1
|
Abkar L, Moghaddam HS, Fowler SJ. Microbial ecology of drinking water from source to tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168077. [PMID: 37914126 DOI: 10.1016/j.scitotenv.2023.168077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
As drinking water travels from its source, through various treatment processes, hundreds to thousands of kilometres of distribution network pipes, to the taps in private homes and public buildings, it is exposed to numerous environmental changes, as well as other microbes living in both water and on surfaces. This review aims to identify the key locations and factors that are associated with changes in the drinking water microbiome throughout conventional urban drinking water systems from the source to the tap water. Over the past 15 years, improvements in cultivation-independent methods have enabled studies that allow us to answer such questions. As a result, we are beginning to move towards predicting the impacts of disturbances and interventions resulting ultimately in management of drinking water systems and microbial communities rather than mere observation. Many challenges still exist to achieve effective management, particularly within the premise plumbing environment, which exhibits diverse and inconsistent conditions that may lead to alterations in the microbiota, potentially presenting public health risks. Finally, we recommend the establishment of global collaborative projects on the drinking water microbiome that will enhance our current knowledge and lead to tools for operators and researchers alike to improve global access to high-quality drinking water.
Collapse
Affiliation(s)
- Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | | | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
2
|
Tsagkari E, Sloan W. The Role of Chlorine in the Formation and Development of Tap Water Biofilms under Different Flow Regimes. Microorganisms 2023; 11:2680. [PMID: 38004692 PMCID: PMC10673482 DOI: 10.3390/microorganisms11112680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Water companies make efforts to reduce the risk of microbial contamination in drinking water. A widely used strategy is to introduce chlorine into the drinking water distribution system (DWDS). A subtle potential risk is that non-lethal chlorine residuals may select for chlorine resistant species in the biofilms that reside in DWDS. Here, we quantify the thickness, density, and coverage of naturally occurring multi-species biofilms grown on slides in tap water with and without chlorine, using fluorescence microscopy. We then place the slides in an annular rotating reactor and expose them to fluid-wall shears, which are redolent of those on pipe walls in DWDS. We found that biofilms in chlorine experiment were thicker, denser and with higher coverage than in non-chlorine conditions under all flow regimes and during incubation. This suggests that the formation and development of biofilms was promoted by chlorine. Surprisingly, for both chlorinated and non-chlorinated conditions, biofilm thickness, density and coverage were all positively correlated with shear stress. More differences were detected in biofilms under the different flow regimes in non-chlorine than in chlorine experiments. This suggests a more robust biofilm under chlorine conditions. While this might imply less mobilization of biofilms in high shear events in pipe networks, it might also provide refuge from chlorine residuals for pathogens.
Collapse
Affiliation(s)
- Erifyli Tsagkari
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | | |
Collapse
|
3
|
Hopwood JD, Casey H, Cussons M, Knott P, Humphreys PN, Andrews H, Banks J, Coleman S, Haley J. Spherulitic Lead Calcium Apatite Minerals in Lead Water Pipes Exposed to Phosphate-Dosed Tap Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4796-4805. [PMID: 36920253 PMCID: PMC10061917 DOI: 10.1021/acs.est.2c04538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phosphate dosing is the principle strategy used in the United Kingdom to reduce the concentration of lead in tap waters supplied by lead water pipes. The mechanisms of phosphate-mediated lead control are not fully understood, but solid solutions of lead calcium apatite are thought to play an important role. This study investigated the microstructure of a lead pipe, supplied with high-alkalinity tap water, in which the lead calcium apatite crystals were spherulitic having rounded and dumb-bell-shaped morphologies. XRD, Fourier transform infrared spectroscopy, optical microscopy, Raman spectroscopy, scanning electron microscopy, and energy-dispersive spectroscopy showed that the lead pipe had a well-established inner layer of litharge; a middle layer containing lead calcium apatite spherulites, plumbonacrite, and some hydrocerussite; and an outer layer containing iron, lead, phosphorus, calcium, silicon, and aluminum. It was found that spherulitic lead calcium apatite could be grown in the laboratory by adding hydrocerussite to synthetic soft and hard water-containing phosphate, chloride, and citrate ions at pH 5.5 but not when the citrate was absent. This suggests that dissolved organic molecules might play a role in spherulite formation on lead water pipes. These molecules might inhibit the formation of lead calcium apatite, reducing the effectiveness of phosphate dosing in lead water pipes.
