1
|
Wang Y, Wu J, Li J, Yu C, Gao J, Song F, Zhou L, Zhang R, Jiang S, Zhu Y. Isolation and characterization of duck sewage source Salmonella phage P6 and antibacterial activity for recombinant endolysin LysP6. Poult Sci 2024; 103:104227. [PMID: 39217665 PMCID: PMC11402287 DOI: 10.1016/j.psj.2024.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella is a globally prevalent foodborne pathogen, and adverse events caused by S. Enteritidis and S. Typhimurium are extremely common. With the emergence of drug resistance, there is an urgent need for efficient and specific lytic bacteriophages as alternative to antibiotics in clinical practice. In this study, phage P6 was isolated and screened from effluent and fecal samples from duck farm environments to specifically lyse the duck sources S. Typhimurium and S. Enteritidis. Phage P6 belongs to the genus Lederbergvirus, unclassified Lederbergvirus species. The phage P6 genome did not contained non-coding RNA, virulence genes and drug resistance genes, indicating that phage P6 was biologically safe for clinical applications. Phage P6 lysed 77.78% (28/36) of multidrug-resistant Salmonella and reduced biofilms formed by S. Enteritidis CVCC 3377, 4, and 24, and S. Typhimurium 44 by 44% to 75% within 3 h, and decreased Salmonella in duckling feces by up to 1.64 orders of magnitude. Prokaryotic expression of endolysin LysP6 lysed the chloroform-treated bacterial outer membrane from different serotypes of duck-derived Salmonella and E. coli standard strain ATCC 25922. The host range was expanded compared to phage P6, and the growth of Salmonella was effectively inhibited by LysP6 in conjunction with the membrane permeabilizer EDTA within 24 h. Therefore, phage P6 and phage-derived endolysins LysP6 are suitable for application as potent biocontrol agents to improve poultry health and food safety.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Jikun Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Jie Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Changxu Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Jing Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Fahui Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Luyang Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
2
|
Kakkar A, Kandwal G, Nayak T, Jaiswal LK, Srivastava A, Gupta A. Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria. Heliyon 2024; 10:e34333. [PMID: 39100447 PMCID: PMC11295868 DOI: 10.1016/j.heliyon.2024.e34333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.
Collapse
Affiliation(s)
- Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014, Jyväskylä, Finland
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
3
|
Mokhtari S, Li Y, Saris PEJ, Takala TM. Analysis of the cell wall binding domain in bacteriocin-like lysin LysL from Lactococcus lactis LAC460. Arch Microbiol 2024; 206:336. [PMID: 38954047 PMCID: PMC11219366 DOI: 10.1007/s00203-024-04066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.
Collapse
Affiliation(s)
- Samira Mokhtari
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | - Yanru Li
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Per E J Saris
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
4
|
Zhao P, Zhao W, Zhai X, He Y, Shu W, Qiao G. Biological characterization and genomic analysis of a novel methicillin-resistant Staphylococcus aureus phage, SauPS-28. Microbiol Spectr 2024; 12:e0029523. [PMID: 38193720 PMCID: PMC10846126 DOI: 10.1128/spectrum.00295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Staphylococcus aureus, a representative gram-positive bacterium, is a common infectious pathogen widely present in the natural environment. The increasing application of antibiotics is witnessing an increment in the number of clinically resistant strains (such as methicillin-resistant S. aureus [MRSA]), which has posed a great challenge to antimicrobial therapy. In this study, a novel MRSA phage, SauPS-28, was isolated from the lake water of the Guangxi Zhuang Autonomous Region. This phage has an incubation period of approximately 30 min, a lysis period of approximately 40 min, and a burst size of approximately 25 PFU/cell. The isolated phage exhibited good biological stability at a pH range of 6.0-9.0 and temperature range of 4°C-37°C. In addition, the identification of an elongated tail using transmission electron microscopy confirmed that SauPS-28 belongs to the long-tailed phage family. Whole-genome sequencing analysis revealed that SauPS-28 has a 43,286-bp-long genome with 31.03% G + C content. Moreover, SauPS-28 exhibited 95.69% sequence identity with ECel-2020k, while the query coverage was only 66%, which is a newly discovered phage. Whole-genome functional annotation results revealed that SauPS-28 had 68 open reading frames (ORFs). Of these, 30 ORFs are unknown proteins. The results suggest that SauPS-28 could be a lysogenic phage strain. This study thus provides preliminary data to conduct further in-depth analysis of the mechanism of phage-host interaction and provides a reference value for phage therapy.IMPORTANCEIn recent years, drug-resistant bacterial infections have become increasingly serious. As a kind of virus with the ability to infect and lyse drug-resistant bacteria, phage is expected to be a new therapeutic method. In this study, we isolated and purified a new methicillin-resistant Staphylococcus aureus bacteriophage SauPS-28, studied a series of biological characteristics of the bacteriophage, analyzed the genome and structural proteome data of the bacteriophage, and provided reference data for further study of the interaction mechanism between bacteriophage and host bacteria and promoted new antibacterial strategies.
