1
|
Herzig M, Hyötyläinen T, Vettese GF, Law GTW, Vierinen T, Bomberg M. Altering environmental conditions induce shifts in simulated deep terrestrial subsurface bacterial communities-Secretion of primary and secondary metabolites. Environ Microbiol 2024; 26:e16552. [PMID: 38098179 DOI: 10.1111/1462-2920.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
The deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied. We found that the enriched communities from the two sites consisted of distinct bacterial taxa, and alterations in the growth medium composition induced changes in cell counts. The lack of an exogenous organic carbon source (ECS) caused a notable increase in lipid metabolism in one community, while in the other, carbon starvation resulted in low overall metabolism, suggesting a dormant state. ECS supplementation increased CO2 production and SO4 2- utilisation, suggesting activation of a dissimilatory sulphate reduction pathway and sulphate-reducer-dominated total metabolism. However, both communities shared common universal metabolic features, most probably involving pathways needed for the maintenance of cell homeostasis (e.g., mevalonic acid pathway). Collectively, our findings indicate that the most important metabolites related to microbial reactions under varying growth conditions in enriched DTS communities include, but are not limited to, those linked to cell homeostasis, osmoregulation, lipid biosynthesis and degradation, dissimilatory sulphate reduction and isoprenoid production.
Collapse
Affiliation(s)
- Merja Herzig
- Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, EnForce, Environment and Health and Systems Medicine, Örebro University, Örebro, Sweden
| | - Gianni F Vettese
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Gareth T W Law
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Taavi Vierinen
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
2
|
Oliveira CA, Fuess LT, Soares LA, Damianovic MHRZ. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113254. [PMID: 34271347 DOI: 10.1016/j.jenvman.2021.113254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The competition between sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) depends on several factors, such as the COD/SO42- ratio, sensitivity to inhibitors and even the length of the operating period in reactors. Among the inhibitors, salinity, a characteristic common to diverse types of industrial effluents, can act as an important factor. This work aimed to evaluate the long-term participation of sulfidogenesis and methanogenesis in the sulfate-rich wastewater process (COD/SO42- = 1.6) in an anaerobic structured-bed reactor (AnSTBR) using sludge not adapted to salinity. The AnSTBR was operated for 580 d under mesophilic temperature (30 °C). Salinity levels were gradually increased from 1.7 to 50 g-NaCl L-1. Up to 35 g-NaCl L-1, MA and SRB equally participated in COD conversion, with a slight predominance of the latter (53 ± 11%). A decrease in COD removal efficiency associated with acetate accumulation was further observed when applying 50 g-NaCl L-1. The sulfidogenic pathway corresponded to 62 ± 17% in this case, indicating the inhibition of MA. Overall, sulfidogenic activity was less sensitive (25%-inhibition) to high salinity levels compared to methanogenesis (100%-inhibition considering the methane yield). The wide spectrum of SRB populations at different salinity levels, namely, the prevalence of Desulfovibrio sp. up to 35 g-NaCl L-1 and the additional participation of the genera Desulfobacca, Desulfatirhabdium, and Desulfotomaculum at 50 g-NaCl-1 explain such patterns. Conversely, the persistence of Methanosaeta genus was not sufficient to sustain methane production. Hence, exploiting SRB populations is imperative to anaerobically remediating saline wastewaters.
Collapse
Affiliation(s)
- Cristiane Arruda Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil.
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil; Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18, Conjunto Das Químicas, SP, 05508-000, Brazil
| | - Lais Américo Soares
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Genetic Basis of Chromate Adaptation and the Role of the Pre-existing Genetic Divergence during an Experimental Evolution Study with Desulfovibrio vulgaris Populations. mSystems 2021; 6:e0049321. [PMID: 34061571 PMCID: PMC8579811 DOI: 10.1128/msystems.00493-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental pollutant. However, little is known about the genetic basis of microbial evolution under Cr(VI) stress and the influence of the prior evolution histories on the subsequent evolution under Cr(VI) stress. In this study, Desulfovibrio vulgaris Hildenborough (DvH), a model sulfate-reducing bacterium, was experimentally evolved for 600 generations. By evolving the replicate populations of three genetically diverse DvH clones, including ancestor (AN, without prior experimental evolution history), non-stress-evolved EC3-10, and salt stress-evolved ES9-11, the contributions of adaptation, chance, and pre-existing genetic divergence to the evolution under Cr(VI) stress were able to be dissected. Significantly decreased lag phases under Cr(VI) stress were observed in most evolved populations, while increased Cr(VI) reduction rates were primarily observed in populations evolved from EC3-10 and ES9-11. The pre-existing genetic divergence in the starting clones showed strong influences on the changes in lag phases, growth rates, and Cr(VI) reduction rates. Additionally, the genomic mutation spectra in populations evolved from different starting clones were significantly different. A total of 14 newly mutated genes obtained mutations in at least two evolved populations, suggesting their importance in Cr(VI) adaptation. An in-frame deletion mutation of one of these genes, the chromate transporter gene DVU0426, demonstrated that it played an important role in Cr(VI) tolerance. Overall, our study identified potential key functional genes for Cr(VI) tolerance and demonstrated the important role of pre-existing genetic divergence in evolution under Cr(VI) stress conditions. IMPORTANCE Chromium is one of the most common heavy metal pollutants of soil and groundwater. The potential of Desulfovibrio vulgaris Hildenborough in heavy metal bioremediation such as Cr(VI) reduction was reported previously; however, experimental evidence of key functional genes involved in Cr(VI) resistance are largely unknown. Given the genetic divergence of microbial populations in nature, knowledge on how this divergence affects the microbial adaptation to a new environment such as Cr(VI) stress is very limited. Taking advantage of our previous study, three groups of genetically diverse D. vulgaris Hildenborough populations with or without prior experimental evolution histories were propagated under Cr(VI) stress for 600 generations. Whole-population genome resequencing of the evolved populations revealed the genomic changes underlying the improved Cr(VI) tolerance. The strong influence of the pre-existing genetic divergence in the starting clones on evolution under Cr(VI) stress conditions was demonstrated at both phenotypic and genetic levels.
