the cellulolytic enzymes needed to break down cellulosic biomass directly. To develop Y. lipolytica as a consolidated bioprocessing (CBP) microorganism, we previously expressed the heterologous CBH I, CBH II, and EG II cellulase enzymes both individually and collectively in this microorganism. We concluded that the coexpression of these cellulases resulted in a metabolic drain on the host cells leading to reduced cell growth and lipid accumulation. The current study aims to build a new cellulase coexpressing platform to overcome these hinderances by (1) knocking out the sucrose non-fermenting 1 (Snf1) gene that represses the energetically expensive lipid and protein biosynthesis processes, and (2) knocking in the cellulase cassette fused with the recyclable selection marker URA3 gene in the background of a lipid-accumulating Y. lipolytica strain overexpressing ATP citrate lyase (ACL) and diacylglycerol acyltransferase 1 (DGA1) genes. We have achieved a homologous recombination insertion rate of 58% for integrating the cellulases-URA3 construct at the disrupted Snf1 site in the genome of host cells. Importantly, we observed that the disruption of the Snf1 gene promoted cell growth and lipid accumulation and lowered the cellular saturated fatty acid level and the saturated to unsaturated fatty acid ratio significantly in the transformant YL163t that coexpresses cellulases. The result suggests a lower endoplasmic reticulum stress in YL163t, in comparison with its parent strain Po1g ACL-DGA1. Furthermore, transformant YL163t increased in vitro cellulolytic activity by 30%, whereas the “total in vivo newly formed FAME (fatty acid methyl esters)” increased by 16% in comparison with a random integrative cellulase-expressing Y. lipolytica mutant in the same YNB-Avicel medium. The Snf1 disruption platform demonstrated in this study provides a potent tool for the further development of Y. lipolytica as a robust host for the expression of cellulases and other commercially important proteins.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Eric P Knoshaug
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Stefanie Van Wychen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
25
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. SNF1β-Modulated Glucose Uptake and the Balance between Polyunsaturated Fatty Acids and Carbohydrates in Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13849-13858. [PMID: 34779198 DOI: 10.1021/acs.jafc.1c05971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sucrose nonfermenting protein kinase 1 (SNF1) complex is an important metabolic regulator in fungi that is critical to cell metabolism and stress response. In this study, the role of an SNF1 β-subunit in the oleaginous fungus Mortierella alpina (MaSip2) was investigated. The MaSip2 contained a glycogen-binding domain and a conserved SNF1-complex interaction region; its transcriptional level during lipogenesis shared high consistency with a previously reported SNF1 γ-subunit (MaSnf4). Overexpression of MaSip2 in M. alpina significantly promoted glucose uptake and resulted in 34.1% increased total biomass, leading to 44.8% increased arachidonic acid yield after 7 day fermentation. MaSip2 also regulated the balance between polyunsaturated fatty acids and carbohydrates in M. alpina. Intracellular metabolite analysis revealed increased carbohydrate-related metabolite accumulation in MaSip2 overexpression strains. On the contrary, knockdown of MaSip2 increased the total fatty acid unsaturation degree, especially under low-temperature conditions. This research improved our knowledge of SNF1 complex in M. alpina and provided a target gene for enhancing glucose utilization and modulating fatty acid composition for better application of oleaginous fungi.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
26
|
Jia YL, Geng SS, Du F, Xu YS, Wang LR, Sun XM, Wang QZ, Li Q. Progress of metabolic engineering for the production of eicosapentaenoic acid. Crit Rev Biotechnol 2021; 42:838-855. [PMID: 34779326 DOI: 10.1080/07388551.2021.1971621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eicosapentaenoic Acid (EPA) is an essential ω-3 polyunsaturated fatty acid for human health. Currently, high-quality EPA production is largely dependent on the extraction of fish oil, but this unsustainable approach cannot meet its rising market demand. Biotechnological approaches for EPA production from microorganisms have received increasing attention due to their suitability for large-scale production and independence of the seasonal or climate restrictions. This review summarizes recent research on different microorganisms capable of producing EPA, such as microalgae, bacteria, and fungi, and introduces the different EPA biosynthesis pathways. Notably, some novel engineering strategies have been applied to endow and improve the abilities of microorganisms to synthesize EPA, including the construction and optimization of the EPA biosynthesis pathway, an