Collapse
Affiliation(s)
- Peisong Zhao
- Department of Microbiology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
- Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, China
- Department of Medical Laboratory, Handan Central Hospital, Handan, Hebei, China
| | - Wenli Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Zhai
- Office of Health Insurance, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulin He
- Department of Microbiology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
- Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, China
| | - Wei Shu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China
| | - Guanhua Qiao
- Department of Microbiology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
- Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
5
|
Mohammed HT, Mageeney C, Korenberg J, Graham L, Ware VC. Characterization of novel recombinant mycobacteriophages derived from homologous recombination between two temperate phages. G3 (BETHESDA, MD.) 2023; 13:jkad210. [PMID: 37713616 PMCID: PMC10700106 DOI: 10.1093/g3journal/jkad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Comparative analyses of mycobacteriophage genomes reveals extensive genetic diversity in genome organization and gene content, contributing to widespread mosaicism. We previously reported that the prophage of mycobacteriophage Butters (cluster N) provides defense against infection by Island3 (subcluster I1). To explore the anti-Island3 defense mechanism, we attempted to isolate Island3 defense escape mutants on a Butters lysogen, but only uncovered phages with recombinant genomes comprised of regions of Butters and Island3 arranged from left arm to right arm as Butters-Island3-Butters (BIBs). Recombination occurs within two distinct homologous regions that encompass lysin A, lysin B, and holin genes in one segment, and RecE and RecT genes in the other. Structural genes of mosaic BIB genomes are contributed by Butters while the immunity cassette is derived from Island3. Consequently, BIBs are morphologically identical to Butters (as shown by transmission electron microscopy) but are homoimmune with Island3. Recombinant phages overcome antiphage defense and silencing of the lytic cycle. We leverage this observation to propose a stratagem to generate novel phages for potential therapeutic use.
Collapse
Affiliation(s)
- Hamidu T Mohammed
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Memsel, Inc., 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Catherine Mageeney
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Jamie Korenberg
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd., Glen Head, NY 11545, USA
| | - Lee Graham
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Vassie C Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
6
|
Mohammed M, Casjens SR, Millard AD, Harrison C, Gannon L, Chattaway MA. Genomic analysis of Anderson typing phages of Salmonella Typhimrium: towards understanding the basis of bacteria-phage interaction. Sci Rep 2023; 13:10484. [PMID: 37380724 PMCID: PMC10307801 DOI: 10.1038/s41598-023-37307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The Anderson phage typing scheme has been successfully used worldwide for epidemiological surveillance of Salmonella enterica serovar Typhimurium. Although the scheme is being replaced by whole genome sequence subtyping methods, it can provide a valuable model system for study of phage-host interaction. The phage typing scheme distinguishes more than 300 definitive types of Salmonella Typhimurium based on their patterns of lysis to a unique collection of 30 specific Salmonella phages. In this study, we sequenced the genomes of 28 Anderson typing phages of Salmonella Typhimurium to begin to characterize the genetic determinants that are responsible for the differences in these phage type profiles. Genomic analysis of typing phages reveals that Anderson phages can be classified into three different groups, the P22-like, ES18-like and SETP3-like clusters. Most Anderson phages are short tailed P22-like viruses (genus Lederbergvirus); but phages STMP8 and STMP18 are very closely related to the lambdoid long tailed phage ES18, and phages STMP12 and STMP13 are related to the long noncontractile tailed, virulent phage SETP3. Most of these typing phages have complex genome relationships, but interestingly, two phage pairs STMP5 and STMP16 as well as STMP12 and STMP13 differ by a single nucleotide. The former affects a P22-like protein involved in DNA passage through the periplasm during its injection, and the latter affects a gene whose function is unknown. Using the Anderson phage typing scheme would provide insights into phage biology and the development of phage therapy for the treatment of antibiotic resistant bacterial infections.
Collapse
Affiliation(s)
- Manal Mohammed
- Genomics and Infectious Diseases Research Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Christian Harrison
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Lucy Gannon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | |
Collapse
|
7
|
Baskaran V, Karthik L. Phages for treatment of Salmonella spp infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:241-273. [PMID: 37739557 DOI: 10.1016/bs.pmbts.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Salmonella, is one of the bacterial genera having more than 2500 serogroups is one of the most prominent food borne pathogen that is capable of causing disease out breaks among humans and animals. Recent reports clearly shows that this pathogen is evolved and it developed drug resistant towards most of the commercially available antibiotics. In order to overcome this emerging resistance, Bacteriophage therapy is one of the alternative solutions. It is more pathogen specific, high potency, and thereby highly safe for consumption. This chapter discuss about Rapid screening and Detection Methods Associated with Bacteriophage for Salmonella, commercially available phage products and regulatory status, Salmonella endolysins and future prospects of phage therapy.
Collapse
Affiliation(s)
- V Baskaran
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India
| | - L Karthik
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India.
| |
Collapse
|
8
|
Xuan G, Kong J, Wang Y, Lin H, Wang J. Characterization of the newly isolated Pseudomonas phage vB_Pae_LC3I3. Virus Res 2023; 323:198978. [PMID: 36288775 PMCID: PMC10194125 DOI: 10.1016/j.virusres.2022.198978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Here, we report the genome sequence of a double-stranded DNA siphovirus, vB_Pae_LC3I3 infective for P. aeruginosa PA14. Phage vB_Pae_LC3I3 was identified as a linear double-stranded DNA phage of 49,926 bp with 59% G+C content. The vB_Pae_LC3I3 genome contains 78 open reading frames, and the function of 22 ORFs can be predicted. Genome analysis confirmed the lysogenic nature of this phage, which encodes the typical lysogen-related integrase and CI/Cro regulator. One-step growth curve revealed that the latent period of phage vB_Pae_LC3I3 lasted for 30 min. And vB_Pae_LC3I3 showed good temperature stability and pH stability. Based on electron microscopy, phylogenetic, and comparative genomic analyses, this novel Pseudomonas temperate phage represents a novel unassigned siphoviruses cluster. The study of phage vB_Pae_LC3I3 will provide basic information for further research on treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiuna Kong
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yinfeng Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
9
|
Isaev A, Andriianov A, Znobishcheva E, Zorin E, Morozova N, Severinov K. Editing of Phage Genomes—Recombineering-assisted SpCas9 Modification of Model Coliphages T7, T5, and T3. Mol Biol 2022. [DOI: 10.1134/s0026893322060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Bacteriophages—viruses that infect bacterial cells—are the most abundant biological entities on Earth. The use of phages in fundamental research and industry requires tools for precise manipulation of their genomes. Yet, compared to bacterial genome engineering, modification of phage genomes is challenging because of the lack of selective markers and thus requires laborious screenings of recombinant/mutated phage variants. The development of the CRISPR-Cas technologies allowed to solve this issue by the implementation of negative selection that eliminates the parental phage genomes. In this manuscript, we summarize current methods of phage genome engineering and their coupling with CRISPR-Cas technologies. We also provide examples of our successful application of these methods for introduction of specific insertions, deletions, and point mutations in the genomes of model Escherichia coli lytic phages T7, T5, and T3.
