1
|
Ren X, Sun X, Chen Y, Xi X, Ma Y, Jiang X, Zhang X, Wang C, Zhu D, Liu X. Genomic and Metabolomic Analyses of Streptomyces albulus with Enhanced ε-Poly-l-lysine Production Through Adaptive Laboratory Evolution. Microorganisms 2025; 13:149. [PMID: 39858917 PMCID: PMC11768054 DOI: 10.3390/microorganisms13010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
ε-poly-l-lysine (ε-PL), a natural food preservative, has garnered widespread attention. It is mainly produced by Streptomyces albulus, but the production by wild-type strains fails to meet the demands of industrialization. To address this issue, adaptive laboratory evolution (ALE) was successfully employed in this study, subjecting S. albulus CICC 11022 to environmental stresses such as acidic pH and antibiotics (rifampicin, gentamicin, and streptomycin). As a result of ALE, an evolutionary strain S. albulus C214 was obtained, exhibiting an increase in ε-PL production and cell growth by 153.23% and 234.51%, respectively, as compared with the original strain. Genomic and metabolic analyses revealed that mutations occurred in genes responsible for transcriptional regulation, transporter, cell envelope, energy metabolism, and secondary metabolite synthesis, as well as the enrichment of metabolites involved in the biosynthesis of ε-PL. These findings hold great significance for elucidating the mechanism underlying ε-PL synthesis.
Collapse
Affiliation(s)
- Xidong Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xinjie Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiangheng Xi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yunzhe Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xinyue Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.R.); (D.Z.); (X.L.)
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
2
|
Kotowska M, Wenecki M, Bednarz B, Ciekot J, Pasławski W, Buhl T, Pawlik KJ. Coelimycin inside out - negative feedback regulation by its intracellular precursors. Appl Microbiol Biotechnol 2024; 108:531. [PMID: 39656307 PMCID: PMC11632069 DOI: 10.1007/s00253-024-13366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Coelimycin (CPK) producer Streptomyces coelicolor A3(2) is a well-established model for the genetic studies of bacteria from the genus Streptomyces, renowned for their ability to produce a plethora of antibiotics and other secondary metabolites. Expression regulation of natural product biosynthetic gene clusters (BGCs) is highly complex, involving not only regulatory proteins, like transcription factors, but also the products of the biosynthetic pathway that may act as ligands for some regulators and modulate their activity. Here, we present the evidence that intracellular CPK precursor(s) (preCPK) is involved in a negative feedback loop repressing the CPK BGC. Moreover, we provide a characterization of the cluster-encoded efflux pump CpkF. We show that CpkF is essential for the extracellular CPK production. In order to track down which CPK compounds - intra- or extracellular - are the ones responsible for the feedback signal, a luciferase-based reporter system was applied to compare the activity of 13 CPK gene promoters in the wild-type (WT) and two mutated strains. The first strain, lacking the CPK-specific exporter CpkF (ΔcpkF), was unable to produce the extracellular CPK. The second one did not produce any CPK at all, due to the disruption of the CpkC polyketide synthase subunit (ΔcpkC). All tested promoters were strongly upregulated in ΔcpkC strain, while in the ΔcpkF strain, promoter activity resembled the one of WT. These results lead to the conclusion that the CPK polyketide acts as a silencer of its own production. Supposedly this function is exerted via binding of the preCPK by an unidentified regulatory protein. KEY POINTS: •Intracellular coelimycin precursor takes part in a negative cpk cluster regulation •CpkF exporter is essential for the extracellular coelimycin production •Simple method for the analysis of coelimycin P2 production in agar medium.