increase in the acetyl-CoA pool supply, the increase of NADPH and the inhibition of competing pathways. This review aims to provide an updated summary of EPA production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Shan-Shan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qing-Zhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Wang J, Xu Y, Holic R, Yu X, Singer SD, Chen G. Improving the Production of Punicic Acid in Baker's Yeast by Engineering Genes in Acyl Channeling Processes and Adjusting Precursor Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9616-9624. [PMID: 34428902 DOI: 10.1021/acs.jafc.1c03256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Punicic acid (PuA) is a high-value edible conjugated fatty acid with strong bioactivities and has important potential applications in nutraceutical, pharmaceutical, feeding, and oleochemical industries. Since the production of PuA is severely limited by the fact that its natural source (pomegranate seed oil) is not readily available on a large scale, there is considerable interest in understanding the biosynthesis and accumulation of this plant-based unusual fatty acid in transgenic microorganisms to support the rational design of biotechnological approaches for PuA production via fermentation. Here, we tested the effectiveness of genetic engineering and precursor supply in PuA production in the model yeast strain Saccharomyces cerevisiae. The results revealed that the combination of precursor feeding and co-expression of selected genes in acyl channeling processes created an effective "push-pull" approach to increase PuA content, which could prove valuable in future efforts to produce PuA in industrial yeast and other microorganisms via fermentation.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Xiaochen Yu
- Diamond V, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404, United States
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
28
|
Exploring Proteomes of Robust Yarrowia lipolytica Isolates Cultivated in Biomass Hydrolysate Reveals Key Processes Impacting Mixed Sugar Utilization, Lipid Accumulation, and Degradation. mSystems 2021; 6:e0044321. [PMID: 34342539 PMCID: PMC8407480 DOI: 10.1128/msystems.00443-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast exhibiting robust phenotypes beneficial for industrial biotechnology. The phenotypic diversity found within the undomesticated Y. lipolytica clade from various origins illuminates desirable phenotypic traits not found in the conventional laboratory strain CBS7504 (or W29), which include xylose utilization, lipid accumulation, and growth on undetoxified biomass hydrolysates. Currently, the related phenotypes of lipid accumulation and degradation when metabolizing nonpreferred sugars (e.g., xylose) associated with biomass hydrolysates are poorly understood, making it difficult to control and engineer in Y. lipolytica. To fill this knowledge gap, we analyzed the genetic diversity of five undomesticated Y. lipolytica strains and identified singleton genes and genes exclusively shared by strains exhibiting desirable phenotypes. Strain characterizations from controlled bioreactor cultures revealed that the undomesticated strain YB420 used xylose to support cell growth and maintained high lipid levels, while the conventional strain CBS7504 degraded cell biomass and lipids when xylose was the sole remaining carbon source. From proteomic analysis, we identified carbohydrate transporters, xylose metabolic enzymes, and pentose phosphate pathway proteins stimulated during the xylose uptake stage for both strains. Furthermore, we distinguished proteins involved in lipid metabolism (e.g., lipase, NADPH generation, lipid regulators, and β-oxidation) activated by YB420 (lipid maintenance phenotype) or CBS7504 (lipid degradation phenotype) when xylose was the sole remaining carbon source. Overall, the results relate genetic diversity of undomesticated Y. lipolytica strains to complex phenotypes of superior growth, sugar utilization, lipid accumulation, and degradation in biomass hydrolysates. IMPORTANCE Yarrowia lipolytica is an important industrial oleaginous yeast due to its robust phenotypes for effective conversion of inhibitory lignocellulosic biomass hydrolysates into neutral lipids. While lipid accumulation has been well characterized in this organism, its interconnected lipid degradation phenotype is poorly understood during fermentation of biomass hydrolysates. Our investigation into the genetic diversity of undomesticated Y. lipolytica strains, coupled with detailed strain characterization and proteomic analysis, revealed metabolic processes and regulatory elements conferring desirable phenotypes for growth, sugar utilization, and lipid accumulation in undetoxified biomass hydrolysates by these natural variants. This study provides a better understanding of the robust metabolism of Y. lipolytica and suggests potential metabolic engineering strategies to enhance its performance.