Collapse
|
10
|
Abstract
Bacteriophages are the most abundant entities in the biosphere, and many genomes of rare and novel bacteriophages have been sequenced to date. However, bacteriophage functional genomics has been limited by a lack of effective research methods. Clustered regularly interspaced short palindromic repeat/CRISPR-associated gene (CRISPR–Cas) systems provide bacteriophages with a new mechanism for attacking host bacteria as well as new tools for study bacteriophage functional genomics. It has been reported that bacteriophages are not only the driving elements of the evolution of prokaryote CRISPR arrays but also the targets of CRISPR–Cas systems. In this study, a phage genome editing platform based on the heterologous CRISPR–Cas9 system was theoretically designed, and a Vibrio natriegens phage TT4P2 genome editing experiment was carried out in vivo in the host bacterium Vibrio natriegens TT4 to achieve phage gene deletion and replacement. The construction of this phage genome editing platform is expected to solve the problem of insufficient research on phage gene diversity, promote the development of phage synthetic biology and nanotechnology, and even accelerate the discovery of new molecular biology tools. IMPORTANCE Bacteriophages are the most numerous organisms on earth and are known for their diverse lifestyles. Since the discovery of bacteriophages, our knowledge of the wider biological world has undergone immense and unforeseen changes. A variety of V. natriegens phages have been detected, but few have been well characterized. CRISPR was first documented in Escherichia coli in 1987. It has been reported that the CRISPR–Cas system can target and cleave invaders, including bacteriophages, in a sequence-specific manner. Here, we show that the construction of a phage genome editing platform based on the heterologous CRISPR–Cas9 system can achieve V. natriegens phage TT4P2 gene editing and can also improve the efficiency and accuracy of phage TT4P2 gene editing.
Collapse
|
11
|
Zhou X, Zeng X, Wang L, Zheng Y, Zhang G, Cheng W. The Structure and Function of Biomaterial Endolysin EFm1 from E. faecalis Phage. MATERIALS 2022; 15:ma15144879. [PMID: 35888345 PMCID: PMC9316690 DOI: 10.3390/ma15144879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
The endolysin EFm1 from the E. faecalis 002 (002) phage IME-EF1 efficiently lyses E. faecalis, a gram-positive bacterium that severely threatens human health. Here, the structure and lytic activity of EFm1 toward E. faecalis were further investigated. Lytic activity shows that EFm1 specifically lyses 002 and 22 other clinically isolated E. faecalis, but not E. faecalis 945. Therefore, EFm1 may be an alternative biomaterial to prevent and treat diseases caused by E. faecalis. A structural analysis showed that EFm1D166Q is a tetramer consisting of one full-length unit with additional C-terminal domains (CTDs), while EFm1166–237 aa is an octamer in an asymmetric unit. Several crucial domains and novel residues affecting the lytic activity of EFm1 were identified, including calcium-binding sites (D20, D22 and D31), a putative classic amidohydrolase catalytic triad (C29, H90 and D108), a tetramerization site (M168 and M227), putative ion channel sites (IGGK, 186–198 aa), and other residues (R208 and Y209). Furthermore, EFm1 exhibited no significant activity when expressed alone in vivo, and IME-EF1 lytic activity decreased when efm1 was knocked down. These findings provide valuable insights into the molecule mechanism of a potential functional biomaterial for the treatment of the disease caused by the opportunistic pathogen E. faecalis.
Collapse
Affiliation(s)
- Xuerong Zhou
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; (X.Z.); (L.W.)
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; (X.Z.); (Y.Z.)
| | - Li Wang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; (X.Z.); (L.W.)
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; (X.Z.); (Y.Z.)
| | - Guixiang Zhang
- Laboratory of Bariatric and Metabolic Surgery, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, No. 37, Chengdu 610041, China;
| | - Wei Cheng
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; (X.Z.); (L.W.)
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; (X.Z.); (Y.Z.)
- Correspondence:
| |
Collapse
|
12
|
Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr 2022; 63:8919-8938. [PMID: 35400249 DOI: 10.1080/10408398.2022.2059442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in modern technologies, various foodborne outbreaks have continuously threatened the food safety. The overuse of and abuse/misuse of antibiotics have escalated this threat due to the prevalence of multidrug-resistant (MDR) pathogens. Therefore, the development of new methodologies for controlling microbial contamination is extremely important to ensure the food safety. As an alternative to antibiotics, bacteriophages(phages) and derived endolysins have been proposed as novel, effective, and safe antimicrobial agents and applied for the prevention and/or eradication of bacterial contaminants even in foods and food processing facilities. In this review, we describe recent genetic and protein engineering tools for phages and endolysins. The major aim of engineering is to overcome limitations such as a narrow host range, low antimicrobial activity, and low stability of phages and endolysins. Phage engineering also aims to deter the emergence of phage resistance. In the case of endolysin engineering, enhanced antibacterial ability against Gram-negative and Gram-positive bacteria is another important goal. Here, we summarize the successful studies of phages and endolysins treatment in different types of food. Moreover, this review highlights the recent advances in engineering techniques for phages and endolysins, discusses existing challenges, and suggests technical opportunities for further development, especially in terms of antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Complete genome analysis of the novel Shewanella phage vB_Sb_QDWS. Arch Virol 2022; 167:1325-1331. [PMID: 35394245 DOI: 10.1007/s00705-022-05435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
Abstract
We present here the results of the analysis of the complete genome sequence of a potentially temperate phage, vB_Sb_QDWS, which was isolated from wastewater samples collected in Qingdao, China. The genome of phage vB_Sb_QDWS is composed of a double-stranded DNA that is 47,902 bp in length with a G + C content of 63.16%. It is predicted to contain 69 putative protein-encoding genes. Microscopic and genomic analysis showed that vB_Sb_QDWS is a novel phage of the class Siphoviridae.
