1
|
Daud NNM, Al-Zaqri N, Yaakop AS, Ibrahim MNM, Guerrero-Barajas C. Stimulating bioelectric generation and recovery of toxic metals through benthic microbial fuel cell driven by local sago (Cycas revoluta) waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18750-18764. [PMID: 38349489 DOI: 10.1007/s11356-024-32372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb2+, Cd2+, Cr3+, Ni2+, Co2+, Ag+, and Cu2+) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks.
Collapse
Affiliation(s)
- Najwa Najihah Mohamad Daud
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia.
| | - Claudia Guerrero-Barajas
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto S/N, Col. Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| |
Collapse
|
2
|
Sun J, He X, LE Y, Al-Tohamy R, Ali SS. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120081. [PMID: 38237330 DOI: 10.1016/j.jenvman.2024.120081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.
Collapse
Affiliation(s)
- Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xing He
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yilin LE
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Zheng B, Xu Z, Yang L, Jiang G, Chen J, Yang Y, Tian Y. Leucobacter edaphi sp. nov., a highly chromate-tolerant bacterium isolated from chromium containing chemical plant soil. Antonie Van Leeuwenhoek 2023; 116:1433-1445. [PMID: 37874522 DOI: 10.1007/s10482-023-01895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
A Gram-positive, aerobic, rod-shaped non-motile, non-sporulating bacterium, designated CSA2T, was isolated from chromium-containing soils collected from a chemical plant. The 16S rRNA gene sequence of strain CSA2T showed the highest homology with Leucobacter chromiireducens subsp. solipictus (97.85%), Leucobacter chromiireducens subsp. chromiireducens (97.85%). The digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) and the amino acid identity (AAI) values among strains CSA2T and the selected Leucobacter species were 20.6-23.4% (dDDH), 72.67-78.03% (ANI) and 66.39-76.16% (AAI), falling below the recommended thresholds for species delimitation. The principal fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. The major menaquinones detected were MK-10 and MK-11. The cell-wall amino acids included 2,4-diaminobutyric acid, threonine, glutamic acid, alanine and glycine. Based on molecular feature, phenotypic and chemotaxonomic, strain CSA2T was considered to be a novel species of the genus Leucobacter., and the name Leucobacter edaphi sp. nov. is proposed. The type strain is CSA2T (= JCM 34360T = CGMCC 1.18747T).
Collapse
Affiliation(s)
- Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
4
|
Ahmed RO, Ali A, Leeds T, Salem M. Fecal Microbiome Analysis Distinguishes Bacterial Taxa Biomarkers Associated with Red Fillet Color in Rainbow Trout. Microorganisms 2023; 11:2704. [PMID: 38004716 PMCID: PMC10673235 DOI: 10.3390/microorganisms11112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The characteristic reddish-pink fillet color of rainbow trout is an important marketing trait. The gastrointestinal microbiome is vital for host health, immunity, and nutrient balance. Host genetics play a crucial role in determining the gut microbiome, and the host-microbiome interaction impacts the host's phenotypic expression. We hypothesized that fecal microbiota could be used to predict fillet color in rainbow trout. Fish were fed Astaxanthin-supplemented feed for six months, after which 16s rDNA sequencing was used to investigate the fecal microbiome composition in rainbow trout families with reddish-pink fillet coloration (red fillet group, average saturation index = 26.50 ± 2.86) compared to families with pale white fillet color (white fillet group, average saturation index = 21.21 ± 3.53). The linear discriminant analysis effect size (LEFse) tool was used to identify bacterial biomarkers associated with fillet color. The alpha diversity measure shows no difference in the red and white fillet groups. Beta diversity principal component analysis showed clustering of the samples along the white versus red fillet group. The red fillet group has enrichment (LDA score > 1.5) of taxa Leuconostoc lactis, Corynebacterium variabile, Jeotgalicoccus halotolerans, and Leucobacter chromiireducens. In contrast, the white fillet group has an enriched presence of mycoplasma, Lachnoclostridium, and Oceanobacillus indicireducens. The enriched bacterial taxa in the red fillet group have probiotic functions and can generate carotenoid pigments. Bacteria taxa enriched in the white fillet group are either commensal, parasitic, or capable of reducing indigo dye. The study identified specific bacterial biomarkers differentially abundant in fish families of divergent fillet color that could be used in genetic selection to improve feed carotenoid retention and reddish-pink fillet color. This work extends our understanding of carotenoid metabolism in rainbow trout through the interaction between gut microbiota and fillet color.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| |