Collapse
|
4
|
Transcriptome Analysis of the Acid Stress Response of Desulfovibrio vulgaris ATCC 7757. Curr Microbiol 2020; 77:2702-2712. [DOI: 10.1007/s00284-020-02051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/23/2020] [Indexed: 01/23/2023]
|
5
|
Drissi Kaitouni LB, Anissi J, Sendide K, El Hassouni M. Diversity of hydrolase-producing halophilic bacteria and evaluation of their enzymatic activities in submerged cultures. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01570-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
In this work, we assessed the diversity of culturable halophilic bacteria that produce hydrolytic enzymes from both natural and artificial hypersaline regions in the pre-Rif region of Morocco.
Methods
Bacteria were isolated from three hypersaline sites, in solid medium supplemented with various salt concentrations ranging from 0 to 330 g/L. Physical and chemical characteristics of samples from the isolation site were determined to suggest eventual correlations with the occurrence of the halophilic bacteria. Assays on enzymatic activities were performed in submerged cultures in the presence of various salt concentrations and appropriate substrates.
Results
Out of a collection of 227 halophilic bacteria, four halophilic groups were established as slightly halophilic, moderately halophilic, halotolerant, or extremely halophilic, with a predominance of halophilic bacteria in the natural hypersaline sites compared to the artificial one. Within this collection, 189 strains showed important hydrolytic activities in submerged cultures with enzymatic activities up to 76 U/mg. Strain characterization and identification was based on phenotypic and molecular traits and allowed the identification of at least 26 genera including Bacillus, Chthonibacter, Mariniabilia, Halobacillus, Salinococcus, Cerasicoccus, Ulvibacter, Halorubrum, Jeatgalicoccus, Brevibacterium, Sanguibacter, Shewanella, Exiguobacterium, Gemella, and Planomicrobium.
Conclusion
Data from this study give insights about the origin and the occurrence of halophilic bacteria in natural hypersaline environments compared to artificial hypersaline sites. The occurrence of halophilic hydrolase enzymes from halophilic bacteria gives insights to different applications in biotechnology, thanks to their ability to produce adaptive enzymes and survival strategies to overcome harsh conditions.
Collapse
|
6
|
Comparative genomics analysis of Nitriliruptoria reveals the genomic differences and salt adaptation strategies. Extremophiles 2019; 24:249-264. [PMID: 31820112 DOI: 10.1007/s00792-019-01150-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
The group Nitriliruptoria, recently classified as a separate class of phylum Actinobacteria, has five members at present, which belong to halophilic or halotolerant Actinobacteria. Here, we sequenced the genomes of Egicoccus halophilus EGI 80432T and Egibacter rhizosphaerae EGI 80759T, and performed a comparative genomics approach to analyze the genomic differences and salt adaptation mechanisms in Nitriliruptoria. Phylogenetic analysis suggested that Euzebya tangerina F10T has a closer phylogenetic relationship to Euzebya rosea DSW09T, while genomic analysis revealed highest genomic similarity with Nitriliruptor alkaliphilus ANL-iso2T and E. halophilus EGI 80432T. Genomic differences of Nitriliruptoria were mainly observed in genome size, gene contents, and the amounts of gene in per functional categories. Furthermore, our analysis also revealed that Nitriliruptoria possess similar synthesis systems of solutes, such as trehalose, glutamine, glutamate, and proline. On the other hand, each member of Nitriliruptoria species possesses specific mechanisms, K+ influx and efflux, betaine and ectoine synthesis, and compatible solutes transport to survive in various high-salt environments.
Collapse
|
7
|
Stoeva MK, Nalula G, Garcia N, Cheng Y, Engelbrektson AL, Carlson HK, Coates JD. Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate. Front Microbiol 2019; 10:654. [PMID: 31001230 PMCID: PMC6454106 DOI: 10.3389/fmicb.2019.00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide is a toxic and corrosive gas, produced by the activity of sulfate-reducing microorganisms (SRM). Owing to the environmental, economic and human-health consequences of sulfide, there is interest in developing specific inhibitors of SRM. Recent studies have identified perchlorate as a promising emerging inhibitor. The aim of this work is to quantitatively dissect the inhibitory dynamics of perchlorate. Sulfidogenic mixed continuous-flow systems were treated with perchlorate. SRM number, sulfide production and community structure were monitored pre-, during and post-treatment. The data generated was compared to a simple mathematical model, where SRM growth slows as a result of inhibition. The experimental data supports the interpretation that perchlorate largely acts to suppress SRM growth rates, rendering planktonic SRM increasingly susceptible to wash-out. Surface-attachment was identified as an important parameter preventing SRM wash-out and thus governing inhibitory dynamics. Our study confirmed the lesser depletion of surface-attached SRM as compared to planktonic SRM during perchlorate treatment. Indirect effects of perchlorate (bio-competitive exclusion of SRM by dissimilatory perchlorate-reducing bacteria, DPRB) were also assayed by amending reactors with DPRB. Indeed, low concentrations of perchlorate coupled with DRPB amendment can drive sulfide concentrations to zero. Further, inhibition in a complex community was compared to that in a pure culture, highlighting similarities and differences between the two scenarios. Finally, we quantified susceptibility to perchlorate across SRM in various culture conditions, showing that prediction of complex behavior in continuous systems from batch results is possible. This study thus provides an overview of the sensitivity of sulfidogenic communities to perchlorate, as well as mechanisms underlying these patterns.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States
| | - Gilbert Nalula
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Nicholas Garcia
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yiwei Cheng
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna L Engelbrektson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
8
|
Rajeev L, Luning EG, Zane GM, Juba TR, Kazakov AE, Novichkov PS, Wall JD, Mukhopadhyay A. LurR is a regulator of the central lactate oxidation pathway in sulfate-reducing Desulfovibrio species. PLoS One 2019; 14:e0214960. [PMID: 30964892 PMCID: PMC6456213 DOI: 10.1371/journal.pone.0214960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
The central carbon/lactate utilization pathway in the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough, is encoded by the highly conserved operon DVU3025-3033. Our earlier in vitro genome-wide study had suggested a network of four two-component system regulators that target this large operon; however, how these four regulators control this operon was not known. Here, we probe the regulation of the lactate utilization operon with mutant strains and DNA-protein binding assays. We show that the LurR response regulator is required for optimal growth and complete lactate utilization, and that it activates the DVU3025-3033 lactate oxidation operon as well as DVU2451, a lactate permease gene, in the presence of lactate. We show by electrophoretic mobility shift assays that LurR binds to three sites in the upstream region of DVU3025, the first gene of the operon. NrfR, a response regulator that is activated under nitrite stress, and LurR share similar binding site motifs and bind the same sites upstream of DVU3025. The DVU3025 promoter also has a binding site motif (Pho box) that is bound by PhoB, a two-component response regulator activated under phosphate limitation. The lactate utilization operon, the regulator LurR, and LurR binding sites are conserved across the order Desulfovibrionales whereas possible modulation of the lactate utilization genes by additional regulators such as NrfR and PhoB appears to be limited to D. vulgaris.