Collapse
|
29
|
Poorinmohammad N, Kerkhoven EJ. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica. Biotechnol Bioeng 2021; 118:3640-3654. [PMID: 34129240 DOI: 10.1002/bit.27859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Concerns about climate change and the search for renewable energy sources together with the goal of attaining sustainable product manufacturing have boosted the use of microbial platforms to produce fuels and high-value chemicals. In this regard, Yarrowia lipolytica has been known as a promising yeast with potentials in diverse array of biotechnological applications such as being a host for different oleochemicals, organic acid, and recombinant protein production. Having a rapidly increasing number of molecular and genetic tools available, Y. lipolytica has been well studied amongst oleaginous yeasts and metabolic engineering has been used to explore its potentials. More recently, with the advancement in systems biotechnology and the implementation of mathematical modeling and high throughput omics data-driven approaches, in-depth understanding of cellular mechanisms of cell factories have been made possible resulting in enhanced rational strain design. In case of Y. lipolytica, these systems-level studies and the related cutting-edge technologies have recently been initiated which is expected to result in enabling the biotechnology sector to rationally engineer Y. lipolytica-based cell factories with favorable production metrics. In this regard, here, we highlight the current status of systems metabolic engineering research and assess the potential of this yeast for future cell factory design development.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
30
|
Jia YL, Wang LR, Zhang ZX, Gu Y, Sun XM. Recent advances in biotechnological production of polyunsaturated fatty acids by Yarrowia lipolytica. Crit Rev Food Sci Nutr 2021; 62:8920-8934. [PMID: 34120537 DOI: 10.1080/10408398.2021.1937041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Owing to the important physiological functions, polyunsaturated fatty acids (PUFAs) play a vital role in protecting human health, such as preventing cancer, cardiovascular disease, and diabetes. Specifically, Yarrowia lipolytica has been identified as the most popular non-conventional oleaginous yeast, which can accumulate the abundant intracellular lipids, indicating that has great potential as an industrial host for production of PUFAs. Notably, some novel engineering strategies have been applied to endow and improve the abilities of Y. lipolytica to synthesize PUFAs, including construction and optimization of PUFAs biosynthetic pathways, improvement of preucrsors acetyl-coA and NADPH supply, inhibition of competing pathways, knockout of β-oxidation pathways, regulation of oxidative stress defense pathways, and regulation of genes involved in upstream lipid metabolism. Besides, some bypass approaches, such as strain mating, evolutionary engineering, and computational model based on omics, also have been proposed to improve the performance of engineering strains. Generally, in this review, we summarized the recent advances in engineering strategies and bypass approaches for improving PUFAs production by Y. lipolytica. In addition, we further summarized the latest efforts of CRISPR/Cas genome editing technology in Y. lipolytica, which is aimed to provide its potential applications in PUFAs production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
31
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
32
|
Liu L, Qu YL, Dong GR, Wang J, Hu CY, Meng YH. Elevated β-Carotene Production Using Codon-Adapted CarRA&B and Metabolic Balance in Engineered Yarrowia lipolytica. Front Microbiol 2021; 12:627150. [PMID: 33746920 PMCID: PMC7970187 DOI: 10.3389/fmicb.2021.627150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
β-carotene is a precursor of vitamin A and has multiple physiological functions. Producing β-carotene by microbial fermentation has attracted much attention to consumers' preference for natural products. This study focused on improving β-carotene production by constructing codon-adapted genes and minimizing intermediate accumulation. The codon-adapted CarRA and CarB genes from the industrial strain of Blakeslea trispora were integrated into the genome of the Yarrowia lipolytica to construct YL-C0, the baseline strain for producing β-carotene. Thereafter, the β-carotene biosynthetic pathway's metabolic balance was accurately regulated to reduce the intermediates' accumulation. Notably, the β-carotene content increased by 21 times to reach 12.5 dry cell weight (DCW) mg/g when minimizing HMG-CoA and FPP accumulation. Further, we improved the expression levels of the CarRA and CarB genes to minimize the accumulation of phytoene and lycopene. Total production of β-carotene of 1.7 g/L and 21.6 mg/g DCW was achieved. These results reveal that the rate-limiting enzymes CarRA and CarB of B. trispora exhibited higher catalytic activity than the same enzymes from other microorganisms. Promoting metabolic balance by minimizing the accumulation of intermediates is a very effective strategy for increasing β-carotene. The β-carotene-producing strain constructed in this study has established the foundation for its potential use in industrial production. These successful engineering strategies also provide a foundation for large-scale production of other terpenoids.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yu Ling Qu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Gui Ru Dong
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Jing Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ching Yuan Hu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Yong Hong Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
33
|
Role of Snf-β in lipid accumulation in the high lipid-producing fungus Mucor circinelloides WJ11. Microb Cell Fact 2021; 20:52. [PMID: 33639948 PMCID: PMC7916304 DOI: 10.1186/s12934-021-01545-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background Mucor circinelloides WJ11 is a high-lipid producing strain and an excellent producer of γ-linolenic acid (GLA) which is crucial for human health. We have previously identified genes that encode for AMP-activated protein kinase (AMPK) complex in M. circinelloides which is an important regulator for lipid accumulation. Comparative transcriptional analysis between the high and low lipid-producing strains of M. circinelloides showed a direct correlation in the transcriptional level of AMPK genes with lipid metabolism. Thus, the role of Snf-β, which encodes for β subunit of AMPK complex, in lipid accumulation of the WJ11 strain was evaluated in the present study. Results The results showed that lipid content of cell dry weight in Snf-β knockout strain was increased by 32 % (from 19 to 25 %). However, in Snf-β overexpressing strain, lipid content of cell dry weight was decreased about 25 % (from 19 to 14.2 %) compared to the control strain. Total fatty acid analysis revealed that the expression of the Snf-β gene did not significantly affect the fatty acid composition of the strains. However, GLA content in biomass was increased from 2.5 % in control strain to 3.3 % in Snf-β knockout strain due to increased lipid accumulation and decreased to 1.83 % in Snf-β overexpressing strain. AMPK is known to inactivate acetyl-CoA carboxylase (ACC) which catalyzes the rate-limiting step in lipid synthesis. Snf-β manipulation also altered the expression level of the ACC1 gene which may indicate that Snf-β control lipid metabolism by regulating ACC1 gene. Conclusions Our results suggested that Snf-β gene plays an important role in regulating lipid accumulation in M. circinelloides WJ11. Moreover, it will be interesting to evaluate the potential of other key subunits of AMPK related to lipid metabolism. Better insight can show us the way to manipulate these subunits effectively for upscaling the lipid production. Up to our knowledge, it is the first study to investigate the role of Snf-β in lipid accumulation in M. circinelloides.