Collapse
|
14
|
Ilyas SZ, Tariq H, Basit A, Tahir H, Haider Z, Rehman SU. SGP-C: A Broad Host Range Temperate Bacteriophage; Against Salmonella gallinarum. Front Microbiol 2022; 12:768931. [PMID: 35095790 PMCID: PMC8790156 DOI: 10.3389/fmicb.2021.768931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella gallinarum is a poultry restricted-pathogen causing fowl-typhoid disease in adult birds with mortality rates up-to 80% and exhibit resistance against commonly used antibiotics. In this current study, a temperate broad host range bacteriophage SGP-C was isolated against S. gallinarum from poultry digesta. It showed infection ability in all the 15 tested field strains of S. gallinarum. The SGP-C phage produced circular, turbid plaques with alternate rings. Its optimum activity was observed at pH 7.0 and 37-42°C, with a latent period of 45 min and burst size of 187 virions/bacterial cell. The SGP-C lysogens, SGPC-L5 and SGPC-L6 exhibited super-infection immunity against the same phage, an already reported feature of lysogens. A virulence index of 0.5 and 0.001 as MV50 of SGP-C suggests its moderate virulence. The genome of SGP-C found circular double stranded DNA of 42 Kbp with 50.04% GC content, which encodes 63 ORFs. The presence of repressor gene at ORF49, and absence of tRNA sequence in SGP-C genome indicates its lysogenic nature. Furthermore, from NGS analysis of lysogens we propose that SGP-C genome might exist either as an episome, or both as integrated and temporary episome in the host cell and warrants further studies. Phylogenetic analysis revealed its similarity with Salmonella temperate phages belonging to family Siphoviridae. The encoded proteins by SGP-C genome have not showed homology with any known toxin and virulence factor. Although plenty of lytic bacteriophages against this pathogen are already reported, to our knowledge SGP-C is the first lysogenic phage against S. gallinarum reported so far.
Collapse
Affiliation(s)
| | | | | | | | | | - Shafiq ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
Hatfull GF, Dedrick RM, Schooley RT. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu Rev Med 2021; 73:197-211. [PMID: 34428079 DOI: 10.1146/annurev-med-080219-122208] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibiotic resistance in bacterial pathogens presents a substantial threat to the control of infectious diseases. Development of new classes of antibiotics has slowed in recent years due to pressures of cost and market profitability, and there is a strong need for new antimicrobial therapies. The therapeutic use of bacteriophages has long been considered, with numerous anecdotal reports of success. Interest in phage therapy has been renewed by recent clinical successes in case studies with personalized phage cocktails, and several clinical trials are in progress. We discuss recent progress in the therapeutic use of phages and contemplate the key factors influencing the opportunities and challenges. With strong safety profiles, the main challenges of phage therapeutics involve strain variation among clinical isolates of many pathogens, battling phage resistance, and the potential limitations of host immune responses. However, the opportunities are considerable, with the potential to enhance current antibiotic efficacy, protect newly developed antibiotics, and provide a last resort in response to complete antibiotic failure. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; ,
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; ,
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
16
|
Feng T, Leptihn S, Dong K, Loh B, Zhang Y, Stefan MI, Li M, Guo X, Cui Z. JD419, a Staphylococcus aureus Phage With a Unique Morphology and Broad Host Range. Front Microbiol 2021; 12:602902. [PMID: 33967969 PMCID: PMC8100676 DOI: 10.3389/fmicb.2021.602902] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Phage therapy represents a possible treatment option to cure infections caused by multidrug-resistant bacteria, including methicillin and vancomycin-resistant Staphylococcus aureus, to which most antibiotics have become ineffective. In the present study, we report the isolation and complete characterization of a novel phage named JD219 exhibiting a broad host range able to infect 61 of 138 clinical strains of S. aureus tested, which included MRSA strains as well. The phage JD419 exhibits a unique morphology with an elongated capsid and a flexible tail. To evaluate the potential of JD419 to be used as a therapeutic phage, we tested the ability of the phage particles to remain infectious after treatment exceeding physiological pH or temperature. The activity was retained at pH values of 6.0–8.0 and below 50°C. As phages can contain virulence genes, JD419’s complete genome was sequenced. The 45509 bp genome is predicted to contain 65 ORFs, none of which show homology to any known virulence or antibiotic resistance genes. Genome analysis indicates that JD419 is a temperate phage, despite observing rapid replication and lysis of host strains. Following the recent advances in synthetic biology, JD419 can be modified by gene engineering to remove prophage-related genes, preventing potential lysogeny, in order to be deployed as a therapeutic phage.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE), Zhejiang University, Haining, China
| | - Ke Dong
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE), Zhejiang University, Haining, China
| | - Yan Zhang
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Melanie I Stefan
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE), Zhejiang University, Haining, China.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaokui Guo
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
18
|
Abdulrahman RF, Davies RL. Diversity and characterization of temperate bacteriophages induced in Pasteurella multocida from different host species. BMC Microbiol 2021; 21:97. [PMID: 33784980 PMCID: PMC8008546 DOI: 10.1186/s12866-021-02155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bacteriophages play important roles in the evolution of bacteria and in the emergence of new pathogenic strains by mediating the horizontal transfer of virulence genes. Pasteurella multocida is responsible for different disease syndromes in a wide range of domesticated animal species. However, very little is known about the influence of bacteriophages on disease pathogenesis in this species. Results Temperate bacteriophage diversity was assessed in 47 P. multocida isolates of avian (9), bovine (8), ovine (10) and porcine (20) origin. Induction of phage particles with mitomycin C identified a diverse range of morphological types representing both Siphoviridae and Myoviridae family-types in 29 isolates. Phage of both morphological types were identified in three isolates indicating that a single bacterial host may harbour multiple prophages. DNA was isolated from bacteriophages recovered from 18 P. multocida isolates and its characterization by restriction endonuclease (RE) analysis identified 10 different RE types. Phage of identical RE types were identified in certain closely-related strains but phage having different RE types were present in other closely-related isolates suggesting possible recent acquisition. The host range of the induced phage particles was explored using plaque assay but only 11 (38%) phage lysates produced signs of infection in a panel of indicator strains comprising all 47 isolates. Notably, the majority (9/11) of phage lysates which caused infection originated from two groups of phylogenetically unrelated ovine and porcine strains that uniquely possessed the toxA gene. Conclusions Pasteurella multocida possesses a wide range of Siphoviridae- and Myoviridae-type bacteriophages which likely play key roles in the evolution and virulence of this pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02155-9.
