1
|
Tsugami Y, Iwata T, Sugiyama A, Onishi M, Nakajima KI, Osaki M, Nagasawa Y. Involvement of adhesins (EcpD, FdeC, FimH) expressed in mammary pathogenic Escherichia coli on adhesion to bovine mammary epithelial cells. Antonie Van Leeuwenhoek 2024; 118:14. [PMID: 39361215 DOI: 10.1007/s10482-024-02025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Mammary pathogenic Escherichia coli (MPEC) causes mastitis, which results in substantial economic losses to the dairy industry. A high percentage of Escherichia coli isolated from cows with clinical mastitis harbor adhesin genes, such as fimH. However, it is unclear whether these adhesins are important in the adhesion of MPEC to bovine mammary epithelial cells (BMECs). Therefore, we investigated the effect of adhesins (EcpD, FdeC, and FimH) in MPEC on adherence to the bovine mammary epithelium using cultured BMECs. For this purpose, we used wild-type MPEC as well as single- and double-mutants of fimH, ecpD, and fdeC, and performed adhesion assays with BMECs. First, BMECs were cultured in the presence of lactogenic hormones to induce milk component production and tight junction formation. The bacterial count of the wild-type strain that adhered to the BMECs increased in a dose-dependent manner. In deletion mutant strains, the ΔfimH strain showed lower adhesion (P < 0.05), whereas the adhesion ratio of the ΔecpD and ΔfdeC strains was not statistically different compared with that of the wild-type strain (P > 0.05). Additionally, the fimH/fdeC double-deletion mutants showed the lowest adhesion to BMECs. In conclusion, FimH is crucial in the adhesion of MPEC to BMECs. Overall, our work identifies FimH or FimH/FdeC as interesting targets for future drugs or vaccines to improve the treatment, prevention or chronicity of mastitis induced by MPEC.
Collapse
Affiliation(s)
- Yusaku Tsugami
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Taketoshi Iwata
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Aoi Sugiyama
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Megumi Onishi
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Kei-Ichi Nakajima
- Department of Biochemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa City, Hokkaido, 078-8510, Japan
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, 1 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Makoto Osaki
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yuya Nagasawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
2
|
Aleksandrowicz A, Kjærup RB, Grzymajło K, Martinez FG, Muñoz J, Borowska D, Sives S, Vervelde L, Dalgaard TS, Kingsley RA, Kolenda R. FdeC expression regulates motility and adhesion of the avian pathogenic Escherichia coli strain IMT5155. Vet Res 2024; 55:70. [PMID: 38822378 PMCID: PMC11143625 DOI: 10.1186/s13567-024-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/04/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.
Collapse
Affiliation(s)
- Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Present Address: Cell Signaling and Clinical Proteomics Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Present Address: Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Dominika Borowska
- Division of Immunology, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Samantha Sives
- Present Address: Cell Signaling and Clinical Proteomics Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Robert A Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK.
| |
Collapse
|
3
|
Hassan IZ, Qekwana DN, Naidoo V. Do Pathogenic Escherichia coli Isolated from Gallus gallus in South Africa Carry Co-Resistance Toward Colistin and Carbapenem Antimicrobials? Foodborne Pathog Dis 2023; 20:388-397. [PMID: 37471208 DOI: 10.1089/fpd.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Colistin and carbapenems are critically important antimicrobials often used as a last resort to manage multidrug-resistant bacterial infections in humans. With limited alternatives, resistance to these antimicrobials is of concern as organisms could potentially spread horizontally rendering treatments ineffective. The aim of this study was to investigate co-resistance to colistin and carbapenems among Escherichia coli isolated from poultry in South Africa. Forty-six E. coli strains obtained from clinical cases of breeder and broiler chickens were used. In addition to other antibiotics, all the isolates were tested against colistin and carbapenems using broth microdilution. Multiplex polymerase chain reactions were used to investigate the presence of colistin (mcr-1 to 5) and carbapenem (blaOXA-48, blaNDM-1, and blaVIM) resistance genes. Isolates exhibiting colistin resistance (>2 μg/mL) underwent a whole-genome sequencing analysis. Resistance to colistin (10.9%) and cefepime (6.5%) was noted with all colistin-resistant strains harboring the mcr-1 gene. None of the E. coli isolates were resistant to carbapenems nor carried the other resistant genes (mcr-2 to 5, blaOXA-48, blaNDM-1, and blaVIM). The mcr-1-positive strains belonged to sequence types ST117 and ST156 and carried virulence genes ompA, aslA, fdeC, fimH, iroN, iutA, tsh, pic, ast A and set 1A/1B. In conclusion, clinical E. coli strains from chickens in this study possessed mobile resistance genes for colistin and several other clinically relevant antimicrobials but not carbapenems. Additionally, they belonged to sequence types in addition to carrying virulence factors often associated with human extraintestinal pathogenic E. coli infections. Thus, the potential risk of transmitting these strains to humans cannot be underestimated especially if sick birds are dispatched into the thriving poorly regulated Cornish hen industry. The need for routine veterinary surveillance and monitoring of antimicrobial resistance, antimicrobial use and the importance of strengthening regulations guiding the informal poultry sector remains important.