Collapse
|
5
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil. World J Microbiol Biotechnol 2023; 39:228. [PMID: 37338635 DOI: 10.1007/s11274-023-03681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The impacts of hexavalent chromium (Cr) contamination on the microbiome, soil physicochemistry, and heavy metal resistome of a tropical agricultural soil were evaluated for 6 weeks in field-moist microcosms consisting of a Cr-inundated agricultural soil (SL9) and an untreated control (SL7). The physicochemistry of the two microcosms revealed a diminution in the total organic matter content and a significant dip in macronutrients phosphorus, potassium, and nitrogen concentration in the SL9 microcosm. Heavy metals analysis revealed the detection of seven heavy metals (Zn, Cu, Fe, Cd, Se, Pb, Cr) in the agricultural soil (SL7), whose concentrations drastically reduced in the SL9 microcosm. Illumina shotgun sequencing of the DNA extracted from the two microcosms showed the preponderance of the phyla, classes, genera, and species of Actinobacteria (33.11%), Actinobacteria_class (38.20%), Candidatus Saccharimonas (11.67%), and Candidatus Saccharimonas aalborgensis (19.70%) in SL7, and Proteobacteria (47.52%), Betaproteobacteria (22.88%), Staphylococcus (16.18%), Staphylococcus aureus (9.76%) in SL9, respectively. Functional annotation of the two metagenomes for heavy metal resistance genes revealed diverse heavy metal resistomes involved in the uptake, transport, efflux, and detoxification of various heavy metals. It also revealed the exclusive detection in SL9 metagenome of resistance genes for chromium (chrB, chrF, chrR, nfsA, yieF), cadmium (czcB/czrB, czcD), and iron (fbpB, yqjH, rcnA, fetB, bfrA, fecE) not annotated in SL7 metagenome. The findings from this study revealed that Cr contamination induces significant shifts in the soil microbiome and heavy metal resistome, alters the soil physicochemistry, and facilitates the loss of prominent members of the microbiome not adapted to Cr stress.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| | | | - Matthew O Ilori
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - Olukayode O Amund
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| |
Collapse
|
6
|
Rahman Z, Thomas L, Chetri SPK, Bodhankar S, Kumar V, Naidu R. A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59163-59193. [PMID: 37046169 DOI: 10.1007/s11356-023-26624-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) compounds are usually toxins and exist abundantly in two different forms, Cr(VI) and Cr(III), in nature. Their contamination in any environment is a major problem. Many extreme environments including cold climate, warm climate, acidic environment, basic/alkaline environment, hypersaline environment, radiation, drought, high pressure, and anaerobic conditions have accumulated elevated Cr contamination. These harsh physicochemical conditions associated with Cr(VI) contamination damage biological systems in various ways. However, several unique microorganisms belonging to phylogenetically distant taxa (bacteria, fungi, and microalgae) owing to different and very distinct physiological characteristics can withstand extremities of Cr(VI) in different physicochemical environments. These challenging situations offer great potential and extended proficiencies in extremophiles for environmental and biotechnological applications. On these issues, the present review draws attention to Cr(VI) contamination from diverse extreme environmental regions. The study gives a detailed account on the ecology and biogeography of Cr(VI)-resistant microorganisms in inhospitable environments, and their use for detoxifying Cr(VI) and other applications. The study also focuses on physiological, multi-omics, and genetic engineering approaches of Cr(VI)-resistant extremophiles.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Siva P K Chetri
- Department of Botany, Dimoria College, Gauhati University, Guwahati, Assam, India
| | - Shrey Bodhankar
- Department of Agriculture Microbiology, School of Agriculture Sciences, Anurag University, Hyderabad, Telangana, India
| | - Vikas Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| |
Collapse