Collapse
Affiliation(s)
- Jeremy D. Hopwood
- School
of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Helen Casey
- School
of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Martin Cussons
- School
of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Porsha Knott
- School
of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Paul N. Humphreys
- School
of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Hayley Andrews
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M15 6BH, U.K.
| | - Jenny Banks
- Yorkshire
Water, Yorkshire Water Services, Western House, Halifax Road, Bradford BD6 2SZ, U.K.
| | - Stephen Coleman
- Yorkshire
Water, Yorkshire Water Services, Western House, Halifax Road, Bradford BD6 2SZ, U.K.
| | - John Haley
- Yorkshire
Water, Yorkshire Water Services, Western House, Halifax Road, Bradford BD6 2SZ, U.K.
| |
Collapse
|
4
|
Del Olmo G, Ahmad A, Jensen H, Karunakaran E, Rosales E, Calero Preciado C, Gaskin P, Douterelo I. Influence of phosphate dosing on biofilms development on lead in chlorinated drinking water bioreactors. NPJ Biofilms Microbiomes 2020; 6:43. [PMID: 33097725 PMCID: PMC7585443 DOI: 10.1038/s41522-020-00152-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Phosphate dosing is used by water utilities to prevent plumbosolvency in water supply networks. However, there is a lack of knowledge regarding biofilm formation on lead and plastic materials when phosphate concentrations are modified in drinking water systems. In this study, biofilms were grown over lead coupons and PVC tubes in bioreactors supplied with local drinking water treated to provide different phosphate doses (below 1, 1 and 2 mg/L) over a period of 28 days. A range of commercial iron pellets (GEH104 and WARP) were tested aiming to maintain phosphate levels below the average 1 mg/L found in drinking water. Changes in biofilm community structure in response to three different phosphate treatments were characterised by Illumina sequencing of the 16S rRNA gene for bacteria and the ITS2 gene for fungi. Scanning electron microscopy was used to visualise physical differences in biofilm development in two types of materials, lead and PVC. The experimental results from the kinetics of phosphate absorption showed that the GEH104 pellets were the best option to, in the long term, reduce phosphate levels while preventing undesirable turbidity increases in drinking water. Phosphate-enrichment promoted a reduction of bacterial diversity but increased that of fungi in biofilms. Overall, higher phosphate levels selected for microorganisms with enhanced capabilities related to phosphorus metabolism and heavy metal resistance. This research brings new insights regarding the influence of different phosphate concentrations on mixed-species biofilms formation and drinking water quality, which are relevant to inform best management practices in drinking water treatment.
Collapse
Affiliation(s)
- Gonzalo Del Olmo
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, The Netherlands
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44, Stockholm, Sweden
- Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708, PB, Wageningen, The Netherlands
| | - Henriette Jensen
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Esther Rosales
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Isabel Douterelo
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Elizabeth George S, Wan Y. Advances in characterizing microbial community change and resistance upon exposure to lead contamination: Implications for ecological risk assessment. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019; 50:2223-2270. [PMID: 34326626 PMCID: PMC8318135 DOI: 10.1080/10643389.2019.1698260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent advancement in molecular techniques has spurred waves of studies on responses of microorganisms to lead contamination exposure, leveraging detailed phylogenetic analyses and functional gene identification to discern the effects of lead toxicity on microbial communities. This work provides a comprehensive review of recent research on (1) microbial community changes in contaminated aquatic sediments and terrestrial soils; (2) lead resistance mechanisms; and (3) using lead resistance genes for lead biosensor development. Sufficient evidence in the literature, including both in vitro and in situ studies, indicates that exposure to lead contamination inhibits microbial activity resulting in reduced respiration, suppressed metabolism, and reduced biomass as well as altered microbial community structure. Even at sites where microbial communities do not vary compositionally with contamination levels due to extremely long periods of exposure, functional differences between microbial communities are evident, indicating that some microorganisms are susceptible to lead toxicity as others develop resistance mechanisms to survive in lead contaminated environments. The main mechanisms of lead resistance involve extracellular and intracellular biosorption, precipitation, complexation, and/or efflux pumps. These lead resistance mechanisms are associated with suites of genes responsible for specific lead resistance mechanisms and may serving as indicators of lead contamination in association with dominance of certain phyla. This allows for development of several lead biosensors in environmental biotechnology. To promote applications of these advanced understandings, molecular techniques, and lead biosensor technology, perspectives of future work on using microbial indicators for site ecological assessment is presented.