Collapse
Affiliation(s)
- Magdalena Kotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Mateusz Wenecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Bartosz Bednarz
- Faculty of Biotechnology, Laboratory of Biological Chemistry, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Wojciech Pasławski
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomasz Buhl
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Krzysztof J Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
3
|
Jaiswal N, Kumar A. Modulators of Candida albicans Membrane Drug Transporters: A Lucrative Portfolio for the Development of Effective Antifungals. Mol Biotechnol 2024; 66:960-974. [PMID: 38206530 DOI: 10.1007/s12033-023-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
The escalating prevalence of membrane drug transporters and drug efflux pumps in pathogenic yeast like Candida albicans necessitates a comprehensive understanding of their roles in MDR. The overexpression of drug transporter families, ABC and MFS, implicated in MDR through drug efflux and poses a significant challenge in the diagnosis and treatment of fungal infection. Various mechanisms have been proposed for MDR; however, the upregulation of ABC and MFS superfamily transporters is most noticeable in MDR. The direct inhibition of these transporters seems an efficient strategy to overcome this problem. The goal of the article is to present an overview of the prospect of utilizing these modulators of C. albicans drug transports as effective antifungal molecules against MDR addressing a critical gap in the field. The review tries to address to prevent drug extrusion by modulating the expression of drug transporters of C. albicans. The review discussed the progress in identifying potent, selective, and non-toxic modulators of these transporters to develop some effective antifungals and overcome MDR. We reviewed major studies in this area and found that recent work has shifted toward the exploration of natural compounds as potential modulators to restore drug sensitivity in MDR fungal cells. The focus of this review is to survey and interpret current research information on modulators of C. albicans drug transporters from natural sources emphasizing those compounds that are potent antifungal agents.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India.
| |
Collapse
|
4
|
Zavala-Meneses SG, Firrincieli A, Chalova P, Pajer P, Checcucci A, Skultety L, Cappelletti M. Proteogenomic Characterization of Pseudomonas veronii SM-20 Growing on Phenanthrene as Only Carbon and Energy Source. Microorganisms 2024; 12:753. [PMID: 38674697 PMCID: PMC11052242 DOI: 10.3390/microorganisms12040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we conducted an extensive investigation of the biodegradation capabilities and stress response of the newly isolated strain Pseudomonas veronii SM-20 in order, to assess its potential for bioremediation of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). Initially, phenotype microarray technology demonstrated the strain's proficiency in utilizing various carbon sources and its resistance to certain stressors. Genomic analysis has identified numerous genes involved in aromatic hydrocarbon metabolism. Biodegradation assay analyzed the depletion of phenanthrene (PHE) when it was added as a sole carbon and energy source. We found that P. veronii strain SM-20 degraded approximately 25% of PHE over a 30-day period, starting with an initial concentration of 600 µg/mL, while being utilized for growth. The degradation process involved PHE oxidation to an unstable arene oxide and 9,10-phenanthrenequinone, followed by ring-cleavage. Comparative proteomics provided a comprehensive understanding of how the entire proteome responded to PHE exposure, revealing the strain's adaptation in terms of aromatic metabolism, surface properties, and defense mechanism. In conclusion, our findings shed light on the promising attributes of P. veronii SM-20 and offer valuable insights for the use of P. veronii species in environmental restoration efforts targeting PAH-impacted sites.
Collapse
Affiliation(s)
- Sofía G. Zavala-Meneses
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, Vinicna 5, 12844 Prague, Czech Republic
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy or (A.F.); (M.C.)
| | - Petra Chalova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska c. 9, 845 05 Bratislava, Slovakia;
- Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, U Vojenske Nemocnice 1200, 16902 Prague, Czech Republic;
| | - Alice Checcucci
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50100 Firenze, Italy;
| | - Ludovit Skultety
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska c. 9, 845 05 Bratislava, Slovakia;
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy or (A.F.); (M.C.)