|
7
|
Abd El-Ghany MN, Hamdi SA, Korany SM, Elbaz RM, Emam AN, Farahat MG. Biogenic Silver Nanoparticles Produced by Soil Rare Actinomycetes and Their Significant Effect on Aspergillus-derived mycotoxins. Microorganisms 2023; 11:microorganisms11041006. [PMID: 37110430 PMCID: PMC10142716 DOI: 10.3390/microorganisms11041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The current investigation addressed the green synthesis of silver nanoparticles (AgNPs) using newly isolated silver-resistant rare actinomycetes, Glutamicibacter nicotianae SNPRA1 and Leucobacter aridicollis SNPRA2, and investigated their impact on the mycotoxigenic fungi Aspergillus flavus ATCC 11498 and Aspergillus ochraceus ATCC 60532. The formation of AgNPs was evidenced by the reaction's color change to brownish and the appearance of the characteristic surface plasmon resonance. The transmission electron microscopy of biogenic AgNPs produced by G. nicotianae SNPRA1 and L. aridicollis SNPRA2 (designated Gn-AgNPs and La-AgNPs, respectively) revealed the generation of monodispersed spherical nanoparticles with average sizes of 8.48 ± 1.72 nm and 9.67 ± 2.64 nm, respectively. Furthermore, the XRD patterns reflected their crystallinity and the FTIR spectra demonstrated the presence of proteins as capping agents. Both bioinspired AgNPs exhibited a remarkable inhibitory effect on the conidial germination of the investigated mycotoxigenic fungi. The bioinspired AgNPs caused an increase in DNA and protein leakage, suggesting the disruption of membrane permeability and integrity. Interestingly, the biogenic AgNPs completely inhibited the production of total aflatoxins and ochratoxin A at concentrations less than 8 μg/mL. At the same time, cytotoxicity investigations revealed the low toxicity of the biogenic AgNPs against the human skin fibroblast (HSF) cell line. Both biogenic AgNPs exhibited feasible biocompatibility with HSF cells at concentrations up to 10 μg/mL and their IC50 values were 31.78 and 25.83 μg/mL for Gn-AgNPs and La-AgNPs, respectively. The present work sheds light on the antifungal prospect of the biogenic AgNPs produced by rare actinomycetes against mycotoxigenic fungi as promising candidates to combat mycotoxin formation in food chains at nontoxic doses.
Collapse
Affiliation(s)
- Mohamed N Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Salwa A Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shereen M Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Reham M Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre, El Bohouth St., Dokki, Cairo 12622, Egypt
| | - Mohamed G Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt
| |
Collapse
|
8
|
Kalsoom A, Jamil N, Hassan SMU, Khan JA, Batool R. Chromate Removal by Enterobacter cloacae Strain UT25 from Tannery Effluent and Its Potential Role in Cr (VI) Remediation. Curr Microbiol 2023; 80:99. [PMID: 36745203 DOI: 10.1007/s00284-023-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
An indigenous chromate-resistant bacterial strain isolated from tannery effluent was identified based on morphological, biochemical, and 16S rRNA gene sequencing, as Enterobacter cloacae UT25. It was found to resist heavy metal ions such as Cr (VI), Pb (II), Cu (II), Co (II), Ni (II), Hg (II), and Zn (II) and antibiotics. The strain was able to remove 89 and 86% chromate, after 24 h of incubation in a Luria-Bertani (LB) medium at an initial Cr (VI) concentration of 1000 and 1500 µg/ml, respectively. Minimum inhibitory concentration (MIC) was observed for chromate to be 80,000 and 1850 µg/ml, after 48 h of incubation in LB and acetate minimal media (AMM), respectively. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis showed discrete cells with intact and smooth cell walls and homogenous cytoplasm in the absence of metal stress, whereas chromate stress caused cell lysis and reduction in size, which was a characteristic response to Cr (VI) toxicity. Energy Dispersive X-Ray Spectroscopy (EDX) confirmed the adsorption of oxyanions to the cell wall which was one of the Cr (VI) removal mechanisms by the bacterium. Atomic Force Microscopy (AFM) micrographs of chromate-untreated and treated cells revealed Root Mean Square roughness (Rq) values of 16.25 and 11.26 nm, respectively, indicating less roughness in the presence of stress. The partial gene sequence of class 1 integrons (intI1) of strain UT25 showed 94% homology with intI1 gene of strain Enterobacter hormaechei strain ECC59 plasmid pECC59-1. The present analysis highlighted the potential of E. cloacae UT25 as a promissory bacterium that could be applied in removing chromate from polluted environments.