Collapse
Affiliation(s)
- Ibrahim Zubairu Hassan
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Daniel N Qekwana
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
4
|
Khan MM, Ali A, Kolenda R, Olowe OA, Weinreich J, Li G, Schierack P. The role of AJB35136 and fdtA genes in biofilm formation by avian pathogenic Escherichia coli. BMC Vet Res 2023; 19:126. [PMID: 37596603 PMCID: PMC10436575 DOI: 10.1186/s12917-023-03672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Infections caused by avian pathogenic Escherichia coli (APEC) result in significant economic losses in poultry industry. APEC strains are known to form biofilms in various conditions allowing them to thrive even under harsh and nutrient-deficient conditions on different surfaces, and this ability enables them to evade chemical and biological eradication methods. Despite knowing the whole genome sequences of various APEC isolates, little has been reported regarding their biofilm-associated genes. A random transposon mutant library of the wild-type APEC IMT 5155 comprising 1,300 mutants was analyzed for biofilm formation under nutrient deprived conditions using Videoscan technology coupled with fluorescence microscopy. Seven transposon mutants were found to have reproducibly and significantly altered biofilm formation and their mutated genes were identified by arbitrary PCR and DNA sequencing. The intact genes were acquired from the wild-type strain, cloned in pACYC177 plasmid and transformed into the respective altered biofilm forming transposon mutants, and the biofilm formation was checked in comparison to the wild type and mutant strains under the same conditions. RESULTS In this study, we report seven genes i.e., nhaA, fdeC, yjhB, lysU, ecpR, AJB35136 and fdtA of APEC with significant contribution to biofilm formation. Reintroduction of AJB35136 and fdtA, reversed the altered phenotype proving that a significant role being played by these two O-antigen related genes in APEC biofilm formation. Presence of these seven genes across nonpathogenic E. coli and APEC genomes was also analyzed showing that they are more prevalent in the latter. CONCLUSIONS The study has elucidated the role of these genes in APEC biofilm formation and compared them to adhesion expanding the knowledge and understanding of the economically significant pathogens.
Collapse
Affiliation(s)
- Muhammad Moman Khan
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Universitätsplatz 1, D-01968, Senftenberg, Germany
| | - Aamir Ali
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Universitätsplatz 1, D-01968, Senftenberg, Germany.
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) , Jhang Road, POBox 577, Faisalabad, Pakistan.