Collapse
Affiliation(s)
- Lara Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Eric G. Luning
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Thomas R. Juba
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Alexey E. Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ding X, Liu K, Lu Y, Gong G. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions. Appl Microbiol Biotechnol 2019; 103:3829-3846. [PMID: 30859256 DOI: 10.1007/s00253-019-09705-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Halophilic fungi in hypersaline habitats require multiple cellular responses for high-salinity adaptation. However, the exact mechanisms behind these adaptation processes remain to be slightly known. The current study is aimed at elucidating the morphological, transcriptomic, and metabolomic changes of the halophilic fungus Aspergillus montevidensis ZYD4 under hypersaline conditions. Under these conditions, the fungus promoted conidia formation and suppressed cleistothecium development. Furthermore, the fungus differentially expressed genes (P < 0.0001) that controlled ion transport, amino acid transport and metabolism, soluble sugar accumulation, fatty acid β-oxidation, saturated fatty acid synthesis, electron transfer, and oxidative stress tolerance. Additionally, the hypersalinized mycelia widely accumulated metabolites, including amino acids, soluble sugars, saturated fatty acids, and other carbon- and nitrogen-containing compounds. The addition of metabolites-such as neohesperidin, biuret, aspartic acid, alanine, proline, and ornithine-significantly promoted the growth (P ≤ 0.05) and the morphological adaptations of A. montevidensis ZYD4 grown in hypersaline environments. Our study demonstrated that morphological shifts, ion equilibrium, carbon and nitrogen metabolism for solute accumulation, and energy production are vital to halophilic fungi so that they can build tolerance to high-salinity environments.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.,School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. .,School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China.
| | - Yuxin Lu
- School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
10
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
11
|
Williamson AJ, Carlson HK, Kuehl JV, Huang LL, Iavarone AT, Deutschbauer A, Coates JD. Dissimilatory Sulfate Reduction Under High Pressure by Desulfovibrio alaskensis G20. Front Microbiol 2018; 9:1465. [PMID: 30050504 PMCID: PMC6052904 DOI: 10.3389/fmicb.2018.01465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Biosouring results from production of H2S by sulfate-reducing microorganisms (SRMs) in oil reservoirs. H2S is toxic, corrosive, and explosive, and as such, represents a significant threat to personnel, production facilities, and transportation pipelines. Since typical oil reservoir pressures can range from 10 to 50 MPa, understanding the role that pressure plays in SRM metabolism is important to improving souring containment strategies. To explore the impact of pressure, we grew an oil-field SRM isolate, Desulfovibrio alaskensis G20, under a range of pressures (0.1–14 MPa) at 30°C. The observed microbial growth rate was an inverse function of pressure with an associated slight reduction in sulfate and lactate consumption rate. Competitive fitness experiments with randomly bar-coded transposon mutant library sequencing (RB-TnSeq) identified several genes associated with flagellar biosynthesis and assembly that were important at high pressure. The fitness impact of specific genes was confirmed using individual transposon mutants. Confocal microscopy revealed that enhanced cell aggregation occurs at later stages of growth under pressure. We also assessed the effect of pressure on SRM inhibitor potency. Dose-response experiments showed a twofold decrease in the sensitivity of D. alaskensis to the antibiotic chloramphenicol at 14 MPa. Fortuitously, pressure had no significant influence on the inhibitory potency of the common souring controlling agent nitrate, or the emerging SRM inhibitors perchlorate, monofluorophosphate, or zinc pyrithione. Our findings improve the conceptual model of microbial sulfate reduction in high-pressure environments and the influence of pressure on souring inhibitor efficacy.
