1
|
da Silva AM, Murillo DM, Anbumani S, von Zuben AA, Cavalli A, Obata HT, Fischer ER, de Souza E Silva M, Bakkers E, Souza AA, Carvalho HF, Cotta MA. N-acetylcysteine effects on extracellular polymeric substances of Xylella fastidiosa: A spatiotemporal investigation with implications for biofilm disruption. Int J Antimicrob Agents 2024; 64:107340. [PMID: 39299599 DOI: 10.1016/j.ijantimicag.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The matrix of extracellular polymeric substances (EPS) present in biofilms greatly amplifies the problem of bacterial infections, protecting bacteria against antimicrobial treatments and eventually leading to bacterial resistance. The need for alternative treatments that destroy the EPS matrix becomes evident. N-acetylcysteine (NAC) is one option that presents diverse effects against bacteria; however, the different mechanisms of action of NAC in biofilms have yet to be elucidated. OBJECTIVES In this work, we performed microscopy studies at micro and nano scales to address the effects of NAC at single cell level and early-stage biofilms of the Xylella fastidiosa phytopathogen. METHODS We show the physical effects of NAC on the adhesion surface and the different types of EPS, as well as the mechanical response of individual bacteria to NAC concentrations between 2 and 20 mg/mL. RESULTS NAC modified the conditioning film on the substrate, broke down the soluble EPS, resulting in the release of adherent bacteria, decreased the volume of loosely bound EPS, and disrupted the biofilm matrix. Tightly bound EPS suffered structural alterations despite no solid evidence of its removal. In addition, bacterial force measurements upon NAC action performed with InP nanowire arrays showed an enhanced momentum transfer to the nanowires due to increased cell mobility resulting from EPS removal. CONCLUSIONS Our results clearly show that conditioning film and soluble EPS play a key role in cell adhesion control and that NAC alters EPS structure, providing solid evidence that NAC actuates mainly on EPS removal, both at single cell and biofilm levels.
Collapse
Affiliation(s)
- Aldeliane M da Silva
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil.
| | - Duber M Murillo
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Silambarasan Anbumani
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Antonio Augusto von Zuben
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Alessandro Cavalli
- Applied Physics Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Helio T Obata
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Eduarda Regina Fischer
- Citrus Research Center "Sylvio Moreira"/ Agronomic Institute - IAC, Cordeirópolis, São Paulo, Brazil
| | - Mariana de Souza E Silva
- Citrus Research Center "Sylvio Moreira"/ Agronomic Institute - IAC, Cordeirópolis, São Paulo, Brazil
| | - Erik Bakkers
- Applied Physics Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alessandra A Souza
- Citrus Research Center "Sylvio Moreira"/ Agronomic Institute - IAC, Cordeirópolis, São Paulo, Brazil
| | | | - Mônica A Cotta
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Bianco MI, Ponso MA, Garita-Cambronero J, Conforte VP, Galván TE, Dunger G, Morales GM, Vojnov AA, Romero AM, Cubero J, Yaryura PM. Genomic and phenotypic insight into Xanthomonas vesicatoria strains with different aggressiveness on tomato. Front Microbiol 2023; 14:1185368. [PMID: 37440880 PMCID: PMC10333488 DOI: 10.3389/fmicb.2023.1185368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Xanthomonas vesicatoria is one of the causal agents of bacterial spot, a disease that seriously affects the production of tomato (Solanum lycopersicum) and pepper (Capsicum annum) worldwide. In Argentina, bacterial spot is found in all tomato producing areas, with X. vesicatoria being one of the main species detected in the fields. Previously, we isolated three X. vesicatoria strains BNM 208, BNM 214, and BNM 216 from tomato plants with bacterial spot, and found they differed in their ability to form biofilm and in their degree of aggressiveness. Here, the likely causes of those differences were explored through genotypic and phenotypic studies. The genomes of the three strains were sequenced and assembled, and then compared with each other and also with 12 other publicly available X. vesicatoria genomes. Phenotypic characteristics (mainly linked to biofilm formation and virulence) were studied in vitro. Our results show that the differences observed earlier between BNM 208, BNM 214, and BNM 216 may be related to the structural characteristics of the xanthan gum produced by each strain, their repertoire of type III effectors (T3Es), the presence of certain genes associated with c-di-GMP metabolism and type IV pili (T4P). These findings on the pathogenicity mechanisms of X. vesicatoria could be useful for developing bacterial spot control strategies aimed at interfering with the infection processes.
Collapse
Affiliation(s)
- María Isabel Bianco
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - María Agustina Ponso
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentario y Biotecnológica (IMITAB, UNVM-CONICET), Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | | | - Valeria Paola Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - Tadeo E. Galván
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán Dunger
- Facultad de Ciencias Agrarias, Instituto de Ciencias Agropecuarias del Litoral, CONICET, Universidad Nacional del Litoral, Esperanza, Argentina
| | - Gustavo M. Morales
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Universidad Nacional de Rio Cuarto – CONICET, Rio Cuarto, Argentina
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - Ana María Romero
- Cátedra de Fitopatología, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime Cubero
- Laboratorio de Bacteriología, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria/Consejo Superior de Investigaciones Científicas (INIA/CSIC), Madrid, Spain
| | - Pablo Marcelo Yaryura
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentario y Biotecnológica (IMITAB, UNVM-CONICET), Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| |
Collapse
|
3
|
Román-Écija M, Navas-Cortés JA, Velasco-Amo MP, Arias-Giraldo LF, Gómez LM, Fuente LDL, Landa BB. Two Xylella fastidiosa subsp. multiplex Strains Isolated from Almond in Spain Differ in Plasmid Content and Virulence Traits. PHYTOPATHOLOGY 2023; 113:960-974. [PMID: 36576402 DOI: 10.1094/phyto-06-22-0234-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The plant-pathogenic bacterium Xylella fastidiosa is a major threat to agriculture and the environment worldwide. Recent devastating outbreaks in Europe highlight the potential of this pathogen to cause emergent diseases. X. fastidiosa subsp. multiplex ESVL and IVIA5901 strains that belong to sequence type 6 were isolated from almond orchards within the outbreak area in Alicante province (Spain). Both strains share more than 99% of the chromosomal sequences (average nucleotide identity), but the ESVL strain harbors two plasmids (pXF64-Hb_ESVL and pUCLA-ESVL). Here, virulence phenotypes and genome content were compared between both strains, using three strains from the United States as a reference for the phenotypic analyses. Experiments in microfluidic chambers, used as a simulation of xylem vessels, showed that twitching motility was absent in the IVIA5901 strain, whereas the ESVL strain had reduced twitching motility. In general, both Spanish strains had less biofilm formation, less cell aggregation, and lower virulence in tobacco compared with U.S. reference strains. Genome analysis of the two plasmids from ESVL revealed 51 unique coding sequences that were absent in the chromosome of IVIA5901. Comparison of the chromosomes of both strains showed some unique coding sequences and single-nucleotide polymorphisms in each strain, with potential deleterious mutations. Genomic differences found in genes previously associated with adhesion and motility might explain the differences in the phenotypic traits studied. Although additional studies are necessary to infer the potential role of X. fastidiosa plasmids, our results indicate that the presence of plasmids should be considered in the study of the mechanisms of pathogenicity and adaptation in X. fastidiosa to new environments. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- M Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - J A Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - M P Velasco-Amo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L F Arias-Giraldo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L M Gómez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - L De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - B B Landa
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
4
|
Anbumani S, da Silva AM, Alaferdov A, Puydinger dos Santos MV, Carvalho IGB, de Souza e Silva M, Moshkalev S, Carvalho HF, de Souza AA, Cotta MA. Physiochemically Distinct Surface Properties of SU-8 Polymer Modulate Bacterial Cell-Surface Holdfast and Colonization. ACS APPLIED BIO MATERIALS 2022; 5:4903-4912. [PMID: 36162102 PMCID: PMC9580523 DOI: 10.1021/acsabm.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.