Collapse
Affiliation(s)
- S. Elizabeth George
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| | - Yongshan Wan
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| |
Collapse
|
6
|
Trueman BF, Gregory BS, McCormick NE, Gao Y, Gora S, Anaviapik-Soucie T, L'Hérault V, Gagnon GA. Manganese Increases Lead Release to Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4803-4812. [PMID: 30951629 DOI: 10.1021/acs.est.9b00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lead and manganese are regulated in drinking water due to their neurotoxicity. These elements have been reported to co-occur in drinking water systems, in accordance with the metal-scavenging properties of MnO2. To the extent that manganese is a driver of lead release, controlling it during water treatment may reduce lead levels. We investigated transport of lead and manganese at the tap in a full-scale distribution system: consistent with a cotransport phenomenon, the two metals were detected in the same colloidal size fraction by size-exclusion chromatography with multielement detection. We also studied the effect of manganese on lead release using a model distribution system: increasing manganese from 4 to 215 μg L-1 nearly doubled lead release. This effect was attributed primarily to deposition corrosion of lead by oxidized phases of manganese, and we used 16S rRNA sequencing to identify bacteria that may be relevant to this process. We explored the deposition corrosion mechanism by coupling pure lead with either MnO2-coated lead or pure lead exposed to MnO2 in suspension; we observed galvanic currents in both cases. We attributed these to reduction of Mn(IV) under anaerobic conditions, and we attributed the additional current under aerobic conditions to oxygen reduction catalyzed by MnO2.
Collapse
Affiliation(s)
- Benjamin F Trueman
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Brittany S Gregory
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Nicole E McCormick
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Yaohuan Gao
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Stephanie Gora
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Tim Anaviapik-Soucie
- ARCTIConnexion , Québec , QC CAN , G1L 1Y8
- Community of Pond Inlet , Pond Inlet , NU CAN , X0A 0S0
| | | | - Graham A Gagnon
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| |
Collapse
|
7
|
Gao Y, Trueman BF, Stoddart AK, Gagnon GA. Understanding the Impact of Extracellular Polymeric Substances on Lead Release in Drinking Water Systems. ACS OMEGA 2018; 3:14824-14832. [PMID: 30555991 PMCID: PMC6289567 DOI: 10.1021/acsomega.8b02363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 05/16/2023]
Abstract
Lead release in a lead (Pb, anode)-iron oxide (α-Fe2O3, cathode) galvanic system was studied under the influence of synthetic extracellular polymeric substances (sEPS). Sodium alginate, bovine serum albumin (BSA), and cytochrome c represented extracellular polysaccharides, proteins, and electrochemically active components, respectively. Microbiologically influenced corrosion was investigated using sEPS and pelleted and resuspended Pseudomonas aeruginosa cells. Relative to the anaerobic inorganic control, Pb release increased by 156, 202, and 198 μg/L when sEPS was present on the cathode side at 200 mg/L (100 mg/L alginate + 100 mg/L BSA), 400 mg/L (200 mg/L alginate + 200 mg/L BSA), and 200 mg/L with 123.84 mg/L cytochrome c, respectively, under anaerobic conditions. When the cathode was aerated, Pb release increased by 75, 260, and -71 μg/L under the aforementioned conditions, all relative to the aerated inorganic control. When sEPS was instead present on the anode side, sEPS caused localized corrosion on Pb and resulted in higher Pb release than predicted by electric current. P. aeruginosa generally enhanced corrosion; when cells were dosed in the anode side, part of the oxidized Pb was immobilized by cells or organic compounds adhered to the electrodes.