Collapse
Affiliation(s)
- Adam J Williamson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Hans K Carlson
- Energy Biosciences Institute, Berkeley, CA, United States
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Leah L Huang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, United States
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States
| |
Collapse
|
12
|
Pellerin A, Wenk CB, Halevy I, Wing BA. Sulfur Isotope Fractionation by Sulfate-Reducing Microbes Can Reflect Past Physiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4013-4022. [PMID: 29505248 DOI: 10.1021/acs.est.7b05119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfur (S) isotope fractionation by sulfate-reducing microorganisms is a direct manifestation of their respiratory metabolism. This fractionation is apparent in the substrate (sulfate) and waste (sulfide) produced. The sulfate-reducing metabolism responds to variability in the local environment, with the response determined by the underlying genotype, resulting in the expression of an "isotope phenotype". Sulfur isotope phenotypes have been used as a diagnostic tool for the metabolic activity of sulfate-reducing microorganisms in the environment. Our experiments with Desulfovibrio vulgaris Hildenborough (DvH) grown in batch culture suggest that the S isotope phenotype of sulfate respiring microbes may lag environmental changes on time scales that are longer than generational. When inocula from different phases of growth are assayed under the same environmental conditions, we observed that DvH exhibited different net apparent fractionations of up to -9‰. The magnitude of fractionation was weakly correlated with physiological parameters but was strongly correlated to the age of the initial inoculum. The S isotope fractionation observed between sulfate and sulfide showed a positive correlation with respiration rate, contradicting the well-described negative dependence of fractionation on respiration rate. Quantitative modeling of S isotope fractionation shows that either a large increase (≈50×) in the abundance of sulfate adenylyl transferase (Sat) or a smaller increase in sulfate transport proteins (≈2×) is sufficient to account for the change in fractionation associated with past physiology. Temporal transcriptomic studies with DvH imply that expression of sulfate permeases doubles over the transition from early exponential to early stationary phase, lending support to the transport hypothesis proposed here. As it is apparently maintained for multiple generations (≈1-6) of subsequent growth in the assay environment, we suggest that this fractionation effect acts as a sort of isotopic "memory" of a previous physiological and environmental state. Whatever its root cause, this physiological hysteresis effect can explain variations in fractionations observed in many environments. It may also enable new insights into life at energetic limits, especially if its historical footprint extends deeper than generational.
Collapse
Affiliation(s)
- André Pellerin
- Center for Geomicrobiology, Department of Bioscience , Aarhus University , Ny Munkegade 114 , Aarhus C 8000 , Denmark
| | - Christine B Wenk
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Itay Halevy
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Boswell A Wing
- Geological Sciences , University of Colorado Boulder , UCB 399, Boulder , Colorado 80309-0399 , United States
| |
Collapse
|
13
|
Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris. mBio 2017; 8:mBio.01780-17. [PMID: 29138306 PMCID: PMC5686539 DOI: 10.1128/mbio.01780-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection.IMPORTANCE High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies. Desulfovibrio vulgaris Hildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation of D. vulgaris Hildenborough with experimental evolution. Here, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution.
Collapse
|
14
|
Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles. Appl Environ Microbiol 2017; 83:AEM.00866-17. [PMID: 28802275 DOI: 10.1128/aem.00866-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response), and 14 h (late response) of stress exposure. Physiological and transcriptomic stress responses corresponded well. Salt stress induced the differential expression of 301 genes, with sigma factor σ32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH4 to CO2 remained unaffected, while gene expression involved in energy-yielding reactions (nuoA-N) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late stress response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities.IMPORTANCE Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils, where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with changes in soil salinity. Growth and methane oxidation of Methylocystis sp. strain SC2 were not affected by the presence of 0.5% NaCl, while 1% NaCl completely inhibited its activity. This places strain SC2 into the low-salt-tolerance range reported for other Methylocystis species. Our results show that, albeit in a narrow range, strain SC2 is able to respond and adapt to salinity changes. It possesses various stress response mechanisms, which allow resumption of growth within 24 h when exposed to 0.75% NaCl. Presumably, these mechanisms allow Methylocystis spp., such as strain SC2, to thrive in upland soils and to adapt to certain fluctuations in soil salinity.
Collapse
|
15
|
Fida TT, Moreno-Forero SK, Breugelmans P, Heipieper HJ, Röling WFM, Springael D. Physiological and Transcriptome Response of the Polycyclic Aromatic Hydrocarbon Degrading Novosphingobium sp. LH128 after Inoculation in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1570-1579. [PMID: 28040887 DOI: 10.1021/acs.est.6b03822] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soil bioaugmentation involves the inoculation of pollutant-degrading bacteria to accelerate pollutant degradation. Often the inoculum shows a dramatic decrease in Colony Forming Units (CFU) upon soil inoculation but this behavior is not well-understood. In this study, the physiology and transcriptomic response of a GFP tagged variant of Novosphingobium sp. LH128 was examined after inoculation into phenanthrene spiked soil. Four hours after inoculation, strain LH128-GFP showed about 99% reduction in CFU while microscopic counts of GFP-expressing cells were identical to the expected initial cell density, indicating that the reduction in CFU number is explained by cells entering into a Viable But Non-Culturable (VBNC)-like state and not by cell death. Transcriptome analysis showed a remarkably higher expression of phenanthrene degradation genes 4 h after inoculation, compared to the inoculum suspension concomitant with an increased expression of genes involved in stress response. This indicates that the cells were active in phenanthrene degradation while experiencing stress. Between 4 h and 10 days, CFU numbers increased to numbers comparable to the inoculated cell density. Our results suggest that strain LH128-GFP enters a VBNC-like state upon inoculation into soil but is metabolically active and that VBNC cells should be taken into account in evaluating bioaugmentation approaches.
Collapse
Affiliation(s)
- Tekle Tafese Fida
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Silvia K Moreno-Forero
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore Quartier Unil-Sorge , 1015 Lausanne, Switzerland
| | - Philip Breugelmans
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Hermann J Heipieper
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wilfred F M Röling
- Molecular Cell Physiology, FALW, VU University Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
16
|
Morales M, Sentchilo V, Bertelli C, Komljenovic A, Kryuchkova-Mostacci N, Bourdilloud A, Linke B, Goesmann A, Harshman K, Segers F, Delapierre F, Fiorucci D, Seppey M, Trofimenco E, Berra P, El Taher A, Loiseau C, Roggero D, Sulfiotti M, Etienne A, Ruiz Buendia G, Pillard L, Escoriza A, Moritz R, Schneider C, Alfonso E, Ben Jeddou F, Selmoni O, Resch G, Greub G, Emery O, Dubey M, Pillonel T, Robinson-Rechavi M, van der Meer JR. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand. PLoS One 2016; 11:e0165850. [PMID: 27812150 PMCID: PMC5094676 DOI: 10.1371/journal.pone.0165850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.