| |
Collapse
|
5
|
Zhang J, Huang X, Yang S, Huang A, Ren J, Luo X, Feng S, Li P, Li Z, Dong P. Endophytic Bacillus subtilis H17-16 effectively inhibits Phytophthora infestans, the pathogen of potato late blight, and its potential application. PEST MANAGEMENT SCIENCE 2023; 79:5073-5086. [PMID: 37572366 DOI: 10.1002/ps.7717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND As a highly prevalent epidemic disease of potato, late blight caused by Phytophthora infestans poses a serious threat to potato yield and quality. At present, chemical fungicides are mainly used to control potato late blight, but long-term overuse of chemical fungicides may lead to environmental pollution and human health threats. Endophytes, natural resources for plant diseases control, can promote plant growth, enhance plant resistance, and secrete antifungal substances. Therefore, there is an urgent need to find some beneficial endophytes to control potato late blight. RESULTS We isolated a strain of Bacillus subtilis H17-16 from potato healthy roots. It can significantly inhibit mycelial growth, sporangia germination and the pathogenicity of Phytophthora infestans, induce the resistance of potato to late blight, and promote potato growth. In addition, H17-16 has the ability to produce protease, volatile compounds (VOCs) and form biofilms. After H17-16 treatment, most of the genes involved in metabolism, virulence and drug resistance of Phytophthora infestans were down-regulated significantly, and the genes related to ribosome biogenesis were mainly up-regulated. Moreover, field and postharvest application of H17-16 can effectively reduce the occurrence of potato late blight, and the combination of H17-16 with chitosan or chemical fungicides had a better effect than single H17-16. CONCLUSION Our results reveal that Bacillus subtilis H17-16 has great potential as a natural fungicide for controlling potato late blight, laying a theoretical basis for its development as a biological control agent. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Shidong Yang
- Shandong Nongdeli Biotechnology Co., Ltd, Jinan, China
| | - Airong Huang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Xunguang Luo
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| |
Collapse
|
6
|
Ku RH, Li LH, Liu YF, Hu EW, Lin YT, Lu HF, Yang TC. Implication of the σ E Regulon Members OmpO and σ N in the Δ ompA299-356-Mediated Decrease of Oxidative Stress Tolerance in Stenotrophomonas maltophilia. Microbiol Spectr 2023; 11:e0108023. [PMID: 37284772 PMCID: PMC10433810 DOI: 10.1128/spectrum.01080-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Outer membrane protein A (OmpA) is the most abundant porin in bacterial outer membranes. KJΔOmpA299-356, an ompA C-terminal in-frame deletion mutant of Stenotrophomonas maltophilia KJ, exhibits pleiotropic defects, including decreased tolerance to menadione (MD)-mediated oxidative stress. Here, we elucidated the underlying mechanism of the decreased MD tolerance mediated by ΔompA299-356. The transcriptomes of wild-type S. maltophilia and the KJΔOmpA299-356 mutant strain were compared, focusing on 27 genes known to be associated with oxidative stress alleviation; however, no significant differences were identified. OmpO was the most downregulated gene in KJΔOmpA299-356. KJΔOmpA299-356 complementation with the chromosomally integrated ompO gene restored MD tolerance to the wild-type level, indicating the role of OmpO in MD tolerance. To further clarify the possible regulatory circuit involved in ompA defects and ompO downregulation, σ factor expression levels were examined based on the transcriptome results. The expression levels of three σ factors were significantly different (downregulated levels of rpoN and upregulated levels of rpoP and rpoE) in KJΔOmpA299-356. Next, the involvement of the three σ factors in the ΔompA299-356-mediated decrease in MD tolerance was evaluated using mutant strains and complementation assays. rpoN downregulation and rpoE upregulation contributed to the ΔompA299-356-mediated decrease in MD tolerance. OmpA C-terminal domain loss induced an envelope stress response. Activated σE decreased rpoN and ompO expression levels, in turn decreasing swimming motility and oxidative stress tolerance. Finally, we revealed both the ΔompA299-356-rpoE-ompO regulatory circuit and rpoE-rpoN cross regulation. IMPORTANCE The cell envelope is a morphological hallmark of Gram-negative bacteria. It consists of an inner membrane, a peptidoglycan layer, and an outer membrane. OmpA, an outer membrane protein, is characterized by an N-terminal β-barrel domain that is embedded in the outer membrane and a C-terminal globular domain that is suspended in the periplasmic space and connected to the peptidoglycan layer. OmpA is crucial for the maintenance of envelope integrity. Stress resulting from the destruction of envelope integrity is sensed by extracytoplasmic function (ECF) σ factors, which induce responses to various stressors. In this study, we revealed that loss of the OmpA-peptidoglycan (PG) interaction causes peptidoglycan and envelope stress while simultaneously upregulating σP and σE expression levels. The outcomes of σP and σE activation are different and are linked to β-lactam and oxidative stress tolerance, respectively. These findings establish that outer membrane proteins (OMPs) play a critical role in envelope integrity and stress tolerance.