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Quadram Institute, Norwich Research Park, Norwich, UK
| | - Olugbenga Adekunle Olowe
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Universitätsplatz 1, D-01968, Senftenberg, Germany
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Jörg Weinreich
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Universitätsplatz 1, D-01968, Senftenberg, Germany
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Peter Schierack
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Universitätsplatz 1, D-01968, Senftenberg, Germany
| |
Collapse
|
5
|
Schwan CL, Bastos LM, Young S, Domesle K, Ge B, Hsu CH, Li C, Strain E, Vipham J, Jones C, Amachawadi R, Nagaraja TG, Trinetta V. Graphical abstractGenotypic and Phenotypic Characterization of Antimicrobial and Heavy Metal tolerance in Salmonella enterica and Escherichia coli Isolates from Swine Feed Mills. J Food Prot 2023:100113. [PMID: 37290750 DOI: 10.1016/j.jfp.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Antimicrobials and heavy metals are commonly used in the animal feed industry. The role of in-feed antimicrobials on the evolution and persistence of resistance in enteric bacteria is not well described. Whole-Genome Sequencing (WGS) is widely used for genetic characterizations of bacterial isolates, including antimicrobial resistance, heavy metal tolerance, virulence factors, and relatedness to other sequenced isolates. The goals of this study were to i) use WGS to characterize Salmonella enterica (n = 33) and Escherichia coli (n = 30) isolated from swine feed and feed mill environments; and ii) investigate their genotypic and phenotypic antimicrobial and heavy metal tolerance. Salmonella isolates belonged to 10 serovars, the most common being Cubana, Senftenberg, and Tennessee. E. coli isolates were grouped into 22 O groups. Phenotypic resistance to at least one antimicrobial was observed in 19 Salmonella (57.6%) and 17 E. coli (56.7%) isolates, whereas multidrug resistance (resistant to ≥ 3 antimicrobial classes) was observed in four Salmonella (12%) and two E. coli (7%) isolates. Antimicrobial resistance genes were identified in 17 Salmonella (51%) and 29 E. coli (97%), with 11 and 29 isolates possessing genes conferring resistance to multiple antimicrobial classes. Phenotypically, 53% Salmonella and 58% E. coli presented resistance to copper and arsenic. All isolates that possessed the copper resistance operon were resistant to the highest concentration tested (40 mM). Heavy metal tolerance genes to copper and silver were present in 26 Salmonella isolates. Our study showed a strong agreement between predicted and measured resistances when comparing genotypic and phenotypic data for antimicrobial resistance, with an overall concordance of 99% and 98.3% for Salmonella and E. coli, respectively.
Collapse
Affiliation(s)
- Carla L Schwan
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Leonardo M Bastos
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Shenia Young
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Kelly Domesle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Beilei Ge
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Jessie Vipham
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Cassandra Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Raghavendra Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Valentina Trinetta
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
6
|
Cherry JL. Recent Genetic Changes Affecting Enterohemorrhagic Escherichia coli Causing Recurrent Outbreaks. Microbiol Spectr 2022; 10:e0050122. [PMID: 35467376 PMCID: PMC9241674 DOI: 10.1128/spectrum.00501-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is responsible for significant human illness, death, and economic loss. The main reservoir for EHEC is cattle, but plant-based foods are common vectors for human infection. Several outbreaks have been attributed to lettuce and leafy green vegetables grown in the Salinas and Santa Maria regions of California. Bacteria causing different outbreaks are mostly not close relatives, but one group of closely-related O157:H7 has caused several of them. This unusual pattern of recurrence may have some genetic basis. Here I use whole-genome sequences to reconstruct the genetic changes that occurred in the recent ancestry of this EHEC. In a short period of time corresponding to little genetic change, there were several changes to adhesion-related sequences, mainly adhesins. These changes may have greatly altered the adhesive properties of the bacteria. Possible consequences include increased persistence of cattle infections, more bacteria shed in cattle feces, and greater virulence in humans. Similar constellations of genetic change, which are detectable by current sequencing-based surveillance, may identify other bacteria that are particular threats to human health. In addition, the Santa Maria subclade carries a nonsense mutation affecting ArsR, a repressor of genes that confer resistance to arsenic and antimony. This suggests that the persistent source of Santa Maria contamination is located in an area with arsenic-contaminated groundwater, a problem in many parts of California. This inference may aid identification of the reservoir of EHEC, which would greatly aid mitigation efforts. IMPORTANCE Food-borne bacterial infections cause substantial illness and death. Understanding how bacteria contaminate food and cause disease is important for combating the problem. Closely-related E. coli, likely originating in cattle, have repeatedly caused outbreaks spread by vegetables grown in California. Such recurrence is atypical, and might have a genetic basis. The genetic changes that occurred in the recent ancestry of these E. coli can be reconstructed from their DNA sequences. Several mutations affect genes involved in bacterial adhesion. These might affect persistence of infection in cattle, quantity of bacteria in their feces, and human disease. They also suggest a way of detecting dangerous bacteria from their genome sequences. Furthermore, a subgroup carries a mutation affecting the regulation of genes conferring arsenic resistance. This suggests that the reservoir for contamination utilizes groundwater contaminated with arsenic, a problem in parts of California. This observation may be an aid to locating the persistent reservoir of contamination.