Collapse
|
8
|
Fish KE, Boxall JB. Biofilm Microbiome (Re)Growth Dynamics in Drinking Water Distribution Systems Are Impacted by Chlorine Concentration. Front Microbiol 2018; 9:2519. [PMID: 30459730 PMCID: PMC6232884 DOI: 10.3389/fmicb.2018.02519] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Biofilms are the dominant form of microbial loading (and organic material) within drinking water distribution systems (DWDS), yet our understanding of DWDS microbiomes is focused on the more easily accessible bulk-water. Disinfectant residuals are commonly provided to manage planktonic microbial activity in DWDS to safeguard water quality and public health, yet the impacts on the biofilm microbiome are largely unknown. We report results from a full-scale DWDS facility used to develop biofilms naturally, under one of three chlorine concentrations: Low, Medium, or High. Increasing the chlorine concentration reduced the bacterial concentration within the biofilms but quantities of fungi were unaffected. The chlorine regime was influential in shaping the community structure and composition of both taxa. There were microbial members common to all biofilms but the abundance of these varied such that at the end of the Growth phase the communities from each regime were distinct. Alpha-, Beta-, and Gamma-proteobacteria were the most abundant bacterial classes; Sordariomycetes, Leotiomycetes, and Microbotryomycetes were the most abundant classes of fungi. Mechanical cleaning was shown to immediately reduce the bacterial and fungal concentrations, followed by a lag effect on the microbiome with continued decreases in quantity and ecological indices after cleaning. However, an established community remained, which recovered such that the microbial compositions at the end of the Re-growth and initial Growth phases were similar. Interestingly, the High-chlorine biofilms showed a significant elevation in bacterial concentrations at the end of the Re-growth (after cleaning) compared the initial Growth, unlike the other regimes. This suggests adaptation to a form a resilient biofilm with potentially equal or greater risks to water quality as the other regimes. Overall, this study provides critical insights into the interaction between chlorine and the microbiome of DWDS biofilms representative of real networks, implications are made for the operation and maintenance of DWDS disinfectant and cleaning strategies.
Collapse
Affiliation(s)
- Katherine E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom.,NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Joby B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Yang F, Shi B, Zhang W, Cui J, Guo J, Wang D, Wu N, Liu X. Pyrosequencing analysis of source water switch and sulfate-induced bacterial community transformation in simulated drinking water distribution pipes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28220-28238. [PMID: 29022243 DOI: 10.1007/s11356-017-0370-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Inter-basin water transfer and source water switching will be increasingly launched due to significant population increase and the shortage of the local water resources in cities around the world. Source water switch may cause physiochemical and microbiological de-stabilization of pipe material, biofilms, and loose deposits in drinking water distribution system (DWDS). Great sulfate alteration during source water switch had been deemed as the main cause of a red water case that occurred in a northern China city. To ascertain the relationship between water quality changing and bacterial communities of biofilms in DWDS and possible bacteria risk in a red water case, water quality changing experiments in simulated DWDSs were conducted for approximately 2 years. Twenty-five corrosion scale samples and eight water samples collected from pipe harvest sites or during experimental periods were analyzed for their bacterial community composition by 454-pyrosequencing technology. Taxonomy results together with redundancy analysis (RDA) or canonical correspondence analysis (CCA) and hierarchical cluster analysis all indicated that bacterial community of samples with groundwater (GW) or surface water (SW) supply history and their variations under high sulfate water were rather different owing to different water source histories and the original pipe scale characteristics. Potential opportunistic pathogens: Burkholderia, Escherichia-Shigella, Mycobacterium, Serratia, Ralstonia, Novosphingobium, Flavobacterium, Sphingomonas, and Sphingopyxis were observed in scale or water samples.
Collapse
Affiliation(s)
- Fan Yang
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin, 300384, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
| | - Weiyu Zhang
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin, 300384, China
| | - Jing Cui
- College of Agronomy and Resources and Environment, Tianjin Agricultural University, 22 Jinjing Road, Tianjin, 300384, China
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, 26 Jinjing Road, Tianjin, 300384, China
| | - Dongsheng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin, 300384, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin, 300384, China
| |
Collapse
|
10
|
Qin K, Struewing I, Domingo JS, Lytle D, Lu J. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments. Pathogens 2017; 6:pathogens6040054. [PMID: 29072631 PMCID: PMC5715195 DOI: 10.3390/pathogens6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022] Open
Abstract
The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system.