Collapse
Affiliation(s)
- Ren-Hsuan Ku
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fu Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - En-Wei Hu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Shabbir S, Wang W, Nawaz M, Boruah P, Kulyar MFEA, Chen M, Wu B, Liu P, Dai Y, Sun L, Gou Q, Liu R, Hu G, Younis T, He M. Molecular mechanism of engineered Zymomonas mobilis to furfural and acetic acid stress. Microb Cell Fact 2023; 22:88. [PMID: 37127628 PMCID: PMC10152622 DOI: 10.1186/s12934-023-02095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Acetic acid and furfural (AF) are two major inhibitors of microorganisms during lignocellulosic ethanol production. In our previous study, we successfully engineered Zymomonas mobilis 532 (ZM532) strain by genome shuffling, but the molecular mechanisms of tolerance to inhibitors were still unknown. Therefore, this study investigated the responses of ZM532 and its wild-type Z. mobilis (ZM4) to AF using multi-omics approaches (transcriptomics, genomics, and label free quantitative proteomics). Based on RNA-Seq data, two differentially expressed genes, ZMO_RS02740 (up-regulated) and ZMO_RS06525 (down-regulated) were knocked out and over-expressed through CRISPR-Cas technology to investigate their roles in AF tolerance. Overall, we identified 1865 and 14 novel DEGs in ZM532 and wild-type ZM4. In contrast, 1532 proteins were identified in ZM532 and wild-type ZM4. Among these, we found 96 important genes in ZM532 involving acid resistance mechanisms and survival rates against stressors. Furthermore, our knockout results demonstrated that growth activity and glucose consumption of mutant strains ZM532∆ZMO_RS02740 and ZM4∆ZMO_RS02740 decreased with increased fermentation time from 42 to 55 h and ethanol production up to 58% in ZM532 than that in ZM532∆ZMO_RS02740. Hence, these findings suggest ZMO_RS02740 as a protective strategy for ZM ethanol production under stressful conditions.
Collapse
Affiliation(s)
- Samina Shabbir
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Department of Chemistry, The Women University Multan, Multan, Pakistan
| | - Weiting Wang
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Prerona Boruah
- School of Biotechnology and Bioinformatics, DY PATIL Deemed to Be University, Navi Mumbai, India
| | | | - Mao Chen
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Panting Liu
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Yonghua Dai
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Lingling Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Qiyu Gou
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Renbin Liu
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Guoquan Hu
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, People's Republic of China
| | - Tahira Younis
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Mingxiong He
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.
- Chengdu National Agricultural Science and Technology Center, Chengdu, People's Republic of China.
| |
Collapse
|
8
|
Xu Z, Tian P. Rethinking Biosynthesis of Aclacinomycin A. Molecules 2023; 28:molecules28062761. [PMID: 36985733 PMCID: PMC10054333 DOI: 10.3390/molecules28062761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Aclacinomycin A (ACM-A) is an anthracycline antitumor agent widely used in clinical practice. The current industrial production of ACM-A relies primarily on chemical synthesis and microbial fermentation. However, chemical synthesis involves multiple reactions which give rise to high production costs and environmental pollution. Microbial fermentation is a sustainable strategy, yet the current fermentation yield is too low to satisfy market demand. Hence, strain improvement is highly desirable, and tremendous endeavors have been made to decipher biosynthesis pathways and modify key enzymes. In this review, we comprehensively describe the reported biosynthesis pathways, key enzymes, and, especially, catalytic mechanisms. In addition, we come up with strategies to uncover unknown enzymes and improve the activities of rate-limiting enzymes. Overall, this review aims to provide valuable insights for complete biosynthesis of ACM-A.