Collapse
Affiliation(s)
- Joshua L. Cherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Loss of an Intimin-Like Protein Encoded on a Uropathogenic E. coli Pathogenicity Island Reduces Inflammation and Affects Interactions with the Urothelium. Infect Immun 2021; 90:e0027521. [PMID: 34871042 DOI: 10.1128/iai.00275-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) causes the majority of uncomplicated urinary tract infections (UTI), which affect nearly half of women worldwide. Many UPEC strains encode an annotated intimin-like adhesin (ila) locus in their genome related to a well-characterized virulence factor in diarrheagenic E. coli pathotypes. Its role in UPEC uropathogenesis, however, remains unknown. In prototype UPEC strain CFT073, there is an ila locus that encodes three predicted intimin-like genes sinH, sinI, and ratA. We used in silico approaches to determine the phylogeny and genomic distribution of this locus among uropathogens. We found that the currently annotated intimin-encoding proteins in CFT073 are more closely related to invasin proteins found in Salmonella. Deletion of the individual sinH, sinI, and ratA genes did not result in measurable effects on growth, biofilm formation, or motility in vitro. On average, sinH was more highly expressed in clinical strains during active human UTI than in human urine ex vivo. Unexpectedly, we found that strains lacking this ila locus had increased adherence to bladder cells in vitro, coupled with a decrease in bladder cell invasion and death. The sinH mutant displayed a significant fitness defect in the murine model of ascending UTI including reduced inflammation in the bladder. These data confirmed an inhibitory role in bladder cell adherence to facilitate invasion and inflammation; therefore, the ila locus should be termed invasin-like, rather than intimin-like. Collectively, our data suggest that loss of this locus mediates measurable interactions with bladder cells in vitro and contributes to fitness during UTI.
Collapse
|
8
|
Terwilliger A, Clark J, Karris M, Hernandez-Santos H, Green S, Aslam S, Maresso A. Phage Therapy Related Microbial Succession Associated with Successful Clinical Outcome for a Recurrent Urinary Tract Infection. Viruses 2021; 13:v13102049. [PMID: 34696479 PMCID: PMC8541385 DOI: 10.3390/v13102049] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/29/2023] Open
Abstract
We rationally designed a bacteriophage cocktail to treat a 56-year-old male liver transplant patient with complex, recurrent prostate and urinary tract infections caused by an extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) (UCS1). We screened our library for phages that killed UCS1, with four promising candidates chosen for their virulence, mucolytic properties, and ability to reduce bacterial resistance. The patient received 2 weeks of intravenous phage cocktail with concomitant ertapenem for 6 weeks. Weekly serum and urine samples were collected to track the patient’s response. The patient tolerated the phage therapy without any adverse events with symptom resolution. The neutralization of the phage activity occurred with sera collected 1 to 4 weeks after the first phage treatment. This was consistent with immunoassays that detected the upregulation of immune stimulatory analytes. The patient developed asymptomatic recurrent bacteriuria 6 and 11 weeks following the end of phage therapy—a condition that did not require antibiotic treatment. The bacteriuria was caused by a sister strain of E. coli (UCS1.1) that remained susceptible to the original phage cocktail and possessed putative mutations in the proteins involved in adhesion and invasion compared to UCS1. This study highlights the utility of rationally designed phage cocktails with antibiotics at controlling E. coli infection and suggests that microbial succession, without complete eradication, may produce desirable clinical outcomes.