Collapse
Affiliation(s)
- Silambarasan Anbumani
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Aldeliane M. da Silva
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Andrei Alaferdov
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | | | - Isis G. B. Carvalho
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza e Silva
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Stanislav Moshkalev
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Alessandra A. de Souza
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Monica A. Cotta
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
5
|
Feitosa-Junior OR, Souza APS, Zaini PA, Baccari C, Ionescu M, Pierry PM, Uceda-Campos G, Labroussaa F, Almeida RPP, Lindow SE, da Silva AM. The XadA Trimeric Autotransporter Adhesins in Xylella fastidiosa Differentially Contribute to Cell Aggregation, Biofilm Formation, Insect Transmission and Virulence to Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:857-866. [PMID: 35704683 DOI: 10.1094/mpmi-05-22-0108-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula S Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Zaini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Paulo M Pierry
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabien Labroussaa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Comparative Genomics of Xylella fastidiosa Explores Candidate Host-Specificity Determinants and Expands the Known Repertoire of Mobile Genetic Elements and Immunity Systems. Microorganisms 2022; 10:microorganisms10050914. [PMID: 35630358 PMCID: PMC9148166 DOI: 10.3390/microorganisms10050914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Xylella fastidiosa causes diseases in many plant species. Originally confined to the Americas, infecting mainly grapevine, citrus, and coffee, X. fastidiosa has spread to several plant species in Europe causing devastating diseases. Many pathogenicity and virulence factors have been identified, which enable the various X. fastidiosa strains to successfully colonize the xylem tissue and cause disease in specific plant hosts, but the mechanisms by which this happens have not been fully elucidated. Here we present thorough comparative analyses of 94 whole-genome sequences of X. fastidiosa strains from diverse plant hosts and geographic regions. Core-genome phylogeny revealed clades with members sharing mostly a geographic region rather than a host plant of origin. Phylogenetic trees for 1605 orthologous CDSs were explored for potential candidates related to host specificity using a score of mapping metrics. However, no candidate host-specificity determinants were strongly supported using this approach. We also show that X. fastidiosa accessory genome is represented by an abundant and heterogeneous mobilome, including a diversity of prophage regions. Our findings provide a better understanding of the diversity of phylogenetically close genomes and expand the knowledge of X. fastidiosa mobile genetic elements and immunity systems.
Collapse
|
7
|
Csp1, a Cold Shock Protein Homolog in Xylella fastidiosa Influences Cell Attachment, Pili Formation, and Gene Expression. Microbiol Spectr 2021; 9:e0159121. [PMID: 34787465 PMCID: PMC8597638 DOI: 10.1128/spectrum.01591-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cold shock-domain proteins are conserved nucleic acid binding chaperones that play important roles in stress adaptation and pathogenesis. Csp1 is a temperature-independent cold shock protein homolog in Xylella fastidiosa, a bacterial plant pathogen of grapevine and other economically important crops. Csp1 contributes to stress tolerance and virulence in X. fastidiosa. However, besides general single-stranded nucleic acid binding activity, little is known about the specific function(s) of Csp1. To further investigate the role(s) of Csp1, we compared phenotypic differences and transcriptome profiles between the wild type and a csp1 deletion mutant (Δcsp1). Csp1 contributes to attachment and long-term survival and influences gene expression. We observed reduced cell-to-cell attachment and reduced attachment to surfaces with the Δcsp1 strain compared to those with the wild type. Transmission electron microscopy imaging revealed that Δcsp1 was deficient in pili formation compared to the wild type and complemented strains. The Δcsp1 strain also showed reduced survival after long-term growth in vitro. Long-read nanopore transcriptome sequencing (RNA-Seq) analysis revealed changes in expression of several genes important for attachment and biofilm formation in Δcsp1 compared to that in the wild type. One gene of interest, pilA1, which encodes a type IV pili subunit protein, was upregulated in Δcsp1. Deleting pilA1 in X. fastidiosa strain Stag's Leap increased surface attachment in vitro and reduced virulence in grapevines. X. fastidiosa virulence depends on bacterial attachment to host tissue and movement within and between xylem vessels. Our results show that the impact of Csp1 on virulence may be due to changes in expression of attachment genes. IMPORTANCE Xylella fastidiosa is a major threat to the worldwide agriculture industry. Despite its global importance, many aspects of X. fastidiosa biology and pathogenicity are poorly understood. There are currently few effective solutions to suppress X. fastidiosa disease development or eliminate bacteria from infected plants. Recently, disease epidemics due to X. fastidiosa have greatly expanded, increasing the need for better disease prevention and control strategies. Our studies show a novel connection between cold shock protein Csp1 and pili abundance and attachment, which have not been reported for X. fastidiosa. Understanding how pathogenesis-related gene expression is regulated can aid in developing novel pathogen and disease control strategies. We also streamlined a bioinformatics protocol to process and analyze long-read nanopore bacterial RNA-Seq data, which will benefit the research community, particularly those working with non-model bacterial species.
Collapse
|
8
|
Monteiro MP, Hernandez-Montelongo J, Sahoo PK, Hernández Montelongo R, de Oliveira DS, Piazzeta MHO, García Sandoval JP, de Souza AA, Gobbi AL, Cotta MA. Functionalized microchannels as xylem-mimicking environment: Quantifying X. fastidiosa cell adhesion. Biophys J 2021; 120:1443-1453. [PMID: 33607085 DOI: 10.1016/j.bpj.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022] Open
Abstract
Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device's internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ∼4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.