Collapse
Affiliation(s)
- Asma Kalsoom
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | | | - Junaid Ahmed Khan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Rida Batool
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
9
|
Zou X, Mohammed A, Gao M, Liu Y. Mature landfill leachate treatment using granular sludge-based reactor (GSR) via nitritation/denitritation: Process startup and optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157078. [PMID: 35787895 DOI: 10.1016/j.scitotenv.2022.157078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Mature landfill leachate wastewater (LLW) was characterized by high ammonia, refractory chemical oxygen demand (COD) and heavy metal contents, which limits the nitrogen removal in conventional activated sludge systems. Granular sludge is known to be more resistant to toxic compounds because of its dense structure and diverse microbial community. Here, granular sludge-based reactor (GSR) was applied with nitritation/denitritation (Nit/DNit) process for effective ammonia-rich mature LLW treatment at 20 °C. After a short startup period, the efficiencies of ammonia removal and total inorganic nitrogen removal stabilized at 99 % and 93 %, respectively, under a hydraulic retention time (HRT) of 6 h. High ammonia oxidation rate (~ 0.64 g N/g VSS/d) was achieved, with ~93 % ammonia conversing to nitrite before being reduced to nitrogen gas. Microbial analysis results revealed that Nitrosomonas (ammonia oxidizing bacteria) and Thauera (denitrifiers) were the dominant bacteria with key functional genes involved in the Nit/DNit. With an increase in the LLW loading, increased ammonia oxidation rates and biomass retention were also observed. This study demonstrated that granular sludge-based technology is feasible for mature LLW treatment.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Abdul Mohammed
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
10
|
Aravind MK, Kappen J, Narayanamoorthi E, Sanjaykumar A, Varalakshmi P, Arockiadoss T, John SA, Ashokkumar B. Bioengineered magnetic graphene oxide microcomposites for bioremediation of chromium in ex situ - A novel strategy for aggrandized recovery by electromagnetic gadgetry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119675. [PMID: 35753546 DOI: 10.1016/j.envpol.2022.119675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Novel magnetic microcomposites consisting of graphene oxide and iron oxide was synthesized to immobilize metabolically versatile Paracoccus sp. MKU1 and Leucobacter sp. AA7 and tested for the simultaneous adsorption and enhanced biological detoxification of hexavalent chromium (Cr(VI)) from tannery wastewater. This study reports highest chromium adsorption of 272.6 mg/g and 179.3 mg/g with complete reduction of Cr(VI) to Cr(III) by the microcomposites of AA7 and MKU1 from wastewater in a bioreactor (10 L) at large-scale for first time in ex situ. Furthermore, both the microcomposites displayed an enhanced detoxification of tannery wastewater by reducing various physicochemical conditions such as ammonia, nitrate, TDS, fluoride, CaCO3, Ca, Mg, NO3 and SO2 under the permissible limits. Use of electromagnetic device for magnetic microcomposites recovery from bioreactor yielded a maximum of 88% and 80.6% recovery for AA7 and MKU1, respectively. The rate of chromium recuperation achieved following desorption from the microcomposites of AA7 and MKU1 was 90.71% and 93.97%, respectively. Thus, the multifarious benefits including adsorption, metabolic detoxification, recovery, and recuperation by single functional microcomposites seems to be an intriguing and profitable approach for practicing in real-time operations to effectively remove heavy metals from the contaminated wastewater for environmental protection.
Collapse
Affiliation(s)
- Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Jincymol Kappen
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Tamil Nadu, India
| | - Eswaran Narayanamoorthi
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Tamil Nadu, India
| | - Ashokkumar Sanjaykumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | - Swamidoss Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Tamil Nadu, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
11
|
Javier RA, Matías R, Alonso F, Renato C, Gloria L. A novel gene from the acidophilic bacterium Leptospirillum sp. CF-1 and its role in oxidative stress and chromate tolerance. Biol Res 2022; 55:19. [PMID: 35525996 PMCID: PMC9080137 DOI: 10.1186/s40659-022-00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Acidophilic microorganisms like Leptospirillum sp. CF-1 thrive in environments with extremely low pH and high concentrations of dissolved heavy metals that can induce the generation of reactive oxygen species (ROS). Several hypothetical genes and proteins from Leptospirillum sp. CF-1 are known to be up-regulated under oxidative stress conditions. Results In the present work, the function of hypothetical gene ABH19_09590 from Leptospirillum sp. CF-1 was studied. Heterologous expression of this gene in Escherichia coli led to an increase in the ability to grow under oxidant conditions with 5 mM K2CrO4 or 5 mM H2O2. Similarly, a significant reduction in ROS production in E. coli transformed with a plasmid carrying ABH19_09590 was observed after exposure to these oxidative stress elicitors for 30 min, compared to a strain complemented with the empty vector. A co-transcriptional study using RT-PCR showed that ABH19_09590 is contained in an operon, here named the “och” operon, that also contains ABH19_09585, ABH19_09595 and ABH19_09600 genes. The expression of the och operon was significantly up-regulated in Leptospirillum sp. CF-1 exposed to 5 mM K2CrO4 for 15 and 30 min. Genes of this operon potentially encode a NADH:ubiquinone oxidoreductase, a CXXC motif-containing protein likely involved in thiol/disulfide exchange, a hypothetical protein, and a di-hydroxy-acid dehydratase. A comparative genomic analysis revealed that the och operon is a characteristic genetic determinant of the Leptospirillum genus that is not present in other acidophiles. Conclusions Altogether, these results suggest that the och operon plays a protective role against chromate and hydrogen peroxide and is an important mechanism required to face polyextremophilic conditions in acid environments.