Collapse
Affiliation(s)
- Austen Terwilliger
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Justin Clark
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Maile Karris
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
| | - Haroldo Hernandez-Santos
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Sabrina Green
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| | - Anthony Maresso
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| |
Collapse
|
9
|
Jung D, Park S, Ruffini J, Dussault F, Dufour S, Ronholm J. Comparative genomic analysis of Escherichia coli isolates from cases of bovine clinical mastitis identifies nine specific pathotype marker genes. Microb Genom 2021; 7:000597. [PMID: 34227932 PMCID: PMC8477405 DOI: 10.1099/mgen.0.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli is a major causative agent of environmental bovine mastitis and this disease causes significant economic losses for the dairy industry. There is still debate in the literature as to whether mammary pathogenic E. coli (MPEC) is indeed a unique E. coli pathotype, or whether this infection is merely an opportunistic infection caused by any E. coli isolate being displaced from the bovine gastrointestinal tract to the environment and, then, into the udder. In this study, we conducted a thorough genomic analysis of 113 novel MPEC isolates from clinical mastitis cases and 100 bovine commensal E. coli isolates. A phylogenomic analysis indicated that MPEC and commensal E. coli isolates formed clades based on common sequence types and O antigens, but did not cluster based on mammary pathogenicity. A comparative genomic analysis of MPEC and commensal isolates led to the identification of nine genes that were part of either the core or the soft-core MPEC genome, but were not found in any bovine commensal isolates. These apparent MPEC marker genes were genes involved with nutrient intake and metabolism [adeQ, adenine permease; nifJ, pyruvate-flavodoxin oxidoreductase; and yhjX, putative major facilitator superfamily (MFS)-type transporter], included fitness and virulence factors commonly seen in uropathogenic E. coli (pqqL, zinc metallopeptidase, and fdeC, intimin-like adhesin, respectively), and putative proteins [yfiE, uncharacterized helix-turn-helix-type transcriptional activator; ygjI, putative inner membrane transporter; and ygjJ, putative periplasmic protein]. Further characterization of these highly conserved MPEC genes may be critical to understanding the pathobiology of MPEC.
Collapse
Affiliation(s)
- Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | | | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
10
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Investigation of Virulence Genes Detected in Antimicrobial-Resistance Pathogens Isolates for Five Countries across the World. Processes (Basel) 2020. [DOI: 10.3390/pr8121589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A large portion of annual deaths worldwide are due to infections caused by disease-causing pathogens. These pathogens contain virulence genes, which encode mechanisms that facilitate infection and microbial survival in hosts. More recently, antimicrobial resistance (AMR) genes, also found in these pathogens, have become an increasingly large issue. While the National Center for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser (NPDIB) database has been compiling genes involved in microbial virulence and antimicrobial resistance through isolate samples, few studies have identified the genes primarily responsible for virulence and compared them to those responsible for AMR. This study performed the first multivariate statistical analysis of the multidimensional NPDIB data to identify the major virulence genes from historical pathogen isolates for Australia, China, South Africa, UK, and US—the largely populated countries from five of the six major continents. The important virulence genes were then compared with the AMR genes to study whether there is correlation between their occurrences. Among the significant genes and pathogens associated with virulence, it was found that the genes fdeC, iha, iss, iutA, lpfA, sslE, ybtP, and ybtQ are shared amongst all five countries. The pathogens E. coli and Shigella, Salmonella enterica, and Klebsiella pneumoniae mostly contained these genes and were common among four of the five studied countries. Additionally, the trend of virulence was investigated by plotting historical occurrences of gene and pathogen frequency in the annual samples. These plots showed that the trends of E. coli and Shigella and Salmonella enterica were similar to the trends of certain virulence genes, confirming the two pathogens do indeed carry important virulence genes. While the virulence genes in the five countries are not significantly different, the US and the UK share the largest amount of important virulence genes. The plots from principal component analysis and hierarchical clustering show that the important virulence and AMR genes were not significantly correlated, with only few genes from both types of genes clustered into the same groups.