Collapse
|
34
|
Chattopadhyay A, Mitra M, Maiti MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnol Adv 2021; 53:107722. [PMID: 33631187 DOI: 10.1016/j.biotechadv.2021.107722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/12/2023]
Abstract
With the increasing demand to develop a renewable and sustainable biolipid feedstock, several species of non-conventional oleaginous yeasts are being explored. Apart from the platform oleaginous yeast Yarrowia lipolytica, the understanding of metabolic pathway and, therefore, exploiting the engineering prospects of most of the oleaginous species are still in infancy. However, in the past few years, enormous efforts have been invested in Rhodotorula, Rhodosporidium, Lipomyces, Trichosporon, and Candida genera of yeasts among others, with the rapid advancement of engineering strategies, significant improvement in genetic tools and techniques, generation of extensive bioinformatics and omics data. In this review, we have collated these recent progresses to make a detailed and insightful summary of the major developments in metabolic engineering of the prominent oleaginous yeast species. Such a comprehensive overview would be a useful resource for future strain improvement and metabolic engineering studies for enhanced production of lipid and lipid-derived chemicals in oleaginous yeasts.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mohor Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
35
|
Liu H, Song Y, Fan X, Wang C, Lu X, Tian Y. Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Front Microbiol 2021; 11:608662. [PMID: 33469452 PMCID: PMC7813756 DOI: 10.3389/fmicb.2020.608662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
The microbial fermentation process has been used as an alternative pathway to the production of value-added natural products. Of the microorganisms, Yarrowia lipolytica, as an oleaginous platform, is able to produce fatty acid-derived biofuels and biochemicals. Nowadays, there are growing progresses on the production of value-added fatty acid-based bioproducts in Y. lipolytica. However, there are fewer reviews performing the metabolic engineering strategies and summarizing the current production of fatty acid-based bioproducts in Y. lipolytica. To this end, we briefly provide the fatty acid metabolism, including fatty acid biosynthesis, transportation, and degradation. Then, we introduce the various metabolic engineering strategies for increasing bioproduct accumulation in Y. lipolytica. Further, the advanced progress in the production of fatty acid-based bioproducts by Y. lipolytica, including nutraceuticals, biofuels, and biochemicals, is summarized. This review will provide attractive thoughts for researchers working in the field of Y. lipolytica.
Collapse
Affiliation(s)
- Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yulan Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiao Fan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
36
|
Liu H, Wang F, Deng L, Xu P. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2020; 317:123991. [PMID: 32805480 PMCID: PMC7561614 DOI: 10.1016/j.biortech.2020.123991] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 05/23/2023]
Abstract
Squalene is the precursor for triterpene-based natural products and steroids-based drugs. It has been widely used as pharmaceutical intermediates and personal care products. The aim of this work is to test the feasibility of engineering Yarrowia lipolytica as a potential host for squalene production. The bottleneck of the pathway was removed by overexpressing native HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase. With the recycling of NADPH from the mannitol cycle, the engineered strain produced about 180.3 mg/L and 188.2 mg/L squalene from glucose or acetate minimal media. By optimizing the C/N ratio, controlling the media pH and mitigating acetyl-CoA flux competition from lipogenesis, the engineered strain produced 502.7 mg/L squalene, a 28-fold increase over the parental strain (17.2 mg/L). This work may serve as a baseline to harness Y. lipolytica as an oleaginous cell factory for sustainable production of squalene or terpenoids-based chemicals and natural products.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, China.