Collapse
Affiliation(s)
- Moniellen P Monteiro
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Jacobo Hernandez-Montelongo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Prasana K Sahoo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Rosaura Hernández Montelongo
- Departamento de Electrónica, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Douglas S de Oliveira
- Campus Avançado de Jandaia do Sul, Universidade Federal do Paraná, Jandaia do Sul, Paraná, Brasil
| | - Maria H O Piazzeta
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais/CNPEM, Campinas, São Paulo, Brasil
| | - Juan P García Sandoval
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Alessandra A de Souza
- Instituto Agronômico de Campinas, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brasil
| | - Angelo L Gobbi
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais/CNPEM, Campinas, São Paulo, Brasil
| | - Mônica A Cotta
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| |
Collapse
|
9
|
Phenotypic Characterization and Transformation Attempts Reveal Peculiar Traits of Xylella fastidiosa Subspecies pauca Strain De Donno. Microorganisms 2020; 8:microorganisms8111832. [PMID: 33233703 PMCID: PMC7699976 DOI: 10.3390/microorganisms8111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Xylella fastidiosa subsp. pauca strain De Donno has been recently identified as the causal agent of a severe disease affecting olive trees in a wide area of the Apulia Region (Italy). While insights on the genetics and epidemiology of this virulent strain have been gained, its phenotypic and biological traits remained to be explored. We investigated in vitro behavior of the strain and compare its relevant biological features (growth rate, biofilm formation, cell-cell aggregation, and twitching motility) with those of the type strain Temecula1. The experiments clearly showed that the strain De Donno did not show fringe on the agar plates, produced larger amounts of biofilm and had a more aggregative behavior than the strain Temecula1. Repeated attempts to transform, by natural competence, the strain De Donno failed to produce a GFP-expressing and a knockout mutant for the rpfF gene. Computational prediction allowed us to identify potentially deleterious sequence variations most likely affecting the natural competence and the lack of fringe formation. GFP and rpfF- mutants were successfully obtained by co-electroporation in the presence of an inhibitor of the type I restriction-modification system. The availability of De Donno mutant strains will open for new explorations of its interactions with hosts and insect vectors.
Collapse
|
10
|
de Souza JB, Almeida-Souza HO, Zaini PA, Alves MN, de Souza AG, Pierry PM, da Silva AM, Goulart LR, Dandekar AM, Nascimento R. Xylella fastidiosa subsp. pauca Strains Fb7 and 9a5c from Citrus Display Differential Behavior, Secretome, and Plant Virulence. Int J Mol Sci 2020; 21:E6769. [PMID: 32942709 PMCID: PMC7555403 DOI: 10.3390/ijms21186769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Xylella fastidiosa colonizes the xylem of various cultivated and native plants worldwide. Citrus production in Brazil has been seriously affected, and major commercial varieties remain susceptible to Citrus Variegated Chlorosis (CVC). Collective cellular behaviors such as biofilm formation influence virulence and insect transmission of X. fastidiosa. The reference strain 9a5c produces a robust biofilm compared to Fb7 that remains mostly planktonic, and both were isolated from symptomatic citrus trees. This work deepens our understanding of these distinct behaviors at the molecular level, by comparing the cellular and secreted proteomes of these two CVC strains. Out of 1017 identified proteins, 128 showed differential abundance between the two strains. Different protein families were represented such as proteases, hemolysin-like proteins, and lipase/esterases, among others. Here we show that the lipase/esterase LesA is among the most abundant secreted proteins of CVC strains as well, and demonstrate its functionality by complementary activity assays. More severe symptoms were observed in Nicotiana tabacum inoculated with strain Fb7 compared to 9a5c. Our results support that systemic symptom development can be accelerated by strains that invest less in biofilm formation and more in plant colonization. This has potential application in modulating the bacterial-plant interaction and reducing disease severity.
Collapse
Affiliation(s)
- Jessica Brito de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Hebréia Oliveira Almeida-Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Adriano Zaini
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Mônica Neli Alves
- Department of Technology, School of Agricultural and Veterinary Studies, São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, Jaboticabal SP 14884-900, Brazil;
- Citriculture Defense Fund (Fundecitrus), Av. Dr. Adhemar Pereira de Barros 201, Araraquara SP 14807-040, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Marques Pierry
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Rafael Nascimento
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| |
Collapse
|
11
|
Bossi Esteves M, Lopes Nalin J, Kudlawiec K, Caserta Salviatto R, de Melo Sales T, Sicard A, Piacentini Paes de Almeida R, Alves de Souza A, Roberto Spotti Lopes J. XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca. INSECTS 2020; 11:insects11080473. [PMID: 32722654 PMCID: PMC7469142 DOI: 10.3390/insects11080473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
Xylella fastidiosa is a vector-borne bacterium that causes diseases in many plants of economic interest. The bacterium-vector initial interactions involve bacterial membrane-bound adhesins that mediate cell attachment to the foregut of insect vectors. We investigated the role of the afimbrial adhesin XadA2 in the binding and biofilm formation of X. fastidiosa subsp. pauca to vector surfaces in vitro, as well as its potential to disrupt pathogen transmission. We showed that XadA2 has binding affinity for polysaccharides on sharpshooter hindwings, used as a proxy for the interactions between X. fastidiosa and vectors. When in a medium without carbon sources, the bacterium used wing components, likely chitin, as a source of nutrients and formed a biofilm on the wing surface. There was a significant reduction in X. fastidiosa biofilm formation and cell aggregation on vector wings in competition assays with XadA2 or its specific antibody (anti-XadA2). Finally, pathogen acquisition and transmission to plant were significantly reduced when the vectors acquired X. fastidiosa from an artificial diet supplemented with anti-XadA2. These results show that XadA2 is important in mediating bacterial colonization in the insect and that it could be used as a target for blocking X. fastidiosa transmission.
Collapse
Affiliation(s)
- Mariana Bossi Esteves
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
- Correspondence: ; Tel.: +55-19-9910-22563
| | - Julia Lopes Nalin
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
| | - Karla Kudlawiec
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
| | - Raquel Caserta Salviatto
- Centro de Citricultura “Sylvio Moreira”, Instituto Agronômico, Cordeirópolis, SP 13490-970, Brazil; (R.C.S.); (A.A.d.S.)
| | | | - Anne Sicard
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA; (A.S.); (R.P.P.d.A.)
| | - Rodrigo Piacentini Paes de Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA; (A.S.); (R.P.P.d.A.)
| | - Alessandra Alves de Souza
- Centro de Citricultura “Sylvio Moreira”, Instituto Agronômico, Cordeirópolis, SP 13490-970, Brazil; (R.C.S.); (A.A.d.S.)
| | - João Roberto Spotti Lopes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
| |
Collapse
|
12
|
Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies (Basel) 2020; 9:antib9030028. [PMID: 32605027 PMCID: PMC7551589 DOI: 10.3390/antib9030028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.