Collapse
|
12
|
Ali A, Kolenda R, Khan MM, Weinreich J, Li G, Wieler LH, Tedin K, Roggenbuck D, Schierack P. Novel Avian Pathogenic Escherichia coli Genes Responsible for Adhesion to Chicken and Human Cell Lines. Appl Environ Microbiol 2020; 86:e01068-20. [PMID: 32769194 PMCID: PMC7531953 DOI: 10.1128/aem.01068-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial pathogen of commercial poultry contributing to extensive economic losses and contamination of the food chain. One of the initial steps in bacterial infection and successful colonization of the host is adhesion to the host cells. A random transposon mutant library (n = 1,300) of APEC IMT 5155 was screened phenotypically for adhesion to chicken (CHIC-8E11) and human (LoVo) intestinal epithelial cell lines. The detection and quantification of adherent bacteria were performed by a modified APEC-specific antibody staining assay using fluorescence microscopy coupled to automated VideoScan technology. Eleven mutants were found to have significantly altered adhesion to the cell lines examined. Mutated genes in these 11 "adhesion-altered mutants" were identified by arbitrary PCR and DNA sequencing. The genes were amplified from wild-type APEC IMT 5155, cloned, and transformed into the respective adhesion-altered mutants, and complementation was determined in adhesion assays. Here, we report contributions of the fdtA, rluD, yjhB, ecpR, and fdeC genes of APEC in adhesion to chicken and human intestinal cell lines. Identification of the roles of these genes in APEC pathogenesis will contribute to prevention and control of APEC infections.IMPORTANCE Avian pathogenic E. coli is not only pathogenic for commercial poultry but can also cause foodborne infections in humans utilizing the same attachment and virulence mechanisms. Our aim was to identify genes of avian pathogenic E. coli involved in adhesion to chicken and human cells in order to understand the colonization and pathogenesis of these bacteria. In contrast to the recent studies based on genotypic and bioinformatics data, we have used a combination of phenotypic and genotypic approaches for identification of novel genes contributing to adhesion in chicken and human cell lines. Identification of adhesion factors remains important, as antibodies elicited against such factors have shown potential to block colonization and ultimately prevent disease as prophylactic vaccines. Therefore, the data will augment the understanding of disease pathogenesis and ultimately in designing strategies against the infections.
Collapse
Affiliation(s)
- Aamir Ali
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Muhammad Moman Khan
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jörg Weinreich
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - Karsten Tedin
- Institute for Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Dirk Roggenbuck
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Peter Schierack
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
13
|
Palmieri N, Hess C, Hess M, Alispahic M. Sequencing of five poultry strains elucidates phylogenetic relationships and divergence in virulence genes in Morganella morganii. BMC Genomics 2020; 21:579. [PMID: 32831012 PMCID: PMC7446228 DOI: 10.1186/s12864-020-07001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background M. morganii is a bacterium frequently associated with urinary infections in humans. While many human strains are sequenced, only the genomes of few poultry strains are available. Here, we performed a detailed characterization of five highly resistant Morganella morganii strains isolated in association with Escherichia coli from diseased domestic Austrian poultry flocks, namely geese, turkeys and chicken layers. Additionally, we sequenced the genomes of these strains by NGS and analyzed phylogenetic clustering, resistance and virulence genes in the context of host-specificity. Results Two strains were identified to be Extended Spectrum Beta Lactamase (ESBL) and one as AmpC beta-lactamases (AMP-C) phenotype, while two were ESBL negative. By integrating the genome sequences of these five poultry strains with all the available M. morganii genomes, we constructed a phylogenetic tree that clearly separates the Morganella genus into two clusters (M1 and M2), which approximately reflect the proposed subspecies classification (morganii and sibonii). Additionally, we found no association between phylogenetic structure and host, suggesting interspecies transmission. All five poultry strains contained genes for resistance to aminocoumarins, beta-lactams, colistin, elfamycins, fluoroquinolones, phenicol, rifampin and tetracycline. A comparative genomics analysis of virulence genes showed acquisition of novel virulence genes involved in secretion system and adherence in cluster M2. We showed that some of these genes were acquired by horizontal gene transfer from closely related Morganellaceae species and propose that novel virulence genes could be responsible for expansion of tissue tropism in M. morganii. Finally, we detected variability in copy number and high sequence divergence in toxin genes and provided evidence for positive selection in insecticidal toxins genes, likely reflecting host-related adaptations. Conclusions In summary, this study describes i) the first isolation and characterization of M. morganii from goose and turkey, ii) a large-scale genetic analysis of M. morganii and an attempt to generate a global picture of the M. morganii intraspecific phylogenetic structure.