Collapse
Affiliation(s)
- Rezheen F Abdulrahman
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Pathology and Microbiology Department, Collage of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
19
|
Wetzel KS, Guerrero-Bustamante CA, Dedrick RM, Ko CC, Freeman KG, Aull HG, Divens AM, Rock JM, Zack KM, Hatfull GF. CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering. Sci Rep 2021; 11:6796. [PMID: 33762639 PMCID: PMC7990910 DOI: 10.1038/s41598-021-86112-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Genome engineering of bacteriophages provides opportunities for precise genetic dissection and for numerous phage applications including therapy. However, few methods are available for facile construction of unmarked precise deletions, insertions, gene replacements and point mutations in bacteriophages for most bacterial hosts. Here we describe CRISPY-BRED and CRISPY-BRIP, methods for efficient and precise engineering of phages in Mycobacterium species, with applicability to phages of a variety of other hosts. This recombineering approach uses phage-derived recombination proteins and Streptococcus thermophilus CRISPR-Cas9.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Haley G Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ashley M Divens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Biomedical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jeremy M Rock
- Department of Host-Pathogen Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Kira M Zack
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
20
|
Hashemi Shahraki A, Mirsaeidi M. Phage Therapy for Mycobacterium Abscessus and Strategies to Improve Outcomes. Microorganisms 2021; 9:microorganisms9030596. [PMID: 33799414 PMCID: PMC7999966 DOI: 10.3390/microorganisms9030596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Members of Mycobacterium abscessus complex are known for causing severe, chronic infections. Members of M. abscessus are a new "antibiotic nightmare" as one of the most resistant organisms to chemotherapeutic agents. Treatment of these infections is challenging due to the either intrinsic or acquired resistance of the M. abscessus complex to the available antibiotics. Recently, successful phage therapy with a cocktail of three phages (one natural lytic phage and two engineered phages) every 12 h for at least 32 weeks has been reported against a severe case of the disseminated M. abscessus subsp. massiliense infection, which underlines the high value of phages against drug-resistant superbugs. This report also highlighted the limitations of phage therapy, such as the absence of lytic phages with a broad host-range against all strains and subspecies of the M. abscessus complex and also the risk of phage resistant bacteria over treatment. Cutting-edge genomic technologies have facilitated the development of engineered phages for therapeutic purposes by introducing new desirable properties, changing host-range and arming the phages with additional killing genes. Here, we review the available literature and suggest new potential solutions based on the progress in phage engineering that can help to overcome the present limitations of M. abscessus treatment.
Collapse
|
21
|
Jin T, Yin J. Patterns of virus growth across the diversity of life. Integr Biol (Camb) 2021; 13:44-59. [PMID: 33616184 DOI: 10.1093/intbio/zyab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Although viruses in their natural habitats add up to less than 10% of the biomass, they contribute more than 90% of the genome sequences [1]. These viral sequences or 'viromes' encode viruses that populate the Earth's oceans [2, 3] and terrestrial environments [4, 5], where their infections impact life across diverse ecological niches and scales [6, 7], including humans [8-10]. Most viruses have yet to be isolated and cultured [11-13], and surprisingly few efforts have explored what analysis of available data might reveal about their nature. Here, we compiled and analyzed seven decades of one-step growth and other data for viruses from six major families, including their infections of archaeal, bacterial and eukaryotic hosts [14-191]. We found that the use of host cell biomass for virus production was highest for archaea at 10%, followed by bacteria at 1% and eukarya at 0.01%, highlighting the degree to which viruses of archaea and bacteria exploit their host cells. For individual host cells, the yield of virus progeny spanned a relatively narrow range (10-1000 infectious particles per cell) compared with the million-fold difference in size between the smallest and largest cells. Furthermore, healthy and infected host cells were remarkably similar in the time they needed to multiply themselves or their virus progeny. Specifically, the doubling time of healthy cells and the delay time for virus release from infected cells were not only correlated (r = 0.71, p < 10-10, n = 101); they also spanned the same range from tens of minutes to about a week. These results have implications for better understanding the growth, spread and persistence of viruses in complex natural habitats that abound with diverse hosts, including humans and their associated microbes.