Collapse
Affiliation(s)
- Rivera-Araya Javier
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Riveros Matías
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Ferrer Alonso
- Núcleo de Química y Bioquímica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Chávez Renato
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Levicán Gloria
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile.
| |
Collapse
|
12
|
Chromiková Z, Chovanová RK, Tamindžija D, Bártová B, Radnović D, Bernier-Latmani R, Barák I. Implantation of Bacillus pseudomycoides Chromate Transporter Increases Chromate Tolerance in Bacillus subtilis. Front Microbiol 2022; 13:842623. [PMID: 35330768 PMCID: PMC8940164 DOI: 10.3389/fmicb.2022.842623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Chromium of anthropogenic origin contaminates the environment worldwide. The toxicity of chromium, a group I human carcinogen, is greatest when it is in a hexavalent oxidation state, Cr(VI). Cr(VI) is actively transported into the cell, triggering oxidative damage intracellularly. Due to the abundance of unspecific intracellular reductants, any microbial species is capable of bio-transformation of toxic Cr(VI) to innocuous Cr(III), however, this process is often lethal. Only some bacterial species are capable of sustaining the vegetative growth in the presence of a high concentration of Cr(VI) and thus operate as self-sustainable bioremediation agents. One of the successful microbial Cr(VI) detoxification strategies is the activation of chromate efflux pumps. This work describes transplantation of the chromate efflux pump from the potentially pathogenic but highly Cr resistant Bacillus pseudomycoides environmental strain into non-pathogenic but only transiently Cr tolerant Bacillus subtilis strain. In our study, we compared the two Bacillus spp. strains harboring evolutionarily diverged chromate efflux proteins. We have found that individual cells of the Cr-resistant B. pseudomycoides environmental strain accumulate less Cr than the cells of B. subtilis strain. Further, we found that survival of the B. subtilis strain during the Cr stress can be increased by the introduction of the chromate transporter from the Cr resistant environmental strain into its genome. Additionally, the expression of B. pseudomycoides chromate transporter ChrA in B. subtilis seems to be activated by the presence of chromate, hinting at versatility of Cr-efflux proteins. This study outlines the future direction for increasing the Cr-tolerance of non-pathogenic species and safe bioremediation using soil bacteria.
Collapse
Affiliation(s)
- Zuzana Chromiková
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Zuzana Chromiková,
| | - Romana Kalianková Chovanová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dragana Tamindžija
- Department of Chemistry, Faculty of Sciences, Biochemistry and Environmental Protection, Novi Sad, Serbia
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Barbora Bártová
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dragan Radnović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- Imrich Barák,
| |
Collapse
|
13
|
Utilizing Biomass-Based Graphene Oxide-Polyaniline-Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal. Polymers (Basel) 2022; 14:polym14040845. [PMID: 35215758 PMCID: PMC8963014 DOI: 10.3390/polym14040845] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/22/2023] Open
Abstract
Although regarded as environmentally stable, bioelectrochemical fuel cells or, microbial fuel cells (MFCs) continue to face challenges with sustaining electron transport. In response, we examined the performance of two graphene composite-based anode electrodes—graphene oxide (GO) and GO–polymer–metal oxide (GO–PANI–Ag)—prepared from biomass and used in MFCs. Over 7 days of operation, GO energy efficiency peaked at 1.022 mW/m2 and GO–PANI–Ag at 2.09 mW/m2. We also tested how well the MFCs could remove heavy metal ions from synthetic wastewater, a secondary application of MFCs that offers considerable benefits. Overall, GO–PANI–Ag had a higher removal rate than GO, with 78.10% removal of Pb(II) and 80.25% removal of Cd(II). Material characterizations, electrochemical testing, and microbial testing conducted to validate the anodes performance confirmed that using new materials as electrodes in MFCs can be an attractive approach to improve the electron transportation. When used with a natural organic substrate (e.g., sugar cane juice), they also present fewer challenges. We also optimized different parameters to confirm the efficiency of the MFCs under various operating conditions. Considering those results, we discuss some lingering challenges and potential possibilities for MFCs.