Collapse
Affiliation(s)
- Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Merima Alispahic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
14
|
Thermal inactivation of extraintestinal pathogenic Escherichia coli suspended in ground chicken meat. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Abstract
Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli. Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCEEscherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.
Collapse
|
16
|
Segura A, Auffret P, Bibbal D, Bertoni M, Durand A, Jubelin G, Kérourédan M, Brugère H, Bertin Y, Forano E. Factors Involved in the Persistence of a Shiga Toxin-Producing Escherichia coli O157:H7 Strain in Bovine Feces and Gastro-Intestinal Content. Front Microbiol 2018; 9:375. [PMID: 29593666 PMCID: PMC5854682 DOI: 10.3389/fmicb.2018.00375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/19/2018] [Indexed: 11/28/2022] Open
Abstract
Healthy cattle are the primary reservoir for O157:H7 Shiga toxin-producing E. coli responsible for human food-borne infections. Because farm environment acts as a source of cattle contamination, it is important to better understand the factors controlling the persistence of E. coli O157:H7 outside the bovine gut. The E. coli O157:H7 strain MC2, identified as a persistent strain in French farms, possessed the characteristics required to cause human infections and genetic markers associated with clinical O157:H7 isolates. Therefore, the capacity of E. coli MC2 to survive during its transit through the bovine gastro-intestinal tract (GIT) and to respond to stresses potentially encountered in extra-intestinal environments was analyzed. E. coli MC2 survived in rumen fluids, grew in the content of posterior digestive compartments and survived in bovine feces at 15°C predicting a successful transit of the bacteria along the bovine GIT and its persistence outside the bovine intestine. E. coli MC2 possessed the genetic information encoding 14 adherence systems including adhesins with properties related to colonization of the bovine intestine (F9 fimbriae, EhaA and EspP autotransporters, HCP pilus, FdeC adhesin) reflecting the capacity of the bacteria to colonize different segments of the bovine GIT. E. coli MC2 was also a strong biofilm producer when incubated in fecal samples at low temperature and had a greater ability to form biofilms than the bovine commensal E. coli strain BG1. Furthermore, in contrast to BG1, E. coli MC2 responded to temperature stresses by inducing the genes cspA and htrA during its survival in bovine feces at 15°C. E. coli MC2 also activated genes that are part of the GhoT/GhoS, HicA/HicB and EcnB/EcnA toxin/antitoxin systems involved in the response of E. coli to nutrient starvation and chemical stresses. In summary, the large number of colonization factors known to bind to intestinal epithelium and to biotic or abiotic surfaces, the capacity to produce biofilms and to activate stress fitness genes in bovine feces could explain the persistence of E. coli MC2 in the farm environment.