Collapse
Affiliation(s)
- Tianyi Jin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
22
|
Choi IY, Park DH, Chin BA, Lee C, Lee J, Park MK. Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:668-681. [PMID: 33089232 PMCID: PMC7553841 DOI: 10.5187/jast.2020.62.5.668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/23/2022]
Abstract
The purpose of this study was aimed to isolate a Salmonella
Typhimurium-specific phage (KFS-ST) from washing water in a poultry processing
facility and to investigate the feasibility of the KFS-ST as a novel
bio-receptor for the magnetoelastic (ME) biosensor method. KFS-ST against
S. Typhimurium was isolated, propagated, and purified using
a CsCl-gradient ultracentrifugation. Morphological characteristics of KFS-ST
were analyzed using transmission electron microscopy (TEM). Its specificity and
efficiency of plating analysis were conducted against 39 foodborne pathogens.
The temperature and pH stabilities of KFS-ST were investigated by the exposure
of the phage to various temperatures (−70°C–70°C)
and pHs (1–12) for 1 h. A one-step growth curve analysis was performed to
determine the eclipse time, latent time and burst size of phage. The storage
stability of KFS-ST was studied by exposing KFS-ST to various storage
temperatures (−70°C, −20°C, 4°C, and
22°C) for 12 weeks. KFS-ST was isolated and purified with a high
concentration of (11.47 ± 0.25) Log PFU/mL. It had an icosahedral head
(56.91 ± 2.90 nm) and a non-contractile tail (225.49 ± 2.67 nm),
which was classified into the family of Siphoviridae in the
order of Caudovirales. KFS-ST exhibited an excellent
specificity against only S. Typhimurium and S.
Enteritidis, which are considered two of the most problematic
Salmonella strains in the meat and poultry. However, KFS-ST
did not exhibit any specificity against six other Salmonella
and 27 non-Salmonella strains. KFS-ST was stable at temperature
of 4°C to 50°C and at pH of 4 to 12. The eclipse time, latent
time, and burst size of KFS-ST were determined to be 10 min, 25 min and 26 PFU/
infected cell, respectively. KFS-ST was relatively stable during the 12-week
storage period at all tested temperatures. Therefore, this study demonstrated
the feasibility of KFS-ST as a novel bio-receptor for the detection of
S. Typhimurium and S. Enteritidis in meat
and poultry products using the ME biosensor method.
Collapse
Affiliation(s)
- In Young Choi
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Do Hyeon Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Brayan A Chin
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Cheonghoon Lee
- Graduate School of Public Health, and Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
| | - Jinyoung Lee
- Gyedong General Education Institute, Sangmyung University, Cheonan 31066, Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
23
|
Blasco L, Ambroa A, Lopez M, Fernandez-Garcia L, Bleriot I, Trastoy R, Ramos-Vivas J, Coenye T, Fernandez-Cuenca F, Vila J, Martinez-Martinez L, Rodriguez-Baño J, Pascual A, Cisneros JM, Pachon J, Bou G, Tomas M. Combined Use of the Ab105-2φΔCI Lytic Mutant Phage and Different Antibiotics in Clinical Isolates of Multi-Resistant Acinetobacter baumannii. Microorganisms 2019; 7:microorganisms7110556. [PMID: 31726694 PMCID: PMC6921023 DOI: 10.3390/microorganisms7110556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/21/2022] Open
Abstract
Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phiΔCI) that displayed antimicrobial activity against A. baumannii clinical strain Ab177_GEIH-2000 (isolated in the GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585, and for which meropenem and imipenem MICs of respectively, 32 µg/mL, and 16 µg/mL were obtained). We observed an in vitro synergistic antimicrobial effect (reduction of 4 log–7 log CFU/mL) between meropenem and the lytic phage in all combinations analyzed (Ab105-2phiΔCI mutant at 0.1, 1 and 10 MOI and meropenem at 1/4 and 1/8 MIC). Moreover, bacterial growth was reduced by 8 log CFU/mL for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phiΔCI mutant) and by 4 log CFU/mL for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phiΔCI mutant) at both MOI 1 and 10. These results were confirmed in an in vivo model (G. mellonella), and the combination of imipenem and mutant Ab105-2phiΔCI was most effective (p < 0.05). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to antibiotics used to combat multi-resistant strains of Acinetobacter baumannii.
Collapse
Affiliation(s)
- Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Anton Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Maria Lopez
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Laura Fernandez-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Ines Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Rocio Trastoy
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Jose Ramos-Vivas
- Microbiology Department-Research Institute Biomedical Valdecilla (IDIVAL), Hospital Marques de Valdecilla, 39008 Santander, Spain;
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Gent, Belgium;
| | - Felipe Fernandez-Cuenca
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (F.F.-C.); (J.R.-B.); (A.P.)
| | - Jordi Vila
- Institute of Global Health of Barcelona (ISGlobal), Hospital Clínic-Universitat de Barcelona, 170, 08036 Barcelona, Spain;
| | - Luis Martinez-Martinez
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain;
| | - Jesus Rodriguez-Baño
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (F.F.-C.); (J.R.-B.); (A.P.)
| | - Alvaro Pascual
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (F.F.-C.); (J.R.-B.); (A.P.)
| | - Jose Miguel Cisneros
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (J.M.C.); (J.P.)
| | - Jeronimo Pachon
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (J.M.C.); (J.P.)