| |
Collapse
|
37
|
Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - A Review. BIORESOURCE TECHNOLOGY 2020; 313:123707. [PMID: 32595069 DOI: 10.1016/j.biortech.2020.123707] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Current energy security and climate change policies encourage the development and utilization of bioenergy. Oleaginous yeasts provide a particularly attractive platform for the sustainable production of biofuels and industrial chemicals due to their ability to accumulate high amounts of lipids. In particular, microbial lipids in the form of triacylglycerides (TAGs) produced from renewable feedstocks have attracted considerable attention because they can be directly used in the production of biodiesel and oleochemicals analogous to petrochemicals. As an oleaginous yeast that is generally regarded as safe, Yarrowia lipolytica has been extensively studied, with large amounts of data on its lipid metabolism, genetic tools, and genome sequencing and annotation. In this review, we highlight the newest strategies for increasing lipid accumulation using metabolic engineering and summarize the research advances on the overaccumulation of lipids in Y. lipolytica. Finally, perspectives for future engineering approaches are proposed.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
38
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. Improved Lipogenesis in Mortierella alpina by Abolishing the Snf4-Mediated Energy-Saving Mode under Low Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10787-10798. [PMID: 32880458 DOI: 10.1021/acs.jafc.0c04572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sensing nutrient levels and coordinating metabolism are requisites for all living organisms. In eukaryotes, heterotrimeric adenosine monophosphate-activated protein kinase/sucrose nonfermenting 1 (SNF1) is an energy monitor that primarily functions by regulating cell metabolism with its γ-subunit being responsible for energy sensing. Because of its strong lipogenesis capacity and dependence on nutrient availability, Mortierella alpina is an ideal model to investigate the SNF1 role. Knockdown of the M. alpina SNF1-γ-subunit (MaSnf4) abolished the energy preservation mode. In a low glucose medium (15 g/L), the fatty acid content in the MaSnf4-knockdown strain was similar to that in a high glucose medium (50 g/L), comprising 16 ± 1.17% of the dry cell weight after 96 h of culture (1.59 g/L), together with 1.41 ± 0.13 and 4.15 ± 0.19 fold increased acetyl-CoA carboxylase 1 and ATP-citrate lyase enzymatic activities, respectively. Metabolite analysis confirmed that knocking down MaSnf4 enhanced amino acid recycling and repressed the tricarboxylic acid cycle. In this case, more carbon skeleton acetyl-CoA and reductive nicotinamide adenine dinucleotide phosphate were rerouted into the fatty acid synthesis pathway. These findings provide new insight into the correlation between energy preservation and MaSnf4-regulated lipogenesis, which may enhance further development of cost-effective strategies to enhance lipid productivity in M. alpina.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P. R. China
| |
Collapse
|
39
|
Nosheen S, Yang J, Naz T, Nazir Y, Ahmad MI, Fazili ABA, Li S, Mustafa K, Song Y. Annotation of AMP-activated protein kinase genes and its comparative transcriptional analysis between high and low lipid producing strains of Mucor circinelloides. Biotechnol Lett 2020; 43:193-202. [PMID: 32809159 DOI: 10.1007/s10529-020-02990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an important regulator for lipid accumulation, potentially known to have an inhibitory role in lipid synthesis. It inactivates acetyl-CoA carboxylase (ACC), an important regulatory enzyme required for lipid synthesis. However, in Mucor circinelloides, AMPK and its association with lipid accumulation has not been studied yet. OBJECTIVES To identify AMPK genes in M. circinelloides and to compare their expression levels in high and low lipid-producing strains of M. circinelloides to predict the possible roles of AMPK in lipid metabolism and to select candidate genes for further studies to enhance lipid accumulation. RESULTS Two genes for α-subunit, one for β-subunit and six for γ-subunit were identified and annotated. Bioinformatic analysis confirmed the presence of typical conserved domains in these genes. Furthermore, transcriptional profiling displayed marked differences in expression kinetics of subunits among the selected strains. The expression of AMPK genes decreased rapidly in WJ11, high lipid producer strain during the lipid accumulation phase while contrasting profile of expression was observed in CBS 277.49, low lipid producer strain. CONCLUSION The present study has shown the association of AMPK genes with lipid metabolism at the transcriptional level. The involvement of Snf-α1, Snf-α2, Snf-β, Snf-γ1, Snf-γ4, Snf-γ5 subunits were shown to be more pronounced and could potentially be further explored in future studies.
Collapse
Affiliation(s)
- Shaista Nosheen
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Junhuan Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Muhammad Ijaz Ahmad
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abu Bakr Ahmad Fazili
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Kiren Mustafa
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
40
|
Sáez-Sáez J, Wang G, Marella ER, Sudarsan S, Cernuda Pastor M, Borodina I. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metab Eng 2020; 62:51-61. [PMID: 32818629 PMCID: PMC7672257 DOI: 10.1016/j.ymben.2020.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023]
Abstract
Resveratrol is a plant secondary metabolite with multiple health-beneficial properties. Microbial production of resveratrol in model microorganisms requires extensive engineering to reach commercially viable levels. Here, we explored the potential of the non-conventional yeast Yarrowia lipolytica to produce resveratrol and several other shikimate pathway-derived metabolites (p-coumaric acid, cis,cis-muconic acid, and salicylic acid). The Y. lipolytica strain expressing a heterologous pathway produced 52.1 ± 1.2 mg/L resveratrol in a small-scale cultivation. The titer increased to 409.0 ± 1.2 mg/L when the strain was further engineered with feedback-insensitive alleles of the key genes in the shikimate pathway and with five additional copies of the heterologous biosynthetic genes. In controlled fed-batch bioreactor, the strain produced 12.4 ± 0.3 g/L resveratrol, the highest reported titer to date for de novo resveratrol production, with a yield on glucose of 54.4 ± 1.6 mg/g and a productivity of 0.14 ± 0.01 g/L/h. The study showed that Y. lipolytica is an attractive host organism for the production of resveratrol and possibly other shikimate-pathway derived metabolites. Oleaginous yeast Y. lipolytica was engineered for production of aromatic compounds. High resveratrol production required increased activities of Aro4p and Aro7p. Multiple integration of resveratrol biosynthetic genes improved production. Fed-batch fermentation enabled de novo production of 12.4 g/L resveratrol.