Collapse
|
14
|
Akkurt Ş, Oğuz M, Alkan Uçkun A. Bioreduction and bioremoval of hexavalent chromium by genetically engineered strains (Escherichia coli MT2A and Escherichia coli MT3). World J Microbiol Biotechnol 2022; 38:45. [PMID: 35075546 DOI: 10.1007/s11274-022-03235-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023]
Abstract
The number of studies on the removal of hazardous metals from water using genetic engineering technologies is growing. A high rate of metal ion removal from the environment is ensured, particularly through the expression of cysteine and thiol-rich proteins such as metallothioneins in bacterial cells. In this study, we used recombinant strains created by cloning the human metallothioneins MT2A and MT3 into Escherichia coli Jm109 to assess the removal and reduction of hexavalent chromium (Cr(VI)) from aqueous solutions. MT2A was the most effective strain in both Cr(VI) removal (89% in 25 mg/L Cr(VI)) and Cr(VI) reduction (76% in 25 mg/L Cr(VI)). The amount of Cr adsorbed per dry cell by the MT2A strain was 22 mg/g. The biosorption of total Cr was consistent with the Langmuir isotherm model. Scanning electron microscope (SEM) images revealed that the morphological structures of Cr(VI)-treated cells were significantly damaged when compared to control cells. Scanning transmission electron microscope (STEM) images showed black spots in the cytoplasm of cells treated with Cr(VI). Shifts in the Fourier transform infrared spectroscopy analysis (FTIR) spectra of the cells treated with Cr(VI) showed that the groups interacting with Cr were hydroxyl, amine, amide I, amide II, phosphoryl and carbonyl. When all of the experimental data was combined, it was determined that both MT2A and MT3 were effective in removing Cr(VI) from aqueous solutions, but MT2A was more effective, indicating that MT2A may be employed as a biotechnological tool.
Collapse
Affiliation(s)
- Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Altınşehir Neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Central, Adıyaman, Turkey
| | - Merve Oğuz
- Department of Environmental Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Altınşehir Neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Central, Adıyaman, Turkey.
| |
Collapse
|
15
|
Decoding the link of microbiome niches with homologous sequences enables accurately targeted protein structure prediction. Proc Natl Acad Sci U S A 2021; 118:2110828118. [PMID: 34873061 DOI: 10.1073/pnas.2110828118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Information derived from metagenome sequences through deep-learning techniques has significantly improved the accuracy of template free protein structure modeling. However, most of the deep learning-based modeling studies are based on blind sequence database searches and suffer from low efficiency in computational resource utilization and model construction, especially when the sequence library becomes prohibitively large. We proposed a MetaSource model built on 4.25 billion microbiome sequences from four major biomes (Gut, Lake, Soil, and Fermentor) to decode the inherent linkage of microbial niches with protein homologous families. Large-scale protein family folding experiments on 8,700 unknown Pfam families showed that a microbiome targeted approach with multiple sequence alignment constructed from individual MetaSource biomes requires more than threefold less computer memory and CPU (central processing unit) time but generates contact-map and three-dimensional structure models with a significantly higher accuracy, compared with that using combined metagenome datasets. These results demonstrate an avenue to bridge the gap between the rapidly increasing metagenome databases and the limited computing resources for efficient genome-wide database mining, which provides a useful bluebook to guide future microbiome sequence database and modeling development for high-accuracy protein structure and function prediction.