Collapse
Affiliation(s)
- Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Nadezda Kryuchkova-Mostacci
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Audrey Bourdilloud
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Burkhard Linke
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Francisca Segers
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabien Delapierre
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damien Fiorucci
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Seppey
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Evgeniya Trofimenco
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Berra
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Athimed El Taher
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Chloé Loiseau
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Dejan Roggero
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Madeleine Sulfiotti
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angela Etienne
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gustavo Ruiz Buendia
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loïc Pillard
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angelique Escoriza
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cedric Schneider
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Esteban Alfonso
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fatma Ben Jeddou
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Selmoni
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae. PLoS One 2016; 11:e0146983. [PMID: 26885833 PMCID: PMC4757406 DOI: 10.1371/journal.pone.0146983] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/23/2015] [Indexed: 01/20/2023] Open
Abstract
Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs) derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.
Collapse
Affiliation(s)
- Weihua Wu
- Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, California, United States of America
| | - William Tran
- Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, California, United States of America
| | - Craig A. Taatjes
- Combustion Chemistry Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Jorge Alonso-Gutierrez
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Taek Soon Lee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - John M. Gladden
- Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
- * E-mail: ;
| |
Collapse
|
18
|
Orange protein from Desulfovibrio alaskensis G20: insights into the Mo–Cu cluster protein-assisted synthesis. J Biol Inorg Chem 2016; 21:53-62. [DOI: 10.1007/s00775-015-1323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
19
|
Sousa JAB, Sorokin DY, Bijmans MFM, Plugge CM, Stams AJM. Ecology and application of haloalkaliphilic anaerobic microbial communities. Appl Microbiol Biotechnol 2015; 99:9331-6. [PMID: 26359181 PMCID: PMC4628080 DOI: 10.1007/s00253-015-6937-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
Abstract
Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.
Collapse
Affiliation(s)
- João A B Sousa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia. .,Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, the Netherlands.
| | - Martijn F M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Department of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
20
|
Zhou A, Hillesland KL, He Z, Schackwitz W, Tu Q, Zane GM, Ma Q, Qu Y, Stahl DA, Wall JD, Hazen TC, Fields MW, Arkin AP, Zhou J. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris. ISME JOURNAL 2015; 9:2360-72. [PMID: 25848870 DOI: 10.1038/ismej.2015.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/07/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023]
Abstract
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.
Collapse
Affiliation(s)
- Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | | | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Wendy Schackwitz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Grant M Zane
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | - Qiao Ma
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yuanyuan Qu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Judy D Wall
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matthew W Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Sulfur isotope fractionation during the evolutionary adaptation of a sulfate-reducing bacterium. Appl Environ Microbiol 2015; 81:2676-89. [PMID: 25662968 DOI: 10.1128/aem.03476-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dissimilatory sulfate reduction is a microbial catabolic pathway that preferentially processes less massive sulfur isotopes relative to their heavier counterparts. This sulfur isotope fractionation is recorded in ancient sedimentary rocks and generally is considered to reflect a phenotypic response to environmental variations rather than to evolutionary adaptation. Modern sulfate-reducing microorganisms isolated from similar environments can exhibit a wide range of sulfur isotope fractionations, suggesting that adaptive processes influence the sulfur isotope phenotype. To date, the relationship between evolutionary adaptation and isotopic phenotypes has not been explored. We addressed this by studying the covariation of fitness, sulfur isotope fractionation, and growth characteristics in Desulfovibrio vulgaris Hildenborough in a microbial evolution experiment. After 560 generations, the mean fitness of the evolved lineages relative to the starting isogenic population had increased by ∼ 17%. After 927 generations, the mean fitness relative to the initial ancestral population had increased by ∼ 20%. Growth rate in exponential phase increased during the course of the experiment, suggesting that this was a primary influence behind the fitness increases. Consistent changes were observed within different selection intervals between fractionation and fitness. Fitness changes were associated with changes in exponential growth rate but changes in fractionation were not. Instead, they appeared to be a response to changes in the parameters that govern growth rate: yield and cell-specific sulfate respiration rate. We hypothesize that cell-specific sulfate respiration rate, in particular, provides a bridge that allows physiological controls on fractionation to cross over to the adaptive realm.
Collapse
|
22
|
Sousa JAB, Plugge CM, Stams AJM, Bijmans MFM. Sulfate reduction in a hydrogen fed bioreactor operated at haloalkaline conditions. WATER RESEARCH 2015; 68:67-76. [PMID: 25462717 DOI: 10.1016/j.watres.2014.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 06/04/2023]
Abstract
Biological sulfate reduction is used as a biotechnological process to treat sulfate rich streams. However, application of biological sulfate reduction at high pH and high salinity using H₂ was not thoroughly investigated before. In this work the sulfate reduction activity, biomass growth, microbial community and biomass aggregation were investigated in a H₂-fed gas lift bioreactor at haloalkaline conditions. The process was characterized by low sulfate reduction volumetric rates due to slow growth and lack of biomass aggregation. Apparently, the extreme conditions and absence of organic compounds prevented the formation of stable aggregates. The microbial community analysis revealed a low abundance of known haloalkaliphilic sulfate reducers and presence of a Tindallia sp. The identified archaea were related to Methanobacterium alcaliphilum and Methanocalculus sp. The biomass did not attach to metal sulfides, calcite and magnesite crystals. However, biofilm formation on the glass bioreactor walls showed that attachment to glass occurs.