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Maria Tomas
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
- Correspondence: ; Tel.: +34-981-176-399; Fax: +34-981-178-273
| |
Collapse
|
24
|
Chang Y, Bai J, Lee JH, Ryu S. Mutation of a Staphylococcus aureus temperate bacteriophage to a virulent one and evaluation of its application. Food Microbiol 2019; 82:523-532. [PMID: 31027814 DOI: 10.1016/j.fm.2019.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have been suggested as alternative antimicrobial agents based on their host specificity and lytic activity. Therefore, it is necessary to obtain a virulent phage from a temperate one using molecular techniques to control Staphylococcus aureus efficiently. SA13, a novel temperate phage infecting S. aureus, was isolated and characterized. From this phage, mutant phages were generated by random deletion mutations, and a virulent mutant phage SA13m was selected. Comparative genome analysis revealed that the SA13m genome contains various nucleotide deletions in six genes encoding three hypothetical proteins and three lysogeny-associated proteins, including putative integrase, putative CI, and putative anti-repressor proteins. Mitomycin C induction of SA13m-resistant strains revealed that this mutant phage does not form lysogen, suggesting that SA13m is a virulent phage. In addition, SA13m showed rapid and long-lasting host cell growth inhibition activity. Furthermore, application of SA13m in sterilized milk showed that S. aureus was reduced to non-detectable levels both at refrigerator temperature (4 °C) and room temperature (25 °C), suggesting that SA13m can efficiently control the growth of S. aureus in foods. The virulent mutant phage SA13m could be used as a promising biocontrol agent against S. aureus without lysogen formation.
Collapse
Affiliation(s)
- Yoonjee Chang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaewoo Bai
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Monteiro R, Pires DP, Costa AR, Azeredo J. Phage Therapy: Going Temperate? Trends Microbiol 2019; 27:368-378. [DOI: 10.1016/j.tim.2018.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/29/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023]
|
26
|
Addy HS, Ahmad AA, Huang Q. Molecular and Biological Characterization of Ralstonia Phage RsoM1USA, a New Species of P2virus, Isolated in the United States. Front Microbiol 2019; 10:267. [PMID: 30837978 PMCID: PMC6389784 DOI: 10.3389/fmicb.2019.00267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
The first Ralstonia-infecting bacteriophage from soil of the United States, designated RsoM1USA, was isolated from a tomato field in Florida. Electron microscopy revealed that phage RsoM1USA is member of the genus P2virus in the family Myoviridae with an icosahedral head of about 66 nm in diameter, a contractile tail of about 152 nm in length, and a long “neck.” Phage RsoM1USA infected 12 of the 30 tested R. solanacearum species complex strains collected worldwide in each of the three Ralstonia species: R. solanacearum, R. pseudosolanacearum, and R. syzygii. The phage completed its infection cycle 180 min post infection with a burst size of about 56 particles per cell. Phage RsoM1USA has a genome of 39,309 nucleotides containing 58 open reading frames (ORFs) and is closely related to Ralstonia phage RSA1 of the species Ralstonia virus RSA1. The genomic organization of phage RsoM1USA is also similar to that of phage RSA1, but their integrases share no sequence homology. In addition, we determined that the integration of phage RsoM1USA into its susceptible R. solanacearum strain K60 is mediated by the 3′ 45-base portion of the threonine tRNA (TGT), not arginine tRNA (CCG) as reported for phage RSA1, confirming that the two phages use different mechanism for integration. Our proteomic analysis of the purified virions supported the annotation of the main structural proteins. Infection of a susceptible R. solanacearum strain RUN302 by phage RsoM1USA resulted in significantly reduced growth of the infected bacterium in vitro, but not virulence in tomato plants, as compared to its uninfected RUN302 strain. Due to its differences from phage RSA1, phage RsoM1USA should be considered the type member of a new species with a proposed species name of Ralstonia virus RsoM1USA.
Collapse
Affiliation(s)
- Hardian Susilo Addy
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States.,Department of Plant Protection, Faculty of Agriculture, University of Jember, Jember, Indonesia
| | - Abdelmonim Ali Ahmad
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States.,Department of Plant Pathology, Faculty of Agriculture, Minia University, El-minia, Egypt
| | - Qi Huang
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
27
|
Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection. J Microbiol 2019; 57:170-179. [PMID: 30706346 DOI: 10.1007/s12275-019-8610-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
Since Salmonella Enteritidis is one of the major foodborne pathogens, on-site applicable rapid detection methods have been required for its control. The purpose of this study was to isolate and purify S. Enteritidis-specific phage (KFS-SE2 phage) from an eel farm and to investigate its feasibility as a novel, efficient, and reliable bio-receptor for its employment. KFS-SE2 phage was successfully isolated at a high concentration of (2.31 ± 0.43) × 1011 PFU/ml, and consisted of an icosahedral head of 65.44 ± 10.08 nm with a non-contractile tail of 135.21 ± 12.41 nm. The morphological and phylogenetic analysis confirmed that it belongs to the Pis4avirus genus in the family of Siphoviridae. KFS-SE2 genome consisted of 48,608 bp with 45.7% of GC content. Genome analysis represented KFS-SE2 to have distinctive characteristics as a novel phage. Comparative analysis of KFS-SE2 phage with closely related strains confirmed its novelty by the presence of unique proteins. KFS-SE2 phage exhibited excellent specificity to S. Enteritidis and was stable under the temperature range of 4 to 50°C and pH of 3 to 11 (P < 0.05). The latent time was determined to be 20 min. Overall, a new lytic KFS-SE2 phage was successfully isolated from the environment at a high concentration and the excellent feasibility of KFS-SE2 phage was demonstrated as a new bio-receptor for S. Enteritidis detection.
Collapse
|
28
|
Marinelli LJ, Piuri M, Hatfull GF. Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA. Methods Mol Biol 2019; 1898:69-80. [PMID: 30570724 DOI: 10.1007/978-1-4939-8940-9_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a recombineering-based method for the genetic manipulation of lytically replicating bacteriophages, focusing on mycobacteriophages. The approach utilizes recombineering-proficient strains of Mycobacterium smegmatis and employs a cotransformation strategy with purified phage genomic DNA and a mutagenic substrate, which selects for only those cells that are competent to take up DNA. The cotransformation method, combined with the high rates of recombination obtained in M. smegmatis recombineering strains, allows for the efficient and rapid generation of bacteriophage mutants.