Collapse
|
13
|
Kassinger SJ, van Hoek ML. Biofilm architecture: An emerging synthetic biology target. Synth Syst Biotechnol 2020; 5:1-10. [PMID: 31956705 PMCID: PMC6961760 DOI: 10.1016/j.synbio.2020.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biologists are exploiting biofilms as an effective mechanism for producing various outputs. Metabolic optimization has become commonplace as a method of maximizing system output. In addition to production pathways, the biofilm itself contributes to the efficacy of production. The purpose of this review is to highlight opportunities that might be leveraged to further enhance production in preexisting biofilm production systems. These opportunities may be used with previously established production systems as a method of improving system efficiency further. This may be accomplished through the reduction in the cost of establishing and maintaining biofilms, and maintenance of the enhancement of product yield per unit of time, per unit of area, or per unit of required input.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- George Mason University, School of Systems Biology, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| |
Collapse
|
14
|
Fonseca NP, Patané JSL, Varani AM, Felestrino ÉB, Caneschi WL, Sanchez AB, Cordeiro IF, Lemes CGDC, Assis RDAB, Garcia CCM, Belasque J, Martins J, Facincani AP, Ferreira RM, Jaciani FJ, de Almeida NF, Ferro JA, Moreira LM, Setubal JC. Analyses of Seven New Genomes of Xanthomonas citri pv. aurantifolii Strains, Causative Agents of Citrus Canker B and C, Show a Reduced Repertoire of Pathogenicity-Related Genes. Front Microbiol 2019; 10:2361. [PMID: 31681223 PMCID: PMC6797930 DOI: 10.3389/fmicb.2019.02361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022] Open
Abstract
Xanthomonas citri pv. aurantifolii pathotype B (XauB) and pathotype C (XauC) are the causative agents respectively of citrus canker B and C, diseases of citrus plants related to the better-known citrus canker A, caused by Xanthomonas citri pv. citri. The study of the genomes of strains of these related bacterial species has the potential to bring new understanding to the molecular basis of citrus canker as well as their evolutionary history. Up to now only one genome sequence of XauB and only one genome sequence of XauC have been available, both in draft status. Here we present two new genome sequences of XauB (both complete) and five new genome sequences of XauC (two complete). A phylogenomic analysis of these seven genome sequences along with 24 other related Xanthomonas genomes showed that there are two distinct and well-supported major clades, the XauB and XauC clade and the Xanthomonas citri pv. citri clade. An analysis of 62 Type III Secretion System effector genes showed that there are 42 effectors with variable presence/absence or pseudogene status among the 31 genomes analyzed. A comparative analysis of secretion-system and surface-structure genes showed that the XauB and XauC genomes lack several key genes in pathogenicity-related subsystems. These subsystems, the Types I and IV Secretion Systems, and the Type IV pilus, therefore emerge as important ones in helping explain the aggressiveness of the A type of citrus canker and the apparent dominance in the field of the corresponding strain over the B and C strains.
Collapse
Affiliation(s)
- Natasha Peixoto Fonseca
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - José S L Patané
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
| | - Alessandro M Varani
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | - Érica Barbosa Felestrino
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Washington Luiz Caneschi
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Angélica Bianchini Sanchez
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Isabella Ferreira Cordeiro
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Camila Gracyelle de Carvalho Lemes
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Renata de Almeida Barbosa Assis
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Camila Carrião Machado Garcia
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - José Belasque
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Joaquim Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Agda Paula Facincani
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | - Rafael Marini Ferreira
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | | | | | - Jesus Aparecido Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | - Leandro Marcio Moreira
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|
16
|
Feitosa-Junior OR, Stefanello E, Zaini PA, Nascimento R, Pierry PM, Dandekar AM, Lindow SE, da Silva AM. Proteomic and Metabolomic Analyses of Xylella fastidiosa OMV-Enriched Fractions Reveal Association with Virulence Factors and Signaling Molecules of the DSF Family. PHYTOPATHOLOGY 2019; 109:1344-1353. [PMID: 30973310 DOI: 10.1094/phyto-03-19-0083-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xylella fastidiosa releases outer membrane vesicles (OMVs) known to play a role in the systemic dissemination of this pathogen. OMVs inhibit bacterial attachment to xylem wall and traffic lipases/esterases that act on the degradation of plant cell wall. Here, we extended the characterization of X. fastidiosa OMVs by identifying proteins and metabolites potentially associated with OMVs produced by Temecula1, a Pierce's disease strain, and by 9a5c and Fb7, two citrus variegated chlorosis strains. These results strengthen that one of the OMVs multiple functions is to carry determinants of virulence, such as lipases/esterases, adhesins, proteases, porins, and a pectin lyase-like protein. For the first time, we show that the two citrus variegated chlorosis strains produce X. fastidiosa diffusible signaling factor 2 (DSF2) and citrus variegated chlorosis-DSF (likewise, Temecula1) and most importantly, that these compounds of the DSF (X. fastidiosa DSF) family are associated with OMV-enriched fractions. Altogether, our findings widen the potential functions of X. fastidiosa OMVs in intercellular signaling and host-pathogen interactions.