Collapse
MESH Headings
- Archaea/genetics
- Archaea/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Bioreactors/microbiology
- DNA, Archaeal/genetics
- DNA, Archaeal/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Hydrogen/analysis
- Molecular Sequence Data
- Oxidation-Reduction
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, DNA
- Sulfates/metabolism
- Waste Disposal, Fluid/methods
- Water Pollutants, Chemical/metabolism
Collapse
Affiliation(s)
- João A B Sousa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Fu X, Liang W, Du P, Yan M, Kan B. Transcript changes in Vibrio cholerae in response to salt stress. Gut Pathog 2014; 6:47. [PMID: 25589902 PMCID: PMC4293811 DOI: 10.1186/s13099-014-0047-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/13/2014] [Indexed: 11/23/2022] Open
Abstract
Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na+ exclusion, K+ uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response.
Collapse
Affiliation(s)
- Xiuping Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Meiying Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| |
Collapse
|
24
|
Lancaster WA, Menon AL, Scott I, Poole FL, Vaccaro BJ, Thorgersen MP, Geller J, Hazen TC, Hurt RA, Brown SD, Elias DA, Adams MWW. Metallomics of two microorganisms relevant to heavy metal bioremediation reveal fundamental differences in metal assimilation and utilization. Metallomics 2014; 6:1004-13. [PMID: 24706256 DOI: 10.1039/c4mt00050a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strain Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.
Collapse
Affiliation(s)
- W Andrew Lancaster
- Department of Biochemistry & Molecular Biology, University of Georgia, Life Sciences Bldg., Athens, GA 30602-7229, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fu X, Wang D, Yin X, Du P, Kan B. Time course transcriptome changes in Shewanella algae in response to salt stress. PLoS One 2014; 9:e96001. [PMID: 24789066 PMCID: PMC4006864 DOI: 10.1371/journal.pone.0096001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA) cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.
Collapse
Affiliation(s)
- Xiuping Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Xiling Yin
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Korte HL, Fels SR, Christensen GA, Price MN, Kuehl JV, Zane GM, Deutschbauer AM, Arkin AP, Wall JD. Genetic basis for nitrate resistance in Desulfovibrio strains. Front Microbiol 2014; 5:153. [PMID: 24795702 PMCID: PMC4001038 DOI: 10.3389/fmicb.2014.00153] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/21/2014] [Indexed: 12/31/2022] Open
Abstract
Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.
Collapse
Affiliation(s)
- Hannah L Korte
- Department of Biochemistry, University of Missouri Columbia, MO, USA ; Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA
| | - Samuel R Fels
- Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA ; Department of Molecular Microbiology and Immunology, University of Missouri Columbia, MO, USA
| | - Geoff A Christensen
- Department of Biochemistry, University of Missouri Columbia, MO, USA ; Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA
| | - Morgan N Price
- Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA ; Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Jennifer V Kuehl
- Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA ; Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Grant M Zane
- Department of Biochemistry, University of Missouri Columbia, MO, USA ; Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA
| | - Adam M Deutschbauer
- Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA ; Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Adam P Arkin
- Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA ; Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Judy D Wall
- Department of Biochemistry, University of Missouri Columbia, MO, USA ; Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA ; Department of Molecular Microbiology and Immunology, University of Missouri Columbia, MO, USA
| |
Collapse
|
27
|
Model organisms retain an "ecological memory" of complex ecologically relevant environmental variation. Appl Environ Microbiol 2014; 80:1821-31. [PMID: 24413600 DOI: 10.1128/aem.03280-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although tractable model organisms are essential to characterize the molecular mechanisms of evolution and adaptation, the ecological relevance of their behavior is not always clear because certain traits are easily lost during long-term laboratory culturing. Here, we demonstrate that despite their long tenure in the laboratory, model organisms retain "ecological memory" of complex environmental changes. We have discovered that Halobacterium salinarum NRC-1, a halophilic archaeon that dominates microbial communities in a dynamically changing hypersaline environment, simultaneously optimizes fitness to total salinity, NaCl concentration, and the [K]/[Mg] ratio. Despite being maintained under controlled conditions over the last 50 years, peaks in the three-dimensional fitness landscape occur in salinity and ionic compositions that are not replicated in laboratory culturing but are routinely observed in the natural hypersaline environment of this organism. Intriguingly, adaptation to variations in ion composition was associated with differential regulation of anaerobic metabolism genes, suggesting an intertwined relationship between responses to oxygen and salinity. Our results suggest that the ecological memory of complex environmental variations is imprinted in the networks for coordinating multiple cellular processes. These coordination networks are also essential for dealing with changes in other physicochemically linked factors present during routine laboratory culturing and, hence, retained in model organisms.
Collapse
|
28
|
Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol 2013; 195:4742-52. [PMID: 23955010 DOI: 10.1128/jb.00787-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The foliar pathogen Pseudomonas syringae is a useful model for understanding the role of stress adaptation in leaf colonization. We investigated the mechanistic basis of differences in the osmotolerance of two P. syringae strains, B728a and DC3000. Consistent with its higher survival rates following inoculation onto leaves, B728a exhibited superior osmotolerance over DC3000 and higher rates of uptake of plant-derived osmoprotective compounds. A global transcriptome analysis of B728a and DC3000 following an osmotic upshift demonstrated markedly distinct responses between the strains; B728a showed primarily upregulation of genes, including components of the type VI secretion system (T6SS) and alginate biosynthetic pathways, whereas DC3000 showed no change or repression of orthologous genes, including downregulation of the T3SS. DC3000 uniquely exhibited improved growth upon deletion of the biosynthetic genes for the compatible solute N-acetylglutaminylglutamine amide (NAGGN) in a minimal medium, due possibly to NAGGN synthesis depleting the cellular glutamine pool. Both strains showed osmoreduction of glnA1 expression, suggesting that decreased glutamine synthetase activity contributes to glutamate accumulation as a compatible solute, and both strains showed osmoinduction of 5 of 12 predicted hydrophilins. Collectively, our results demonstrate that the superior epiphytic competence of B728a is consistent with its strong osmotolerance, a proactive response to an osmotic upshift, osmoinduction of alginate synthesis and the T6SS, and resiliency of the T3SS to water limitation, suggesting sustained T3SS expression under the water-limited conditions encountered during leaf colonization.