Collapse
Affiliation(s)
- Audrey Segura
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pauline Auffret
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Delphine Bibbal
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Marine Bertoni
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Alexandra Durand
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Grégory Jubelin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Monique Kérourédan
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Hubert Brugère
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Yolande Bertin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Evelyne Forano
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
17
|
Segura A, Auffret P, Klopp C, Bertin Y, Forano E. Draft genome sequence and characterization of commensal Escherichia coli strain BG1 isolated from bovine gastro-intestinal tract. Stand Genomic Sci 2017; 12:61. [PMID: 29046740 PMCID: PMC5634895 DOI: 10.1186/s40793-017-0272-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli is the most abundant facultative anaerobic bacteria in the gastro-intestinal tract of mammals but can be responsible for intestinal infection due to acquisition of virulence factors. Genomes of pathogenic E. coli strains are widely described whereas those of bovine commensal E. coli strains are very scarce. Here, we report the genome sequence, annotation, and features of the commensal E. coli BG1 isolated from the gastro-intestinal tract of cattle. Whole genome sequencing analysis showed that BG1 has a chromosome of 4,782,107 bp coding for 4465 proteins and 97 RNAs. E. coli BG1 belonged to the serotype O159:H21, was classified in the phylogroup B1 and possessed the genetic information encoding "virulence factors" such as adherence systems, iron acquisition and flagella synthesis. A total of 12 adherence systems were detected reflecting the potential ability of BG1 to colonize different segments of the bovine gastro-intestinal tract. E. coli BG1 is unable to assimilate ethanolamine that confers a nutritional advantage to some pathogenic E. coli in the bovine gastro-intestinal tract. Genome analysis revealed the presence of i) 34 amino acids change due to non-synonymous SNPs among the genes encoding ethanolamine transport and assimilation, and ii) an additional predicted alpha helix inserted in cobalamin adenosyltransferase, a key enzyme required for ethanolamine assimilation. These modifications could explain the incapacity of BG1 to use ethanolamine. The BG1 genome can now be used as a reference (control strain) for subsequent evolution and comparative studies.
Collapse
Affiliation(s)
- Audrey Segura
- Université Clermont Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville Castanet-Tolosan, France
| | - Yolande Bertin
- Université Clermont Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
18
|
Martinez-Gil M, Goh KGK, Rackaityte E, Sakamoto C, Audrain B, Moriel DG, Totsika M, Ghigo JM, Schembri MA, Beloin C. YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation. Sci Rep 2017; 7:11326. [PMID: 28900103 PMCID: PMC5595812 DOI: 10.1038/s41598-017-10902-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Escherichia coli is a commensal or pathogenic bacterium that can survive in diverse environments. Adhesion to surfaces is essential for E. coli colonization, and thus it is important to understand the molecular mechanisms that promote this process in different niches. Autotransporter proteins are a class of cell-surface factor used by E. coli for adherence. Here we characterized the regulation and function of YeeJ, a poorly studied but widespread representative from an emerging class of autotransporter proteins, the inverse autotransporters (IAT). We showed that the yeeJ gene is present in ~40% of 96 completely sequenced E. coli genomes and that YeeJ exists as two length variants, albeit with no detectable functional differences. We demonstrated that YeeJ promotes biofilm formation in different settings through exposition at the cell-surface. We also showed that YeeJ contains a LysM domain that interacts with peptidoglycan and thus assists its localization into the outer membrane. Additionally, we identified the Polynucleotide Phosphorylase PNPase as a repressor of yeeJ transcription. Overall, our work provides new insight into YeeJ as a member of the recently defined IAT class, and contributes to our understanding of how commensal and pathogenic E. coli colonise their environments.
Collapse
Affiliation(s)
- Marta Martinez-Gil
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias. Universidad de Málaga, Málaga, Spain
| | - Kelvin G K Goh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elze Rackaityte
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- University of California San Francisco, Department of Medicine, San Francisco, CA, USA
| | - Chizuko Sakamoto
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Bianca Audrain
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- GSK Vaccines Institute for Global Health S.r.l., 53100, Siena, Italy
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France.
| |
Collapse
|
19
|
Monteiro R, Ageorges V, Rojas-Lopez M, Schmidt H, Weiss A, Bertin Y, Forano E, Jubelin G, Henderson IR, Livrelli V, Gobert AP, Rosini R, Soriani M, Desvaux M. A secretome view of colonisation factors in Shiga toxin-encodingEscherichia coli(STEC): from enterohaemorrhagicE. coli(EHEC) to related enteropathotypes. FEMS Microbiol Lett 2016; 363:fnw179. [DOI: 10.1093/femsle/fnw179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
|
20
|
Heinz E, Stubenrauch CJ, Grinter R, Croft NP, Purcell AW, Strugnell RA, Dougan G, Lithgow T. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family. Genome Biol Evol 2016; 8:1690-705. [PMID: 27190006 PMCID: PMC4943183 DOI: 10.1093/gbe/evw112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher J Stubenrauch
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rhys Grinter
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Richard A Strugnell
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Australia
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor Lithgow
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|