Collapse
|
9
|
Colizzi ES, van Dijk B, Merks RMH, Rozen DE, Vroomans RMA. Evolution of genome fragility enables microbial division of labor. Mol Syst Biol 2023; 19:e11353. [PMID: 36727665 PMCID: PMC9996244 DOI: 10.15252/msb.202211353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK
| | - Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Renske M A Vroomans
- Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK.,Informatic Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Li Y, Ge X. Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations. Int J Mol Sci 2022; 24:356. [PMID: 36613823 PMCID: PMC9820426 DOI: 10.3390/ijms24010356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance poses a major challenge to antibiotic therapy. A principal cause of antibiotic resistance is through active export by efflux pumps embedded in the bacterial membrane. Major facilitator superfamily (MFS) efflux pumps constitute a major group of transporters, which are often related to quinolone resistance in clinical settings. Although a rocker-switch model is proposed for description of their conformational transitions, detailed changes in this process remain poorly understood. Here we used MdfA from E. coli as a representative MFS efflux pump to investigate factors that can affect its conformational transition in silico. Molecular dynamics (MD) simulations of MdfA's inward and outward conformations revealed an intermediate state between these two conformations. By comparison of the subtle differences between the intermediate state and the average state, we indicated that conformational transition from outward to inward was initiated by protonation of the periplasmic side. Subsequently, hydrophilic interaction of the periplasmic side with water was promoted and the regional structure of helix 1 was altered to favor this process. As the hydrophobic interaction between MdfA and membrane was also increased, energy was concentrated and stored for the opposite transition. In parallel, salt bridges at the cytoplasmic side were altered to lower probabilities to facilitate the entrance of substrate. In summary, we described the total and local changes during MdfA's conformational transition, providing insights for the development of potential inhibitors.
Collapse
Affiliation(s)
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
11
|
Li Y, Ge X. Enhanced internal ionic interaction of MFS efflux pump MdfA contributes to its elevated antibiotic export. Phys Chem Chem Phys 2022; 25:788-795. [PMID: 36510750 DOI: 10.1039/d2cp05059e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Infections caused by Gram-negative pathogens are difficult to manage due to their antibiotic resistance. Efflux pumps, which transport intracellular toxins out of the cytoplasm, play an important role in the detoxification of bacteria when treated with antibiotics. The major facilitator superfamily (MFS) is a kind of widely distributed efflux pumps and can actively export clinically important antibiotics such as ciprofloxacin, while the role of internal ionic interactions in regulating drug export remains poorly understood. Herein we used a representative MFS efflux pump MdfA to investigate the impact of internal ionic interactions on the antibiotic resistance of E. coli. First, we identified the internal salt bridges of MdfA and searched their natural variants across all the sequenced E. coli isolates. By constructing these variants, we discovered that extending the salt bridge on the cytoplasmic side (E136D) conferred an elevated antibiotic resistance level of E. coli, and the level was further enhanced by combining it with an artificial mutation K346R. By analyzing the trajectories of MdfA's variants in molecular dynamics (MD) simulations, we revealed that ionic interaction strengths on the two sides were proportionally enhanced, while the protein flexibility was not affected. Moreover, enhanced interactions resulted in a larger surface for MdfA's protonation, suggesting a higher possibility for its activation. Collectively, our data revealed the importance of internal interactions on the drug export of MdfA, offering insights for the development of novel inhibitors against MFS efflux pumps.