Collapse
|
16
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
17
|
Chen J, Tian Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20981-20997. [PMID: 33689130 DOI: 10.1007/s11356-021-13325-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a common heavy metal, chromium and its compounds are widely used in industrial applications, e.g., leather tanning, electroplating, and in stainless steel, paints and fertilizers. Due to the strong toxicity of Cr(VI), chromium is regarded as a major source of pollution with a serious impact on the environment and biological systems. The disposal of Cr(VI) by biological treatment methods is more favorable than traditional treatment methods because the biological processes are environmentally friendly and cost-efficient. This review describes how bacteria tolerate and reduce Cr(VI) and the effects of some physical and chemical factors on the reduction of Cr(IV). The practical applications for Cr(VI) reduction of bacterial cells are also included in this review.
Collapse
Affiliation(s)
- Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
18
|
Fu L, Feng A, Xiao J, Wu Q, Ye Q, Peng S. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123847. [PMID: 33264926 DOI: 10.1016/j.jhazmat.2020.123847] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
In order to solve the problem of re-oxidation after chemical remediation of soil contaminated with high levels of hexavalent chromium (Cr(VI)), we investigated the use of chemical reduction combined with microbial stabilization to remediate soils contaminated with high Cr(VI) concentration. The leaching toxicity and microbial diversity of Cr(VI)-contaminated soil and the leaching toxicity of remediated soil oxidized by potassium permanganate (KMnO4) were measured. The results indicate that the conversion rate of Cr(VI) reached 97 %, and the concentration of Cr(VI) in toxic solutions leaching can be reduced by 95 % after 40 days of microbial stabilization. Sterilization experiments showed that the reduction of Cr(VI) by microorganisms is stable. The results of microbial diversity analysis indicate that bacterial community changed more than fungal community during the reduction process of Cr(VI), and the species abundance and species evenness of bacteria decreased. Bacillus spp. and Halomonas spp. were the dominant species in this study.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Aixi Feng
- Yuhuan Environmental Science and Technology Co., Ltd, No. 88, Hongqi Street, Qiaoxi District, Shijiazhuang, Hebei Province, 050000, China
| | - Jingjing Xiao
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Qing Wu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Qunying Ye
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
19
|
Pei Y, Tao C, Ling Z, Yu Z, Ji J, Khan A, Mamtimin T, Liu P, Li X. Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140435. [PMID: 32623159 DOI: 10.1016/j.scitotenv.2020.140435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial remediation is a promising method to treat Cr(VI) in industrial wastewater. The remediation efficiency and stress-resistance ability of Cr(VI) remediation genes in microbes are the limiting factors for their application in industrial wastewater treatment. To screen novel highly efficient Cr(VI) remediation genes, comparative metatranscriptomic and metagenomic analyses were performed on long-term Cr(VI)-contaminated riparian soil with/without additional Cr(VI) treatment. The most suitable Cr(VI) treatment time was determined to be 30 min according to the high quality RNA yield and fold changes in gene expression. Six novel genes, which had complete open reading frames (ORFs) in metagenomic libraries, were identified from unculturable microbes. In the phenotypic functional assay, all novel genes enhanced the Cr(VI) resistance/reduction ability of E. coli. In the industrial wastewater treatment, E-mcr and E-gsr presented at least 50% Cr(VI) removal efficiencies in the presence of 200-600 μM of Cr(VI), without a decrease in efficiency over 17 days. The stress resistance assay showed that gsr increased the growth rate of E. coli by at least 30% under different extreme conditions, and thus, gsr was identified as a general stress-response gene. In the Cr valence distribution assay, E-mcr presented ~40 μM higher extracellular Cr (III) compared to E-yieF. Additionally, transmission electron microscopy (TEM) of E-mcr showed bulk black agglomerates on the cell surface. Thus, mcr was identified as a membrane chromate reductase gene. This research provides a new idea for studying novel highly efficient contaminant remediation genes from unculturable microbes.
Collapse
Affiliation(s)
- Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Chen Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqinglu #18, Beijing 100085, China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Zhengsheng Yu
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Jing Ji
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Aman Khan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China.