Collapse
Affiliation(s)
- Oséias R Feitosa-Junior
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Eliezer Stefanello
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Paulo A Zaini
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
- 2Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Rafael Nascimento
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
- 3Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Paulo M Pierry
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Abhaya M Dandekar
- 2Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Steven E Lindow
- 4Department Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Aline M da Silva
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
17
|
Kandel PP, Chen H, De La Fuente L. A Short Protocol for Gene Knockout and Complementation in Xylella fastidiosa Shows that One of the Type IV Pilin Paralogs (PD1926) Is Needed for Twitching while Another (PD1924) Affects Pilus Number and Location. Appl Environ Microbiol 2018; 84:e01167-18. [PMID: 29980551 PMCID: PMC6121978 DOI: 10.1128/aem.01167-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
18
|
Stiffness signatures along early stages of Xylella fastidiosa biofilm formation. Colloids Surf B Biointerfaces 2017; 159:174-182. [DOI: 10.1016/j.colsurfb.2017.07.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023]
|
19
|
Janissen R, Sahoo PK, Santos CA, da Silva AM, von Zuben AAG, Souto DEP, Costa ADT, Celedon P, Zanchin NIT, Almeida DB, Oliveira DS, Kubota LT, Cesar CL, Souza APD, Cotta MA. InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. NANO LETTERS 2017; 17:5938-5949. [PMID: 28895736 DOI: 10.1021/acs.nanolett.7b01803] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Electrically active field-effect transistors (FET) based biosensors are of paramount importance in life science applications, as they offer direct, fast, and highly sensitive label-free detection capabilities of several biomolecules of specific interest. In this work, we report a detailed investigation on surface functionalization and covalent immobilization of biomarkers using biocompatible ethanolamine and poly(ethylene glycol) derivate coatings, as compared to the conventional approaches using silica monoliths, in order to substantially increase both the sensitivity and molecular selectivity of nanowire-based FET biosensor platforms. Quantitative fluorescence, atomic and Kelvin probe force microscopy allowed detailed investigation of the homogeneity and density of immobilized biomarkers on different biofunctionalized surfaces. Significantly enhanced binding specificity, biomarker density, and target biomolecule capture efficiency were thus achieved for DNA as well as for proteins from pathogens. This optimized functionalization methodology was applied to InP nanowires that due to their low surface recombination rates were used as new active transducers for biosensors. The developed devices provide ultrahigh label-free detection sensitivities ∼1 fM for specific DNA sequences, measured via the net change in device electrical resistance. Similar levels of ultrasensitive detection of ∼6 fM were achieved for a Chagas Disease protein marker (IBMP8-1). The developed InP nanowire biosensor provides thus a qualified tool for detection of the chronic infection stage of this disease, leading to improved diagnosis and control of spread. These methodological developments are expected to substantially enhance the chemical robustness, diagnostic reliability, detection sensitivity, and biomarker selectivity for current and future biosensing devices.
Collapse
Affiliation(s)
- Richard Janissen
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
- Kavli Institute of Nanoscience, Delft University of Technology , 2629 HZ Delft, The Netherlands
| | - Prasana K Sahoo
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Clelton A Santos
- Center for Molecular Biology and Genetic Engineering, Biology Institute, University of Campinas , Campinas, São Paulo 13083-875, Brazil
| | - Aldeliane M da Silva
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Antonio A G von Zuben
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Denio E P Souto
- Chemistry Institute, University of Campinas , Campinas, São Paulo 13083-970, Brazil
| | - Alexandre D T Costa
- Oswaldo Cruz Foundation, Carlos Chagas Institute , Curitiba, Paraná 81310-020 Brazil
| | - Paola Celedon
- Molecular Biology Institute of Paraná , Curitiba, Paraná 81310-020 Brazil
| | - Nilson I T Zanchin
- Oswaldo Cruz Foundation, Carlos Chagas Institute , Curitiba, Paraná 81310-020 Brazil
| | - Diogo B Almeida
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Douglas S Oliveira
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Lauro T Kubota
- Chemistry Institute, University of Campinas , Campinas, São Paulo 13083-970, Brazil
| | - Carlos L Cesar
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Anete P de Souza
- Center for Molecular Biology and Genetic Engineering, Biology Institute, University of Campinas , Campinas, São Paulo 13083-875, Brazil
| | - Monica A Cotta
- "Gleb Wataghin" Physics Institute, University of Campinas , Campinas, São Paulo 13083-859, Brazil
| |
Collapse
|
20
|
Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. ANNALS OF BOTANY 2017; 119:749-774. [PMID: 28065920 PMCID: PMC5571375 DOI: 10.1093/aob/mcw238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/08/2016] [Accepted: 10/22/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. SCOPE This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot.
Collapse
Affiliation(s)
- Ronaldo J. D. Dalio
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Diogo M. Magalhães
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Carolina M. Rodrigues
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Gabriella D. Arena
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Tiago S. Oliveira
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Reinaldo R. Souza-Neto
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Simone C. Picchi
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paula M. M. Martins
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paulo J. C. Santos
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Heros J. Maximo
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Inaiara S. Pacheco
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Alessandra A. De Souza
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Marcos A. Machado
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| |
Collapse
|
21
|
Mendes JS, Santiago AS, Toledo MAS, Horta MAC, de Souza AA, Tasic L, de Souza AP. In vitro Determination of Extracellular Proteins from Xylella fastidiosa. Front Microbiol 2016; 7:2090. [PMID: 28082960 PMCID: PMC5183587 DOI: 10.3389/fmicb.2016.02090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.
Collapse
Affiliation(s)
- Juliano S. Mendes
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - André S. Santiago
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Maria A. C. Horta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | | | - Ljubica Tasic
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de CampinasCampinas, Brazil
| | - Anete P. de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
22
|
Santiago ADS, Mendes JS, Dos Santos CA, de Toledo MAS, Beloti LL, Crucello A, Horta MAC, Favaro MTDP, Munar DMM, de Souza AA, Cotta MA, de Souza AP. The Antitoxin Protein of a Toxin-Antitoxin System from Xylella fastidiosa Is Secreted via Outer Membrane Vesicles. Front Microbiol 2016; 7:2030. [PMID: 28066356 PMCID: PMC5167779 DOI: 10.3389/fmicb.2016.02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022] Open
Abstract
The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible influence of wild-type XfYgiT in the cell.
Collapse
Affiliation(s)
- André da Silva Santiago
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Juliano S Mendes
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Clelton A Dos Santos
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Marcelo A S de Toledo
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Maria A C Horta
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Marianna T de Pinho Favaro
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Duber M M Munar
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas Campinas, Brazil
| | | | - Mônica A Cotta
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas Campinas, Brazil
| | - Anete P de Souza
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
23
|
Sahoo PK, Janissen R, Monteiro MP, Cavalli A, Murillo DM, Merfa MV, Cesar CL, Carvalho HF, de Souza AA, Bakkers EPAM, Cotta MA. Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability. NANO LETTERS 2016; 16:4656-64. [PMID: 27336224 DOI: 10.1021/acs.nanolett.6b01998] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues.
Collapse
Affiliation(s)
- Prasana K Sahoo
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Richard Janissen
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
- Kavli Institute of Nanoscience, Delft University of Technology , 2629 HZ Delft, The Netherlands
| | - Moniellen P Monteiro
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Alessandro Cavalli
- Applied Physics Department, Eindhoven University of Technology , 5600 MB Eindhoven, The Netherlands
| | - Duber M Murillo
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Marcus V Merfa
- Citrus Center APTA "Sylvio Moreira", Agronomic Institute of Campinas , 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Carlos L Cesar
- Quantum Electronics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Structural and Functional Biology Department, Institute of Biology, State University of Campinas , 13083-865, Campinas, São Paulo, Brazil
| | - Alessandra A de Souza
- Citrus Center APTA "Sylvio Moreira", Agronomic Institute of Campinas , 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Erik P A M Bakkers
- Applied Physics Department, Eindhoven University of Technology , 5600 MB Eindhoven, The Netherlands
| | - Monica A Cotta
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Castiblanco LF, Sundin GW. New insights on molecular regulation of biofilm formation in plant-associated bacteria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:362-72. [PMID: 26377849 DOI: 10.1111/jipb.12428] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/10/2015] [Indexed: 05/11/2023]
Abstract
Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior.