Collapse
Affiliation(s)
- Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Eko Roy Marella
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Suresh Sudarsan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Marc Cernuda Pastor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
41
|
Ghogare R, Chen S, Xiong X. Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Overproduction of Fatty Acids. Front Microbiol 2020; 11:1717. [PMID: 32849364 PMCID: PMC7418586 DOI: 10.3389/fmicb.2020.01717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023] Open
Abstract
The oleaginous yeast Yarrowia lipolytica has attracted much attention due to its ability to utilize a wide range of substrates to accumulate high lipid content and its flexibility for genetic manipulation. In this study, intracellular lipid metabolism in Y. lipolytica was tailored to produce fatty acid, a renewable oleochemical and precursor for production of advanced biofuels. Two main strategies, including blocking activation and peroxisomal uptake of fatty acids and elimination of biosynthesis of lipids, were employed to reduce fatty acid consumption by the native pathways in Y. lipolytica. Both genetic modifications improved fatty acid production. However, disruption of the genes responsible for assembly of nonpolar lipid molecules including triacylglycerols (TAGs) and steryl esters resulted in the deleterious effects on the cell growth. The gene tesA encoding thioesterase from Escherichia coli was expressed in the strain with disrupted faa genes encoding fatty acyl-CoA synthetases and pxa1 encoding peroxisomal acyl-CoA transporter, and the titer of fatty acids resulted in 2.3 g/L in shake flask culture, representing 11-fold improvement compared with the parent strain. Expressing the native genes encoding acetyl-CoA carboxylase (ACC) and hexokinase also increased fatty acid production, although the improvement was not as significant as that with tesA expression. Saturated fatty acids including palmitic acid (C16:0) and stearic acid (C18:0) increased remarkably in the fatty acid composition of the recombinant bearing tesA compared with the parent strain. The recombinant expressing tesA gene resulted in high lipid content, indicating the great fatty acid producing potential of Y. lipolytica. The results highlight the achievement of fatty acid overproduction without adverse effect on growth of the strain. Results of this study provided insight into the relationship between fatty acid and lipid metabolism in Y. lipolytica, confirming the avenue to reprogram lipid metabolism of this host for overproduction of renewable fatty acids.
Collapse
Affiliation(s)
- Rishikesh Ghogare
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
42
|
Hackenschmidt S, Bracharz F, Daniel R, Thürmer A, Bruder S, Kabisch J. Effects of a high-cultivation temperature on the physiology of three different Yarrowia lipolytica strains. FEMS Yeast Res 2020; 19:5586564. [PMID: 31605534 DOI: 10.1093/femsyr/foz068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the increasing relevance, ranging from academic research to industrial applications, only a limited number of non-conventional, oleaginous Yarrowia lipolytica strains are characterized in detail. Therefore, we analyzed three strains in regard to their metabolic and physiological properties, especially with respect to important characteristics of a production strain. By investigating different cultivation conditions and media compositions, similarities and differences between the distinct strain backgrounds could be derived. Especially sugar alcohol production, as well as an agglomeration of cells were found to be connected with growth at high temperatures. In addition, sugar alcohol production was independent of high substrate concentrations under these conditions. To investigate the genotypic basis of particular traits, including growth characteristics and metabolite concentrations, genomic analysis were performed. We found sequence variations for one third of the annotated proteins but no obvious link to all phenotypic features.
Collapse
Affiliation(s)
- S Hackenschmidt
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - F Bracharz
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - R Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - A Thürmer
- MF 2: Genomsequenzierung, Robert Koch Institute Berlin, Seestrasse 10, 13353 Berlin, Germany
| | - S Bruder
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - J Kabisch
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| |
Collapse
|
43
|
Han L, Han D, Li L, Huang S, He P, Wang Q. Discovery and identification of medium-chain fatty acid responsive promoters in Saccharomyces cerevisiae. Eng Life Sci 2020; 20:186-196. [PMID: 32874182 PMCID: PMC7447867 DOI: 10.1002/elsc.201900093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 01/03/2023] Open
Abstract
Medium-chain fatty acids (MCFAs) and their derivatives are important chemicals that can be used in lubricants, detergents, and cosmetics. MCFAs can be produced in several microbes, although production is not high. Dynamic regulation by synthetic biology is a good method of improving production of chemicals that avoids toxic intermediates, but chemical-responsive promoters are required. Several MCFA sensors or promoters have been reported in Saccharomyces cerevisiae. In this study, by using transcriptomic analysis of S. cerevisiae exposed to fatty acids with 6-, 12-, and 16-carbon chains, we identified 58 candidate genes that may be responsive to MCFAs. Using a fluorescence-based screening method, we identified MCFA-responsive promoters, four that upregulated gene expression, and three that downregulated gene expression. Dose-response analysis revealed that some of the promoters were sensitive to fatty acid concentrations as low as 0.02-0.06 mM. The MCFA-responsive promoters reported in this study could be used in dynamic regulation of fatty acids and fatty acid-derived products in S. cerevisiae.