Collapse
Affiliation(s)
- Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
12
|
Barnabas V, Kashyap A, Raja R, Newar K, Rai D, Dixit NM, Mehra S. The Extent of Antimicrobial Resistance Due to Efflux Pump Regulation. ACS Infect Dis 2022; 8:2374-2388. [PMID: 36264222 DOI: 10.1021/acsinfecdis.2c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A key mechanism driving antimicrobial resistance (AMR) stems from the ability of bacteria to up-regulate efflux pumps upon exposure to drugs. The resistance gained by this up-regulation is pliable because of the tight regulation of efflux pump levels. This leads to temporary enhancement in survivability of bacteria due to higher efflux pump levels in the presence of antibiotics, which can be reversed when the cells are no longer exposed to the drug. Knowledge of the extent of resistance thus gained would inform intervention strategies aimed at mitigating AMR. Here, we combine mathematical modeling and experiments to quantify the maximum extent of resistance that efflux pump up-regulation can confer via phenotypic induction in the presence of drugs and genotypic abrogation of regulation. Our model describes the dynamics of drug transport in and out of cells coupled with the associated regulation of efflux pump levels and predicts the increase in the minimum inhibitory concentration (MIC) of drugs due to such regulation. To test the model, we measured the uptake and efflux as well as the MIC of the compound ethidium bromide (EtBr), a substrate of the efflux pump LfrA, in wild-type Mycobacterium smegmatis mc2155, as well as in two laboratory-generated strains. Our model captured the observed EtBr levels and MIC fold-changes quantitatively. Further, the model identified key parameters associated with the resulting resistance, variations in which could underlie the extent to which such resistance arises across different drug-bacteria combinations, potentially offering tunable handles to optimize interventions aimed at minimizing AMR.
Collapse
Affiliation(s)
- Vinay Barnabas
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Akanksha Kashyap
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Kapil Newar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Deepika Rai
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| |
Collapse
|
13
|
Liu X, Xiong Y, Shi Y, Deng X, Deng Q, Liu Y, Yu Z, Li D, Zheng J, Li P. In vitro activities of licochalcone A against planktonic cells and biofilm of Enterococcus faecalis. Front Microbiol 2022; 13:970901. [PMID: 36338074 PMCID: PMC9634178 DOI: 10.3389/fmicb.2022.970901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2023] Open
Abstract
This study aims to evaluate the in vitro antibacterial and anti-biofilm activities of licochalcone A on Enterococcus faecalis and to investigate the possible target genes of licochalcone A in E. faecalis. This study found that licochalcone A had antibacterial activities against E. faecalis, with the MIC50 and MIC90 were 25 μM. Licochalcone A (at 4 × MIC) indicated a rapid bactericidal effect on E. faecalis planktonic cells, and killed more E. faecalis planktonic cells (at least 3-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 2, 4, and 6 h of the time-killing test. Licochalcone A (at 10 × MIC) significantly reduced the production of E. faecalis persister cells (at least 2-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 24, 48, 72, and 96 h of the time-killing test. Licochalcone A (at 1/4 × MIC) significantly inhibited the biofilm formation of E. faecalis. The RNA levels of biofilm formation-related genes, agg, esp, and srtA, markedly decreased when the E. faecalis isolates were treated with licochalcone A at 1/4 × MIC for 6 h. To explore the possible target genes of licochalcone A in E. faecalis, the licochalcone A non-sensitive E. faecalis clones were selected in vitro by induction of wildtype strains for about 140 days under the pressure of licochalcone A, and mutations in the possible target genes were detected by whole-genome sequencing. This study found that there were 11 nucleotide mutations leading to nonsynonymous mutations of 8 amino acids, and among these amino acid mutations, there were 3 mutations located in transcriptional regulator genes (MarR family transcriptional regulator, TetR family transcriptional regulator, and MerR family transcriptional regulator). In conclusion, this study found that licochalcone A had an antibacterial effect on E. faecalis, and significantly inhibited the biofilm formation of E. faecalis at subinhibitory concentrations.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiangbin Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yansong Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
14
|