Collapse
Affiliation(s)
- Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences and Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan, 48824, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences and Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
25
|
Granato LM, Picchi SC, Andrade MDO, Takita MA, de Souza AA, Wang N, Machado MA. The ATP-dependent RNA helicase HrpB plays an important role in motility and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiol 2016; 16:55. [PMID: 27005008 PMCID: PMC4804567 DOI: 10.1186/s12866-016-0655-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RNA helicases are enzymes that catalyze the separation of double-stranded RNA (dsRNA) using the free energy of ATP binding and hydrolysis. DEAD/DEAH families participate in many different aspects of RNA metabolism, including RNA synthesis, RNA folding, RNA-RNA interactions, RNA localization and RNA degradation. Several important bacterial DEAD/DEAH-box RNA helicases have been extensively studied. In this study, we characterize the ATP-dependent RNA helicase encoded by the hrpB (XAC0293) gene using deletion and genetic complementation assays. We provide insights into the function of the hrpB gene in Xanthomonas citri subsp. citri by investigating the roles of hrpB in biofilm formation on abiotic surfaces and host leaves, cell motility, host virulence of the citrus canker bacterium and growth in planta. RESULTS The hrpB gene is highly conserved in the sequenced strains of Xanthomonas. Mutation of the hrpB gene (∆hrpB) resulted in a significant reduction in biofilms on abiotic surfaces and host leaves. ∆hrpB also exhibited increased cell dispersion on solid medium plates. ∆hrpB showed reduced adhesion on biotic and abiotic surfaces and delayed development in disease symptoms when sprayed on susceptible citrus leaves. Quantitative reverse transcription-PCR assays indicated that deletion of hrpB reduced the expression of four type IV pili genes. The transcriptional start site of fimA (XAC3241) was determined using rapid amplification of 5'-cDNA Ends (5'RACE). Based on the results of fimA mRNA structure predictions, the fimA 5' UTR may contain three different loops. HrpB may be involved in alterations to the structure of fimA mRNA that promote the stability of fimA RNA. CONCLUSIONS Our data show that hrpB is involved in adherence of Xanthomonas citri subsp. citri to different surfaces. In addition, to the best of our knowledge, this is the first time that a DEAH RNA helicase has been implicated in the regulation of type IV pili in Xanthomonas.
Collapse
Affiliation(s)
- Laís Moreira Granato
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brazil
- Universidade Estadual de Campinas/UNICAMP, Instituto de Biologia, P.O. Box 6010, Campinas, SP, 13083-970, Brazil
| | - Simone Cristina Picchi
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brazil
| | - Maxuel de Oliveira Andrade
- Citrus Research and Educational Center, Department of Microbiology and Cell Science, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Marco Aurélio Takita
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brazil
| | - Alessandra Alves de Souza
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brazil
| | - Nian Wang
- Citrus Research and Educational Center, Department of Microbiology and Cell Science, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brazil.
| |
Collapse
|
26
|
Parker JK, Chen H, McCarty SE, Liu LY, De La Fuente L. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures. Environ Microbiol 2016; 18:1620-34. [PMID: 26913481 DOI: 10.1111/1462-2920.13242] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Sara E McCarty
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Lawrence Y Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | | |
Collapse
|
27
|
Mendes JS, Santiago ADS, Toledo MAS, Rosselli-Murai LK, Favaro MTP, Santos CA, Horta MAC, Crucello A, Beloti LL, Romero F, Tasic L, de Souza AA, de Souza AP. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity. PLoS One 2015; 10:e0145765. [PMID: 26694028 PMCID: PMC4687846 DOI: 10.1371/journal.pone.0145765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023] Open
Abstract
Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.
Collapse
Affiliation(s)
- Juliano S. Mendes
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - André da S. Santiago
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Luciana K. Rosselli-Murai
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Marianna T. P. Favaro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Clelton A. Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Maria Augusta C. Horta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Lilian L. Beloti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Fabian Romero
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-970
| | - Ljubica Tasic
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-970
| | | | - Anete P. de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil, CEP 13083-862
| |
Collapse
|
28
|
Santos CA, Janissen R, Toledo MAS, Beloti LL, Azzoni AR, Cotta MA, Souza AP. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1372-81. [PMID: 26049080 DOI: 10.1016/j.bbapap.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development.
Collapse
Affiliation(s)
- Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Richard Janissen
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Adriano R Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Monica A Cotta
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
29
|
Santiago AS, Santos CA, Mendes JS, Toledo MAS, Beloti LL, Souza AA, Souza AP. Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:72-8. [PMID: 25979465 DOI: 10.1016/j.pep.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022]
Abstract
The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress.
Collapse
Affiliation(s)
- André S Santiago
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliano S Mendes
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alessandra A Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia (IB), Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
30
|
Janissen R, Murillo DM, Niza B, Sahoo PK, Nobrega MM, Cesar CL, Temperini MLA, Carvalho HF, de Souza AA, Cotta MA. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Sci Rep 2015; 5:9856. [PMID: 25891045 PMCID: PMC4402645 DOI: 10.1038/srep09856] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/20/2015] [Indexed: 12/30/2022] Open
Abstract
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.
Collapse
Affiliation(s)
- Richard Janissen
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Duber M. Murillo
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Barbara Niza
- Citrus Center APTA ‘Sylvio Moreira’, Agronomic Institute of Campinas, 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Prasana K. Sahoo
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Marcelo M. Nobrega
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Carlos L. Cesar
- Quantum Electronics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Marcia L. A. Temperini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Hernandes F. Carvalho
- Structural and Functional Biology Department, Institute of Biology, State University of Campinas, 13083-865, Campinas, São Paulo, Brazil
| | - Alessandra A. de Souza
- Citrus Center APTA ‘Sylvio Moreira’, Agronomic Institute of Campinas, 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Monica A. Cotta
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| |
Collapse
|
31
|
Johnson KL, Cursino L, Athinuwat D, Burr TJ, Mowery P. Potential complications when developing gene deletion clones in Xylella fastidiosa. BMC Res Notes 2015; 8:155. [PMID: 25880211 PMCID: PMC4403849 DOI: 10.1186/s13104-015-1117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce′s disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Methods Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. Results We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. Conclusions We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.