Collapse
Affiliation(s)
- Li Han
- Henan Collaborative Innovation Center for Food Production and SafetySchool of Food and BioengineeringZhengzhou University of Light IndustryZhengzhouP. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety ControlZhengzhouP. R. China
| | - Danya Han
- Henan Collaborative Innovation Center for Food Production and SafetySchool of Food and BioengineeringZhengzhou University of Light IndustryZhengzhouP. R. China
| | - Lei Li
- Henan Collaborative Innovation Center for Food Production and SafetySchool of Food and BioengineeringZhengzhou University of Light IndustryZhengzhouP. R. China
| | - Shen Huang
- Henan Collaborative Innovation Center for Food Production and SafetySchool of Food and BioengineeringZhengzhou University of Light IndustryZhengzhouP. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety ControlZhengzhouP. R. China
| | - Peixin He
- Henan Collaborative Innovation Center for Food Production and SafetySchool of Food and BioengineeringZhengzhou University of Light IndustryZhengzhouP. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety ControlZhengzhouP. R. China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences (CAS)TianjinP. R. China
| |
Collapse
|
44
|
Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. Int J Mol Sci 2020; 21:E863. [PMID: 32013234 PMCID: PMC7037685 DOI: 10.3390/ijms21030863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.
Collapse
Affiliation(s)
- Yupeng Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China;
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| |
Collapse
|
45
|
Zhang JL, Bai QY, Peng YZ, Fan J, Jin CC, Cao YX, Yuan YJ. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:133. [PMID: 32760447 PMCID: PMC7392732 DOI: 10.1186/s13068-020-01773-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lupeol exhibits novel physiological and pharmacological activities, such as anticancer and immunity-enhancing activities. However, cytotoxicity remains a challenge for triterpenoid overproduction in microbial cell factories. As lipophilic and relatively small molecular compounds, triterpenes are generally secreted into the extracellular space. The effect of increasing triterpene efflux on the synthesis capacity remains unknown. RESULTS In this study, we developed a strategy to enhance triterpene efflux through manipulation of lipid components in Y. lipolytica by overexpressing the enzyme Δ9-fatty acid desaturase (OLE1) and disturbing phosphatidic acid phosphatase (PAH1) and diacylglycerol kinase (DGK1). By this strategy combined with two-phase fermentation, the highest lupeol production reported to date was achieved, where the titer in the organic phase reached 381.67 mg/L and the total production was 411.72 mg/L in shake flasks, exhibiting a 33.20-fold improvement over the initial strain. Lipid manipulation led to a twofold increase in the unsaturated fatty acid (UFA) content, up to 61-73%, and an exceptionally elongated cell morphology, which might have been caused by enhanced membrane phospholipid biosynthesis flux. Both phenotypes accelerated the export of toxic products to the extracellular space and ultimately stimulated the capacity for triterpenoid synthesis, which was proven by the 5.11-fold higher ratio of extra/intracellular lupeol concentrations, 2.79-fold higher biomass accumulation and 2.56-fold higher lupeol productivity per unit OD in the modified strains. This strategy was also highly efficient for the biosynthesis of other triterpenes and sesquiterpenes, including α-amyrin, β-amyrin, longifolene, longipinene and longicyclene. CONCLUSIONS In conclusion, we successfully created a high-yield lupeol-producing strain via lipid manipulation. We demonstrated that the enhancement of lupeol efflux and synthesis capacity was induced by the increased UFA content and elongated cell morphology. Our study provides a novel strategy to promote the biosynthesis of valuable but toxic products in microbial cell factories.