Collapse
|
29
|
Gan HM, Hudson AO, Rahman AYA, Chan KG, Savka MA. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 2013; 14:431. [PMID: 23809012 PMCID: PMC3704786 DOI: 10.1186/1471-2164-14-431] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Bacteria belonging to the genus Novosphingobium are known to be metabolically versatile and occupy different ecological niches. In the absence of genomic data and/or analysis, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. In this study, we analyzed the whole genome sequencing data of six bacteria in the Novosphingobium genus and provide evidence to show the presence of genes that are associated with salt tolerance, cell-cell signaling and aromatic compound biodegradation phenotypes. Additionally, we show the taxonomic relationship between the sequenced bacteria based on phylogenomic analysis, average amino acid identity (AAI) and genomic signatures. Results The taxonomic clustering of Novosphingobium strains is generally influenced by their isolation source. AAI and genomic signature provide strong support the classification of Novosphingobium sp. PP1Y as Novosphingobium pentaromaticivorans PP1Y. The identification and subsequent functional annotation of the unique core genome in the marine Novosphingobium bacteria show that ectoine synthesis may be the main contributing factor in salt water adaptation. Genes coding for the synthesis and receptor of the cell-cell signaling molecules, of the N-acyl-homoserine lactones (AHL) class are identified. Notably, a solo luxR homolog was found in strain PP1Y that may have been recently acquired via horizontal gene transfer as evident by the presence of multiple mobile elements upstream of the gene. Additionally, phylogenetic tree analysis and sequence comparison with functionally validated aromatic ring hydroxylating dioxygenases (ARDO) revealed the presence of several ARDOs (oxygenase) in Novosphingobium bacteria with the majority of them belonging to the Groups II and III of the enzyme. Conclusions The combination of prior knowledge on the distinctive phenotypes of Novosphingobium strains and meta-analysis of their whole genomes enables the identification of several genes that are relevant in industrial applications and bioremediation. The results from such targeted but comprehensive comparative genomics analysis have the potential to contribute to the understanding of adaptation, cell-cell communication and bioremediation properties of bacteria belonging to the genus Novosphingobium.
Collapse
Affiliation(s)
- Han Ming Gan
- Science Vision SB, Shah Alam, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
30
|
Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution. ISME JOURNAL 2013; 7:1790-802. [PMID: 23575373 DOI: 10.1038/ismej.2013.60] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 03/01/2013] [Accepted: 03/09/2013] [Indexed: 11/08/2022]
Abstract
Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na(+) contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris.
Collapse
|
31
|
Exposure to solute stress affects genome-wide expression but not the polycyclic aromatic hydrocarbon-degrading activity of Sphingomonas sp. strain LH128 in biofilms. Appl Environ Microbiol 2012; 78:8311-20. [PMID: 23001650 DOI: 10.1128/aem.02516-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity.
Collapse
|
32
|
Abstract
Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H2 directly as reductant, versus those using the reduced deazaflavin (coenzyme F420). The greater importance of direct reduction by H2 was supported by improved syntrophic growth of a deletion mutant in an F420-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism.
Collapse
|
33
|
Paul D. Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 2012; 53:101-10. [PMID: 22581676 DOI: 10.1002/jobm.201100288] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/24/2011] [Indexed: 01/01/2023]
Abstract
Rhizobacteria have been reported to be beneficial to the plants in many different ways. Increasing salinity in the coastal agricultural zones has been shown to be a threat to the plant and microbial life in the area. Exposure of microorganisms to high-osmolality environments triggers rapid fluxes of cell water along the osmotic gradient out of the cell, thus causing a reduction in turgor and dehydration of the cytoplasm. The microorganisms have developed various adaptations to counteract the outflow of water. The first response to osmotic up shifts and the resulting efflux of cellular water is uptake of K⁺ and cells start to accumulate compatible solutes. Yet another mechanism is by altering the cell envelope composition resulting in changes in proteins, periplasmic glucans, and capsular, exo and lipopolysaccharides. Bacteria also initiate a program of gene expression in response to osmotic stress by high NaCl concentrations, which are manifested as a set of proteins produced in increased amounts in response to the stress. Genomics, transcriptomics and proteomics approaches have revealed the key components in molecular basis of bacteria salt adaptation. Understanding the mechanisms of osmo-adaptation in rhizobacteria would also be relevant from an ecological and an applicative point of view.