Collapse
Affiliation(s)
- Kameka L Johnson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Luciana Cursino
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA.
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA. .,Current address: Major of Organic Farming Management, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand.
| | - Thomas J Burr
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA.
| |
Collapse
|
32
|
Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1132-47. [PMID: 25180689 DOI: 10.1094/mpmi-06-14-0184-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial type IV pili (T4P) are long, flexible surface filaments that consist of helical polymers of mostly pilin subunits. Cycles of polymerization, attachment, and depolymerization mediate several pilus-dependent bacterial behaviors, including twitching motility, surface adhesion, pathogenicity, natural transformation, escape from immune system defense mechanisms, and biofilm formation. The Xanthomonas citri subsp. citri strain 306 genome codes for a large set of genes involved in T4P biogenesis and regulation and includes several pilin homologs. We show that X. citri subsp. citri can exhibit twitching motility in a manner similar to that observed in other bacteria such as Pseudomonas aeruginosa and Xylella fastidiosa and that this motility is abolished in Xanthomonas citri subsp. citri knockout strains in the genes coding for the major pilin subunit PilAXAC3241, the ATPases PilBXAC3239 and PilTXAC2924, and the T4P biogenesis regulators PilZXAC1133 and FimXXAC2398. Microscopy analyses were performed to compare patterns of bacterial migration in the wild-type and knockout strains and we observed that the formation of mushroom-like structures in X. citri subsp. citri biofilm requires a functional T4P. Finally, infection of X. citri subsp. citri cells by the bacteriophage (ΦXacm4-11 is T4P dependent. The results of this study improve our understanding of how T4P influence Xanthomonas motility, biofilm formation, and susceptibility to phage infection.
Collapse
|
33
|
Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces. Proc Natl Acad Sci U S A 2014; 111:E3910-8. [PMID: 25197068 DOI: 10.1073/pnas.1414944111] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.
Collapse
|
34
|
Effect of oxygen on the growth and biofilm formation of Xylella fastidiosa in liquid media. Curr Microbiol 2014; 69:866-73. [PMID: 25100224 DOI: 10.1007/s00284-014-0660-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
Xylella fastidiosa is a xylem-limited bacterial pathogen, and is the causative agent of Pierce's disease of grapevines and scorch diseases of many other plant species. The disease symptoms are putatively due to blocking of the transpiration stream by bacterial-induced biofilm formation and/or by the formation of plant-generated tylosis. Xylella fastidiosa has been classified as an obligate aerobe, which appears unusual given that dissolved O2 levels in the xylem during the growing season are often hypoxic (20-60 μmol L(-1)). We examined the growth and biofilm formation of three strains of X. fastidiosa under variable O2 conditions (21, 2.1, 0.21 and 0 % O2), in comparison to that of Pseudomonas syringae (obligate aerobe) and Erwinia carotovora (facultative anaerobe) under similar conditions. The growth of X. fastidiosa more closely resembled that of the facultative anaerobe, and not the obligate aerobe. Xanthomonas campestris, the closest genetic relative of X. fastidiosa, exhibited no growth in an N2 environment, whereas X. fastidiosa was capable of growing in an N2 environment in PW(+), CHARDS, and XDM2-PR media. The magnitude of growth and biofilm formation in the N2 (0 % O2) treatment was dependent on the specific medium. Additional studies involving the metabolism of X. fastidiosa in response to low O2 are warranted. Whether X. fastidiosa is classified as an obligate aerobe or a facultative anaerobe should be confirmed by gene activation and/or the quantification of the metabolic profiles under hypoxic conditions.
Collapse
|
35
|
Lorite GS, Janissen R, Clerici JH, Rodrigues CM, Tomaz JP, Mizaikoff B, Kranz C, de Souza AA, Cotta MA. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development. PLoS One 2013; 8:e75247. [PMID: 24073256 PMCID: PMC3779164 DOI: 10.1371/journal.pone.0075247] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/13/2013] [Indexed: 01/07/2023] Open
Abstract
The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.
Collapse
Affiliation(s)
- Gabriela S. Lorite
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Richard Janissen
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - João H. Clerici
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Carolina M. Rodrigues
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, Brazil
| | - Juarez P. Tomaz
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, Brazil
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany
| | - Alessandra A. de Souza
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, Brazil
| | - Mônica A. Cotta
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
36
|
Muranaka LS, Giorgiano TE, Takita MA, Forim MR, Silva LFC, Coletta-Filho HD, Machado MA, de Souza AA. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa. PLoS One 2013; 8:e72937. [PMID: 24009716 PMCID: PMC3751844 DOI: 10.1371/journal.pone.0072937] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.
Collapse
Affiliation(s)
- Lígia S. Muranaka
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
- Departamento de Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thais E. Giorgiano
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Marco A. Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Moacir R. Forim
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Luis F. C. Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | | | - Marcos A. Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Alessandra A. de Souza
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
37
|
Clifford JC, Rapicavoli JN, Roper MC. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:676-85. [PMID: 23441576 DOI: 10.1094/mpmi-12-12-0283-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.
Collapse
Affiliation(s)
- Jennifer C Clifford
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | | | | |
Collapse
|
38
|
Voegel TM, Doddapaneni H, Cheng DW, Lin H, Stenger DC, Kirkpatrick BC, Roper MC. Identification of a response regulator involved in surface attachment, cell-cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa. MOLECULAR PLANT PATHOLOGY 2013; 14:256-264. [PMID: 23186359 PMCID: PMC6638743 DOI: 10.1111/mpp.12004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate to response regulators (RRs), which direct an output response, usually by acting as transcriptional regulators. In the X. fastidiosa genome, 19 RRs were found. A site-directed knockout mutant in one unusual RR, designated XhpT, composed of a receiver domain and a histidine phosphotransferase output domain, was constructed. The resulting mutant strain was analysed for changes in phenotypic traits related to biofilm formation and gene expression using microarray analysis. We found that the xhpT mutant was altered in surface attachment, cell-cell aggregation, exopolysaccharide (EPS) production and virulence in grapevine. In addition, this mutant had an altered transcriptional profile when compared with wild-type X. fastidiosa in genes for several biofilm-related traits, such as EPS production and haemagglutinin adhesins.