| |
Collapse
|
20
|
Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176013. [PMID: 32824890 PMCID: PMC7504174 DOI: 10.3390/ijerph17176013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022]
Abstract
Chromium (Cr) (VI) has long been known as an environmental hazard that can be reduced from aqueous solutions through bioremediation by living cells. In this study, we investigated the efficiency of reduction and biosorption of Cr(VI) by chromate resistant bacteria isolated from tannery effluent. From 28 screened Cr(VI) resistant isolates, selected bacterial strain SH-1 was identified as Klebsiella sp. via 16S rRNA sequencing. In Luria–Bertani broth, the relative reduction level of Cr(VI) was 95%, but in tannery effluent, it was 63.08% after 72 h of incubation. The cell-free extract of SH-1 showed a 72.2% reduction of Cr(VI), which indicated a higher activity of Cr(VI) reducing enzyme than the control. Live and dead biomass of SH-1 adsorbed 51.25 mg and 29.03 mg Cr(VI) per gram of dry weight, respectively. Two adsorption isotherm models—Langmuir and Freundlich—were used for the illustration of Cr(VI) biosorption using SH-1 live biomass. Scanning electron microscopy (SEM) analysis showed an increased cell size of the treated biomass when compared to the controlled biomass, which supports the adsorption of reduced Cr on the biomass cell surface. Fourier-transform infrared analysis indicated that Cr(VI) had an effect on bacterial biomass, including quantitative and structural modifications. Moreover, the chickpea seed germination study showed beneficial environmental effects that suggest possible application of the isolate for the bioremediation of toxic Cr(VI).
Collapse
|
21
|
Wang S, Zhang B, Li T, Li Z, Fu J. Soil vanadium(V)-reducing related bacteria drive community response to vanadium pollution from a smelting plant over multiple gradients. ENVIRONMENT INTERNATIONAL 2020; 138:105630. [PMID: 32163768 DOI: 10.1016/j.envint.2020.105630] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 05/13/2023]
Abstract
The mining and smelting of navajoite has resulted in a serious vanadium pollution in regional geological environments and significant influence on soil microorganisms. However, the core microbiome responsible for adjusting community response to vanadium pollution and the driving pattern have been kept unclear. In this study, a suite of surface and profile soil samples over multiple gradients were collected in four directions and distances of 10-2000 m from a vanadium smelting plant in Panzhihua, China. The indigenous microbial communities and vanadium(V)-reducing related bacteria (VRB) were profiled by 16S rRNA gene high-throughput sequencing technique. Five VRB were detected in the original collected soil samples including Bacillus, Geobacter, Clostridium, Pseudomonas and Comamonadaceae based on high-throughput sequencing data analysis, and their abundances were significantly related with the content of vanadium. Low vanadium concentration promoted the growth of VRB, while high vanadium concentration would inhibit VRB multiplication. The Gaussian equation could be used to quantitatively describe the nonlinear relationship between VRB and vanadium. Network analysis demonstrated that the microbial communities were significantly influenced by VRB assemblage, and 1.32-52.77% of microbes in the community showed a close association with VRB. A laboratory incubation experiment also confirmed the core role of VRB to drive community response to vanadium pressure.
Collapse
Affiliation(s)
- Song Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Tingting Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Zongyan Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jie Fu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
22
|
Hansen SH, Kabbeck T, Radtke CP, Krause S, Krolitzki E, Peschke T, Gasmi J, Rabe KS, Wagner M, Horn H, Hubbuch J, Gescher J, Niemeyer CM. Machine-assisted cultivation and analysis of biofilms. Sci Rep 2019; 9:8933. [PMID: 31222095 PMCID: PMC6586868 DOI: 10.1038/s41598-019-45414-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
Abstract
Biofilms are the natural form of life of the majority of microorganisms. These multispecies consortia are intensively studied not only for their effects on health and environment but also because they have an enormous potential as tools for biotechnological processes. Further exploration and exploitation of these complex systems will benefit from technical solutions that enable integrated, machine-assisted cultivation and analysis. We here introduce a microfluidic platform, where readily available microfluidic chips are connected by automated liquid handling with analysis instrumentation, such as fluorescence detection, microscopy, chromatography and optical coherence tomography. The system is operable under oxic and anoxic conditions, allowing for different gases and nutrients as feeding sources and it offers high spatiotemporal resolution in the analysis of metabolites and biofilm composition. We demonstrate the platform's performance by monitoring the productivity of biofilms as well as the spatial organization of two bacterial species in a co-culture, which is driven by chemical gradients along the microfluidic channel.
Collapse
Affiliation(s)
- Silla H Hansen
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Tobias Kabbeck
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Carsten P Radtke
- Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Susanne Krause
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Eva Krolitzki
- Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Theo Peschke
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jannis Gasmi
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Wagner
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131, Karlsruhe, Germany
| | - Harald Horn
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Johannes Gescher
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|