Collapse
Affiliation(s)
- Diby Paul
- Department of Environmental Engineering, Konkuk University, Hwayang Dong, Gwanjin Gu, Seoul, Rep. Korea.
| |
Collapse
|
34
|
Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 2011; 78:1168-77. [PMID: 22156435 DOI: 10.1128/aem.05666-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crp/Fnr-type global transcriptional regulators regulate various metabolic pathways in bacteria and typically function in response to environmental changes. However, little is known about the function of four annotated Crp/Fnr homologs (DVU0379, DVU2097, DVU2547, and DVU3111) in Desulfovibrio vulgaris Hildenborough. A systematic study using bioinformatic, transcriptomic, genetic, and physiological approaches was conducted to characterize their roles in stress responses. Similar growth phenotypes were observed for the crp/fnr deletion mutants under multiple stress conditions. Nevertheless, the idea of distinct functions of Crp/Fnr-type regulators in stress responses was supported by phylogeny, gene transcription changes, fitness changes, and physiological differences. The four D. vulgaris Crp/Fnr homologs are localized in three subfamilies (HcpR, CooA, and cc). The crp/fnr knockout mutants were well separated by transcriptional profiling using detrended correspondence analysis (DCA), and more genes significantly changed in expression in a ΔDVU3111 mutant (JW9013) than in the other three paralogs. In fitness studies, strain JW9013 showed the lowest fitness under standard growth conditions (i.e., sulfate reduction) and the highest fitness under NaCl or chromate stress conditions; better fitness was observed for a ΔDVU2547 mutant (JW9011) under nitrite stress conditions and a ΔDVU2097 mutant (JW9009) under air stress conditions. A higher Cr(VI) reduction rate was observed for strain JW9013 in experiments with washed cells. These results suggested that the four Crp/Fnr-type global regulators play distinct roles in stress responses of D. vulgaris. DVU3111 is implicated in responses to NaCl and chromate stresses, DVU2547 in nitrite stress responses, and DVU2097 in air stress responses.
Collapse
|
35
|
Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 2011; 93:319-29. [DOI: 10.1007/s00253-011-3731-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
|
36
|
The sulfate-rich and extreme saline sediment of the ephemeral tirez lagoon: a biotope for acetoclastic sulfate-reducing bacteria and hydrogenotrophic methanogenic archaea. Int J Microbiol 2011; 2011:753758. [PMID: 21915180 PMCID: PMC3170894 DOI: 10.1155/2011/753758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.
Collapse
|
37
|
Keller KL, Wall JD. Genetics and molecular biology of the electron flow for sulfate respiration in desulfovibrio. Front Microbiol 2011; 2:135. [PMID: 21747813 PMCID: PMC3129016 DOI: 10.3389/fmicb.2011.00135] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 06/10/2011] [Indexed: 11/25/2022] Open
Abstract
Progress in the genetic manipulation of the Desulfovibrio strains has provided an opportunity to explore electron flow pathways during sulfate respiration. Most bacteria in this genus couple the oxidation of organic acids or ethanol with the reduction of sulfate, sulfite, or thiosulfate. Both fermentation of pyruvate in the absence of an alternative terminal electron acceptor, disproportionation of fumarate and growth on H2 with CO2 during sulfate reduction are exhibited by some strains. The ability to produce or consume H2 provides Desulfovibrio strains the capacity to participate as either partner in interspecies H2 transfer. Interestingly the mechanisms of energy conversion, pathways of electron flow and the parameters determining the pathways used remain to be elucidated. Recent application of molecular genetic tools for the exploration of the metabolism of Desulfovibrio vulgaris Hildenborough has provided several new datasets that might provide insights and constraints to the electron flow pathways. These datasets include (1) gene expression changes measured in microarrays for cells cultured with different electron donors and acceptors, (2) relative mRNA abundances for cells growing exponentially in defined medium with lactate as carbon source and electron donor plus sulfate as terminal electron acceptor, and (3) a random transposon mutant library selected on medium containing lactate plus sulfate supplemented with yeast extract. Studies of directed mutations eliminating apparent key components, the quinone-interacting membrane-bound oxidoreductase (Qmo) complex, the Type 1 tetraheme cytochrome c3 (Tp1-c3), or the Type 1 cytochrome c3:menaquinone oxidoreductase (Qrc) complex, suggest a greater flexibility in electron flow than previously considered. The new datasets revealed the absence of random transposons in the genes encoding an enzyme with homology to Coo membrane-bound hydrogenase. From this result, we infer that Coo hydrogenase plays an important role in D. vulgaris growth on lactate plus sulfate. These observations along with those reported previously have been combined in a model showing dual pathways of electrons from the oxidation of both lactate and pyruvate during sulfate respiration. Continuing genetic and biochemical analyses of key genes in Desulfovibrio strains will allow further clarification of a general model for sulfate respiration.
Collapse
Affiliation(s)
- Kimberly L Keller
- Department of Biochemistry, University of Missouri Columbia, MO, USA
| | | |
Collapse
|
38
|
How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 2011; 9:452-66. [PMID: 21572460 DOI: 10.1038/nrmicro2575] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.
Collapse
|
39
|
Gancz H, Merrell DS. The Helicobacter pylori Ferric Uptake Regulator (Fur) is essential for growth under sodium chloride stress. J Microbiol 2011; 49:294-8. [PMID: 21538253 DOI: 10.1007/s12275-011-0396-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/22/2010] [Indexed: 01/27/2023]
Abstract
Epidemiological data and animal models indicate that Helicobacter pylori and dietary NaCl have a synergistic ill effect on gastric maladies. Here we show that the Ferric Uptake Regulator (Fur), which is a crucial regulatory factor required for H. pylori colonization, is essential for growth in the presence of high NaCl concentrations. Moreover, we demonstrate that the transcriptional response induced by sodium chloride stress exhibits similarities to that seen under iron depletion.
Collapse
Affiliation(s)
- Hanan Gancz
- Department of Microbiology and Immunology, Uniformed Services University of Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | | |
Collapse
|
40
|
Zhou A, He Z, Redding-Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, Luo F, Deng Y, Bender KS, He Q, Keasling JD, Stahl DA, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 2011; 12:2645-57. [PMID: 20482586 DOI: 10.1111/j.1462-2920.2010.02234.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H(2)O(2)-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H(2)O(2) and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H(2)O(2) stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H(2)O(2) and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H(2)O(2)-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H(2)O(2) stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H(2)O(2)-induced stresses.
Collapse
Affiliation(s)
- Aifen Zhou
- Virtual Institute of Microbial Stress and Survival, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|