Collapse
Affiliation(s)
- Tanja M Voegel
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Santos CA, Toledo MAS, Trivella DBB, Beloti LL, Schneider DRS, Saraiva AM, Crucello A, Azzoni AR, Souza AA, Aparicio R, Souza AP. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogenXylella fastidiosareveals a redox-dependent oligomeric modulationin vitro. FEBS J 2012; 279:3828-43. [DOI: 10.1111/j.1742-4658.2012.08743.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Clelton A. Santos
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Daniela B. B. Trivella
- Laboratório de Biologia Estrutural e Cristalografia; Instituto de Química; Universidade Estadual de Campinas; Brazil
| | - Lilian L. Beloti
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Dilaine R. S. Schneider
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Antonio M. Saraiva
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | | | | | - Ricardo Aparicio
- Laboratório de Biologia Estrutural e Cristalografia; Instituto de Química; Universidade Estadual de Campinas; Brazil
| | | |
Collapse
|
40
|
Muranaka LS, Takita MA, Olivato JC, Kishi LT, de Souza AA. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells. J Bacteriol 2012; 194:4561-9. [PMID: 22730126 PMCID: PMC3415493 DOI: 10.1128/jb.00436-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/14/2012] [Indexed: 01/05/2023] Open
Abstract
Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable.
Collapse
Affiliation(s)
- Lígia S. Muranaka
- Centro APTA Citros Sylvio Moreira/IAC, Cordeirópolis, São Paulo, Brazil
- Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Campinas, São Paulo, Brazil
| | - Marco A. Takita
- Centro APTA Citros Sylvio Moreira/IAC, Cordeirópolis, São Paulo, Brazil
| | | | - Luciano T. Kishi
- Centro APTA Citros Sylvio Moreira/IAC, Cordeirópolis, São Paulo, Brazil
| | | |
Collapse
|
41
|
Matsumoto A, Huston SL, Killiny N, Igo MM. XatA, an AT-1 autotransporter important for the virulence of Xylella fastidiosa Temecula1. Microbiologyopen 2012; 1:33-45. [PMID: 22950010 PMCID: PMC3426408 DOI: 10.1002/mbo3.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 11/07/2022] Open
Abstract
Xylella fastidiosa Temecula1 is the causative agent of Pierce's disease of grapevine, which is spread by xylem-feeding insects. An important feature of the infection cycle is the ability of X. fastidiosa to colonize and interact with two distinct environments, the xylem of susceptible plants and the insect foregut. Here, we describe our characterization of XatA, the X. fastidiosa autotransporter protein encoded by PD0528. XatA, which is classified as an AT-1 (classical) autotransporter, has a C-terminal β-barrel domain and a passenger domain composed of six tandem repeats of approximately 50 amino acids. Localization studies indicate that XatA is present in both the outer membrane and membrane vesicles and its passenger domain can be found in the supernatant. Moreover, XatA is important for X. fastidiosa autoaggregation and biofilm formation based on mutational analysis and the discovery that Escherichia coli expressing XatA acquire these traits. The xatA mutant also shows a significant decrease in Pierce's disease symptoms when inoculated into grapevines. Finally, X. fastidiosa homologs to XatA, which can be divided into three distinct groups based on synteny, form a single, well-supported clade, suggesting that they arose from a common ancestor.
Collapse
|
42
|
Killiny N, Rashed A, Almeida RPP. Disrupting the transmission of a vector-borne plant pathogen. Appl Environ Microbiol 2012; 78:638-43. [PMID: 22101059 PMCID: PMC3264107 DOI: 10.1128/aem.06996-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/11/2011] [Indexed: 11/20/2022] Open
Abstract
Approaches to control vector-borne diseases rarely focus on the interface between vector and microbial pathogen, but strategies aimed at disrupting the interactions required for transmission may lead to reductions in disease spread. We tested if the vector transmission of the plant-pathogenic bacterium Xylella fastidiosa was affected by three groups of molecules: lectins, carbohydrates, and antibodies. Although not comprehensively characterized, it is known that X. fastidiosa adhesins bind to carbohydrates, and that these interactions are important for initial cell attachment to vectors, which is required for bacterial transmission from host to host. Lectins with affinity to substrates expected to occur on the cuticular surface of vectors colonized by X. fastidiosa, such as wheat germ agglutinin, resulted in statistically significant reductions in transmission rate, as did carbohydrates with N-acetylglucosamine residues. Presumably, lectins bound to receptors on the vector required for cell adhesion/colonization, while carbohydrate-saturated adhesins on X. fastidiosa's cell surface. Furthermore, antibodies against X. fastidiosa whole cells, gum, and afimbrial adhesins also resulted in transmission blockage. However, no treatment resulted in the complete abolishment of transmission, suggesting that this is a complex biological process. This work illustrates the potential to block the transmission of vector-borne pathogens without directly affecting either organism.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, IFAS, Lake Alfred, Florida, USA.
| | | | | |
Collapse
|
43
|
Silva MS, De Souza AA, Takita MA, Labate CA, Machado MA. Analysis of the biofilm proteome of Xylella fastidiosa. Proteome Sci 2011; 9:58. [PMID: 21939513 PMCID: PMC3187737 DOI: 10.1186/1477-5956-9-58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 09/22/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. RESULTS We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. CONCLUSIONS We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.
Collapse
Affiliation(s)
- Mariana S Silva
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| | | | - Marco A Takita
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| | - Carlos A Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Marcos A Machado
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| |
Collapse
|
44
|
Remenant B, de Cambiaire JC, Cellier G, Jacobs JM, Mangenot S, Barbe V, Lajus A, Vallenet D, Medigue C, Fegan M, Allen C, Prior P. Ralstonia syzygii, the Blood Disease Bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS One 2011; 6:e24356. [PMID: 21931687 PMCID: PMC3169583 DOI: 10.1371/journal.pone.0024356] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/06/2011] [Indexed: 12/19/2022] Open
Abstract
The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.
Collapse
Affiliation(s)
- Benoît Remenant
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), INRA-CIRAD, Saint Pierre, La Réunion, France
| | - Jean-Charles de Cambiaire
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), CIRAD, Saint Pierre, La Réunion, France
| | - Gilles Cellier
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), CIRAD, Saint Pierre, La Réunion, France
- Unité Ravageurs et Agents Pathogènes Tropicaux, Agence Nationale de Sécurité Sanitaire, Laboratoire de la Santé des Végétaux, Saint Pierre, La Réunion, France
| | - Jonathan M. Jacobs
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sophie Mangenot
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Valérie Barbe
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Aurélie Lajus
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CNRS-UMR 8030, Evry, France
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - David Vallenet
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CNRS-UMR 8030, Evry, France
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Claudine Medigue
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CNRS-UMR 8030, Evry, France
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Mark Fegan
- Department of Primary Industries, Biosciences Research Division, Attwood, Victoria, Australia
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Philippe Prior
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), INRA-CIRAD, Saint Pierre, La Réunion, France
- * E-mail:
| |
Collapse
|