Collapse
Affiliation(s)
- Ke Qin
- ORISE, Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | | | - Jorge Santo Domingo
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Darren Lytle
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Jingrang Lu
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| |
Collapse
|
11
|
Stamper CE, Hoisington AJ, Gomez OM, Halweg-Edwards AL, Smith DG, Bates KL, Kinney KA, Postolache TT, Brenner LA, Rook GAW, Lowry CA. The Microbiome of the Built Environment and Human Behavior: Implications for Emotional Health and Well-Being in Postmodern Western Societies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:289-323. [PMID: 27793224 DOI: 10.1016/bs.irn.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is increasingly evident that inflammation is an important determinant of cognitive function and emotional behaviors that are dysregulated in stress-related psychiatric disorders, such as anxiety and affective disorders. Inflammatory responses to physical or psychological stressors are dependent on immunoregulation, which is indicated by a balanced expansion of effector T-cell populations and regulatory T cells. This balance is in part driven by microbial signals. The hygiene or "old friends" hypothesis posits that exposure to immunoregulation-inducing microorganisms is reduced in modern urban societies, leading to an epidemic of inflammatory disease and increased vulnerability to stress-related psychiatric disorders. With the global trend toward urbanization, humans are progressively spending more time in built environments, thereby, experiencing limited exposures to these immunoregulatory "old friends." Here, we evaluate the implications of the global trend toward urbanization, and how this transition may affect human microbial exposures and human behavior.
Collapse
Affiliation(s)
- C E Stamper
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - A J Hoisington
- US Air Force Academy, Colorado Springs, CO, United States; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States
| | - O M Gomez
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | | | - D G Smith
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - K L Bates
- US Air Force Academy, Colorado Springs, CO, United States
| | - K A Kinney
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States; University of Texas Austin, Austin, TX, United States
| | - T T Postolache
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States; University of Maryland School of Medicine, Baltimore, MD, United States; VISN 5 Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD, United States; Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, United States
| | - L A Brenner
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States; Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, United States; University of Colorado, Aurora, CO, United States
| | - G A W Rook
- Center for Clinical Microbiology, UCL (University College London), London, United Kingdom
| | - C A Lowry
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, United States; Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, United States; University of Colorado, Aurora, CO, United States.
| |
Collapse
|
12
|
Yang F, Shi B, Bai Y, Sun H, Lytle DA, Wang D. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes. WATER RESEARCH 2014; 59:46-57. [PMID: 24784453 DOI: 10.1016/j.watres.2014.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
The chemical stability of iron corrosion scales and the microbial community of biofilm in drinking water distribution system (DWDS) can have great impact on the iron corrosion and corrosion product release, which may result in "red water" issues, particularly under the situation of source water switch. In this work, experimental pipe loops were set up to investigate the effect of sulfate on the dynamical transformation characteristics of iron corrosion products and bacterial community in old cast iron distribution pipes. All the test pipes were excavated from existing DWDS with different source water supply histories, and the test water sulfate concentration was in the range of 50-350 mg/L. Pyrosequencing of 16S rRNA was used for bacterial community analysis. The results showed that iron release increased markedly and even "red water" occurred for pipes with groundwater supply history when feed water sulfate elevated abruptly. However, the iron release of pipes with only surface water supply history changed slightly without noticeable color even the feed water sulfate increased multiply. The thick-layered corrosion scales (or densely distributed tubercles) on pipes with surface water supply history possessed much higher stability due to the larger proportion of stable constituents (mainly Fe3O4) in their top shell layer; instead, the rather thin and uniform non-layered corrosion scales on pipes with groundwater supply history contained relatively higher proportion of less stable iron oxides (e.g. β-FeOOH, FeCO3 and green rust). The less stable corrosion scales tended to be more stable with sulfate increase, which was evidenced by the gradually decreased iron release and the increased stable iron oxides. Bacterial community analysis indicated that when switching to high sulfate water, iron reducing bacteria (IRB) maintained dominant for pipes with stable corrosion scales, while significant increase of sulfur oxidizing bacteria (SOB), sulfate reducing bacteria (SRB) and iron oxidizing bacteria (IOB) was observed for pipes with less stable corrosion scales.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Baoyou Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaohui Bai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Darren A Lytle
- United States Environmental Protection Agency, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Baron JL, Vikram A, Duda S, Stout JE, Bibby K. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system. PLoS One 2014; 9:e102679. [PMID: 25033448 PMCID: PMC4102543 DOI: 10.1371/journal.pone.0102679] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/22/2014] [Indexed: 01/14/2023] Open
Abstract
Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.