Chen CM, Tang HL, Ke SC, Lin YP, Lu MC, Lai YC, Chen BH, Wang YW, Teng RH, Chiou CS. A nosocomial salmonellosis outbreak caused by blaOXA-48-carrying extensively drug-resistant Salmonella enterica serovar Goldcoast in a hospital respiratory care ward in Taiwan. J Glob Antimicrob Resist 2022; 29:331-338. [DOI: 10.1016/j.jgar.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022] Open
|
15
|
Nag A, Mehra S. Involvement of the SCO3366 efflux pump from S. coelicolor in rifampicin resistance and its regulation by a TetR regulator. Appl Microbiol Biotechnol 2022; 106:2175-2190. [PMID: 35194656 DOI: 10.1007/s00253-022-11837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
Overexpression of efflux pumps represents a key mechanism of resistance in bacteria. Soil bacteria such as Streptomyces harbour a vast array of efflux genes that are transcriptionally silent under laboratory conditions. However, dissemination of many of these genes into clinical pathogens via horizontal gene transfer results in conferring resistance to multiple drugs. In this study, we have identified the role of a MFS transporter, SCO3366 from Streptomyces coelicolor, in governing multidrug resistance. Overexpression and knockout studies revealed that SCO3366 provides resistance to several structurally unrelated drugs including ciprofloxacin, chloramphenicol, rifampicin and EtBr, with rifampicin being the major substrate. Beyond multidrug resistance, SCO3366 was efficient in providing tolerance towards oxidative stress. A combinatorial mechanism of increased oxidative stress tolerance decreased intracellular drug levels and decreased permeability act synergistically to provide resistance towards rifampicin. Shedding light on the regulation of SCO3366, we find the pump to be directly regulated by the TetR regulator SCO3367 in a negative manner and the repression was found to be relieved in presence of different compounds recognized as substrates of SCO3366. KEY POINTS: • First reported rifampicin efflux pump in Streptomyces coelicolor • Resistance to rifampicin is the result of a synergistic action of increased efflux with increased oxidative stress tolerance and decreased permeability, which can potentially arise in clinically relevant bacteria • SCO3366-SCO3367 to be a novel system that operates to protect the bacteria under varied environmental stress conditions.
Collapse
Affiliation(s)
- Ankita Nag
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
16
|
Liu Y, Khan S, Wu P, Li B, Liu L, Ni J, Zhang H, Chen K, Wu H, Zhang B. Uncovering and Engineering a Mini-Regulatory Network of the TetR-Family Regulator SACE_0303 for Yield Improvement of Erythromycin in Saccharopolyspora erythraea. Front Bioeng Biotechnol 2021; 9:692901. [PMID: 34595157 PMCID: PMC8476842 DOI: 10.3389/fbioe.2021.692901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023] Open
Abstract
Erythromycins produced by Saccharopolyspora erythraea have broad-spectrum antibacterial activities. Recently, several TetR-family transcriptional regulators (TFRs) were identified to control erythromycin production by multiplex control modes; however, their regulatory network remains poorly understood. In this study, we report a novel TFR, SACE_0303, positively correlated with erythromycin production in Sac. erythraea. It directly represses its adjacent gene SACE_0304 encoding a MarR-family regulator and indirectly stimulates the erythromycin biosynthetic gene eryAI and resistance gene ermE. SACE_0304 negatively regulates erythromycin biosynthesis by directly inhibiting SACE_0303 as well as eryAI and indirectly repressing ermE. Then, the SACE_0303 binding site within the SACE_0303-SACE_0304 intergenic region was defined. Through genome scanning combined with in vivo and in vitro experiments, three additional SACE_0303 target genes (SACE_2467 encoding cation-transporting ATPase, SACE_3156 encoding a large transcriptional regulator, SACE_5222 encoding α-ketoglutarate permease) were identified and proved to negatively affect erythromycin production. Finally, by coupling CRISPRi-based repression of those three targets with SACE_0304 deletion and SACE_0303 overexpression, we performed stepwise engineering of the SACE_0303-mediated mini-regulatory network in a high-yield strain, resulting in enhanced erythromycin production by 67%. In conclusion, the present study uncovered the regulatory network of a novel TFR for control of erythromycin production and provides a multiplex tactic to facilitate the engineering of industrial actinomycetes for yield improvement of antibiotics.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Sabir Khan
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Panpan Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Bowen Li
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lanlan Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jingshu Ni
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Hongxia Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ketao Chen
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|