Collapse
Affiliation(s)
- Jin-Lai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Qiu-Yan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Yang-Zi Peng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Jie Fan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Cong-Cong Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Xiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| |
Collapse
|
46
|
Liu X, Yu X, Wang Z, Xia J, Yan Y, Hu L, Wang X, Xu J, He A, Zhao P. Enhanced erythritol production by a Snf1-deficient Yarrowia lipolytica strain under nitrogen-enriched fermentation condition. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Liu H, Marsafari M, Wang F, Deng L, Xu P. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab Eng 2019; 56:60-68. [PMID: 31470116 DOI: 10.1016/j.ymben.2019.08.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and malonyl-CoA, represent a large family of biological compounds with diversified bioactivity. Harnessing microbial bioconversion is considered as a feasible approach to large-scale production of polyketides from renewable feedstocks. Most of the current polyketide production platform relied on the lengthy glycolytic steps to provide acetyl-CoA, which inherently suffers from complex regulation with metabolically-costly cofactor/ATP requirements. Using the simplest polyketide triacetic acid lactone (TAL) as a testbed molecule, we demonstrate that acetate uptake pathway in oleaginous yeast (Yarrowia lipolytica) could function as an acetyl-CoA shortcut to achieve metabolic optimality in producing polyketides. We identified the metabolic bottlenecks to rewire acetate utilization for efficient TAL production in Y. lipolytica, including generation of the driving force for acetyl-CoA, malonyl-CoA and NADPH. The engineered strain, with the overexpression of endogenous acetyl-CoA carboxylase (ACC1), malic enzyme (MAE1) and a bacteria-derived cytosolic pyruvate dehydrogenase (PDH), affords robust TAL production with titer up to 4.76 g/L from industrial glacier acetic acid in shake flasks, representing 8.5-times improvement over the parental strain. The acetate-to-TAL conversion ratio (0.149 g/g) reaches 31.9% of the theoretical maximum yield. The carbon flux through this acetyl-CoA metabolic shortcut exceeds the carbon flux afforded by the native glycolytic pathways. Potentially, acetic acid could be manufactured in large-quantity at low-cost from Syngas fermentation or heterogenous catalysis (methanol carbonylation). This alternative carbon sources present a metabolic advantage over glucose to unleash intrinsic pathway limitations and achieve high carbon conversion efficiency and cost-efficiency. This work also highlights that low-cost acetic acid could be sustainably upgraded to high-value polyketides by oleaginous yeast species in an eco-friendly and cost-efficient manner.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Monireh Marsafari
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic Republic of Iran
| | - Fang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
48
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
49
|
Holistic Approaches in Lipid Production by Yarrowia lipolytica. Trends Biotechnol 2018; 36:1157-1170. [PMID: 30006239 DOI: 10.1016/j.tibtech.2018.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
Abstract
Concerns about climate change have driven research on the production of lipid-derived biofuels as an alternative and renewable liquid fuel source. Using oleaginous yeasts for lipid synthesis creates the potential for cost-effective industrial-scale operations due to their ability to reach high lipid titer, yield, and productivity resulting from their unique metabolism. Yarrowia lipolytica is the model oleaginous yeast, with the best-studied lipid metabolism, the greatest number of genetic tools, and a fully sequenced genome. In this review we highlight multiomics studies that elucidate the mechanisms allowing this yeast to achieve lipid overaccumulation and then present several major metabolic engineering efforts that enhanced the production metrics in Y. lipolytica. Recent achievements that applied novel engineering strategies are emphasized.
Collapse
|
50
|
Patterson K, Yu J, Landberg J, Chang I, Shavarebi F, Bilanchone V, Sandmeyer S. Functional genomics for the oleaginous yeast Yarrowia lipolytica. Metab Eng 2018; 48:184-196. [PMID: 29792930 DOI: 10.1016/j.ymben.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
Abstract
Oleaginous yeasts are valuable systems for biosustainable production of hydrocarbon-based chemicals. Yarrowia lipolytica is one of the best characterized of these yeast with respect to genome annotation and flux analysis of metabolic processes. Nonetheless, progress is hampered by a dearth of genome-wide tools enabling functional genomics. In order to remedy this deficiency, we developed a library of Y. lipolytica insertion mutants via transposon mutagenesis. The Hermes DNA transposon was expressed to achieve saturation mutagenesis of the genome. Over 534,000 independent insertions were identified by next-generation sequencing. Poisson analysis of insertion density classified ~ 22% of genes as essential. As expected, most essential genes have homologs in Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the majority of those are also essential. As an obligate aerobe, Y. lipolytica has significantly more respiration - related genes that are classified as essential than do S. cerevisiae and S. pombe. Contributions of non-essential genes to growth in glucose and glycerol carbon sources were assessed and used to evaluate two recent genome-scale models of Y. lipolytica metabolism. Fluorescence-activated cell sorting identified mutants in which lipid accumulation is increased. Our findings provide insights into biosynthetic pathways, compartmentalization of enzymes, and distinct functions of paralogs. This functional genomic analysis of the oleaginous yeast Y. lipolytica provides an important resource for modeling, bioengineering, and design of synthetic minimalized strains of respiratory yeasts.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - James Yu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Jenny Landberg
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Ivan Chang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Farbod Shavarebi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Suzanne Sandmeyer
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA 92697-1700, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697-1700, USA.
| |
Collapse
|