Collapse
Affiliation(s)
- Julianne L. Baron
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Scott Duda
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
| | - Janet E. Stout
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Burleigh TD, Gierke CG, Fredj N, Boston PJ. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion. MATERIALS 2014; 7:4321-4334. [PMID: 28788679 PMCID: PMC5455936 DOI: 10.3390/ma7064321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC). In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS), then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM). The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.
Collapse
Affiliation(s)
- Thomas D Burleigh
- Materials & Metallurgical Engineering Department, New Mexico Tech, Socorro, NM 87801, USA.
| | - Casey G Gierke
- Earth & Environmental Sciences, New Mexico Tech, Socorro, NM 87801, USA.
| | - Narjes Fredj
- Materials & Metallurgical Engineering Department, New Mexico Tech, Socorro, NM 87801, USA.
| | - Penelope J Boston
- Earth & Environmental Sciences, New Mexico Tech, Socorro, NM 87801, USA.
| |
Collapse
|
15
|
Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One 2012; 7:e40117. [PMID: 22808103 PMCID: PMC3394795 DOI: 10.1371/journal.pone.0040117] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/01/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. METHODOLOGY/PRINCIPAL FINDINGS The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. CONCLUSIONS In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.
Collapse
Affiliation(s)
- Maya Ofek
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
16
|
Liu R, Yu Z, Zhang H, Yang M, Shi B, Liu X. Diversity of bacteria and mycobacteria in biofilms of two urban drinking water distribution systems. Can J Microbiol 2012; 58:261-70. [DOI: 10.1139/w11-129] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, to give insight into the bacterial diversity of biofilms from full-scale drinking water distribution systems (DWDSs), the bacterial community compositions of biofilms from two urban DWDSs (Guangzhou and Beijing, China) were determined using a 16S rRNA gene library technique. Meanwhile, the occurrence and diversity of mycobacteria were also analyzed by a Mycobacterium -specific hsp gene assay. The biofilms from the full-scale DWDSs have complex bacterial populations. Proteobacteria was the common and predominant group in all biofilm samples, in agreement with previous reports. The community structures of bacteria at the three sites in Guangzhou DWDS were significantly different, despite the similar physicochemical properties of portable water. Some abundant and peculiar bacterial phylotypes were noteworthy, including Methylophilus , Massilia , and Planomicrobium , members of which are rarely found in DWDSs and their roles in DWDS biofilms are still unclear. The diversity of Mycobacterium species in biofilm samples was rather low. Mycobacterium arupense and Mycobacterium gordonae were the primary Mycobacterium species in Guangzhou and Beijing biofilms, respectively, indicating that M. arupense may be more resistant to chloride than M. gordonae.
Collapse
Affiliation(s)
- Ruyin Liu
- College of Environmental and Resource Sciences, Graduate University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Zhisheng Yu
- College of Environmental and Resource Sciences, Graduate University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Hongxun Zhang
- College of Environmental and Resource Sciences, Graduate University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| | - Min Yang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Baoyou Shi
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Xinchun Liu
- College of Environmental and Resource Sciences, Graduate University of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
| |
Collapse
|
17
|
Shrout JD, Nerenberg R. Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1995-2005. [PMID: 22296043 DOI: 10.1021/es203933h] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacteria have their own form of "twitter" communication, described as quorum sensing (QS), where bacteria emit and sense chemical signal molecules as a means to gauge population density and control gene expression. Many QS-controlled genes relate to biofilm formation and function and may be important for some water and wastewater treatment biofilms. There is a need to better understand bacterial QS, the bacteria biofilm aspects influenced by QS in engineered reactors, and to assess how designs and operations might be improved by taking this signaling into account. This paper provides a critical review of QS and how it relates to biofilms in engineered water and wastewater treatment systems and identifies needs for future research.
Collapse
Affiliation(s)
- Joshua D Shrout
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana, United States.
| | | |
Collapse
|