Collapse
Affiliation(s)
- Laura J Marinelli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
- Laboratorio "Bacteriófagos y Aplicaciones Biotecnológicas", Departamento de Química Biológica, FCEyN, UBA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graham F Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Abstract
If biology laboratories were smartphones, CRISPR-Cas would be the leading app. Nowadays, technology users rely on apps to communicate, get directions, entertain, and more. Likewise, many life scientists now rely on CRISPR-Cas systems to study the interactions between microbes and their viruses, to track strains as well as to modify and modulate genomes. Considering their high level of polymorphism, CRISPR arrays can increase the resolution of a microbial typing scheme. As dynamic systems, they allow the identification and the tracking of specific sequences, which is highly valuable for epidemiological studies. As a defense mechanism, they offer an opportunity to generate virus-resistant strains or even to construct strains refractory to the acquisition of specific genes. And last but not least, as customizable and transferable tools, CRISPR-Cas systems are particularly promising to fight multi-drug resistant bacteria through the engineering of phages.
Collapse
Affiliation(s)
- Marie-Laurence Lemay
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Philippe Horvath
- DuPont Nutrition and Health, BP10, 86220 Dangé-Saint-Romain, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec City, QC G1V 0A6, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses and Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
30
|
Amarillas L, Chaidez C, González-Robles A, Lugo-Melchor Y, León-Félix J. Characterization of novel bacteriophage phiC119 capable of lysing multidrug-resistant Shiga toxin-producing Escherichia coli O157:H7. PeerJ 2016; 4:e2423. [PMID: 27672499 PMCID: PMC5028729 DOI: 10.7717/peerj.2423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is one of the most common and widely distributed foodborne pathogens that has been frequently implicated in gastrointestinal and urinary tract infections. Moreover, high rates of multiple antibiotic-resistant E. coli strains have been reported worldwide. Due to the emergence of antibiotic-resistant strains, bacteriophages are considered an attractive alternative to biocontrol pathogenic bacteria. Characterization is a preliminary step towards designing a phage for biocontrol. METHODS In this study, we describe the characterization of a bacteriophage designated phiC119, which can infect and lyse several multidrug-resistant STEC strains and some Salmonella strains. The phage genome was screened to detect the stx-genes using PCR, morphological analysis, host range was determined, and genome sequencing were carried out, as well as an analysis of the cohesive ends and identification of the type of genetic material through enzymatic digestion of the genome. RESULTS Analysis of the bacteriophage particles by transmission electron microscopy showed that it had an icosahedral head and a long tail, characteristic of the family Siphoviridae. The phage exhibits broad host range against multidrug-resistant and highly virulent E. coli isolates. One-step growth experiments revealed that the phiC119 phage presented a large burst size (210 PFU/cell) and a latent period of 20 min. Based on genomic analysis, the phage contains a linear double-stranded DNA genome with a size of 47,319 bp. The phage encodes 75 putative proteins, but lysogeny and virulence genes were not found in the phiC119 genome. CONCLUSION These results suggest that phage phiC119 may be a good biological control agent. However, further studies are required to ensure its control of STEC and to confirm the safety of phage use.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C., Culiacán, Sinaloa, México; Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., Cd. Jiménez, Chihuahua, México
| | - Cristóbal Chaidez
- Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, A. C. , Culiacán, Sinaloa , México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional , Ciudad de México , México
| | - Yadira Lugo-Melchor
- Laboratorio de Biología Molecular de la Unidad de Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. , Guadalajara, Jalisco , México
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C. , Culiacán, Sinaloa , México
| |
Collapse
|
31
|
Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiol Mol Biol Rev 2016; 80:523-43. [PMID: 27250768 PMCID: PMC4981678 DOI: 10.1128/mmbr.00069-15] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Soon after their discovery in the early 20th century, bacteriophages were recognized to have great potential as antimicrobial agents, a potential that has yet to be fully realized. The nascent field of phage therapy was adversely affected by inadequately controlled trials and the discovery of antibiotics. Although the study of phages as anti-infective agents slowed, phages played an important role in the development of molecular biology. In recent years, the increase in multidrug-resistant bacteria has renewed interest in the use of phages as antimicrobial agents. With the wide array of possibilities offered by genetic engineering, these bacterial viruses are being modified to precisely control and detect bacteria and to serve as new sources of antibacterials. In applications that go beyond their antimicrobial activity, phages are also being developed as vehicles for drug delivery and vaccines, as well as for the assembly of new materials. This review highlights advances in techniques used to engineer phages for all of these purposes and discusses existing challenges and opportunities for future work.
Collapse
Affiliation(s)
- Diana P Pires
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sara Cleto
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sanna Sillankorva
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Timothy K Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Lee JS, Jang HB, Kim KS, Kim TH, Im SP, Kim SW, Lazarte JMS, Kim JS, Jung TS. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC). PLoS One 2015; 10:e0142504. [PMID: 26555076 PMCID: PMC4640515 DOI: 10.1371/journal.pone.0142504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis.
Collapse
Affiliation(s)
- Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Ho Bin Jang
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001, Leuven, Belgium
| | - Ki Sei Kim
- KBNP Technology Institute, KBNP, Inc., Yesan, Choongcheongnam-do, South Korea
| | - Tae Hwan Kim
- KBNP Technology Institute, KBNP, Inc., Yesan, Choongcheongnam-do, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jassy Mary S. Lazarte
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jae Sung Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
- * E-mail:
| |
Collapse
|
33
|
Briers Y, Lavigne R. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol 2015; 10:377-90. [DOI: 10.2217/fmb.15.8] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins®.
Collapse
Affiliation(s)
- Yves Briers
- Laboratory of Gene Technology, Department Biosystems, University of Leuven, Kasteelpark Arenberg 21, box 2462, B-3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department Biosystems, University of Leuven, Kasteelpark Arenberg 21, box 2462, B-3001 Leuven, Belgium
| |
Collapse
|