1
|
Zhang H, Zhang W, Zong Y, Kong D, Ma L, Wu XL, Zhao K. Dynamics of microbial-induced oil degradation at the microscale. Microbiol Spectr 2024:e0117624. [PMID: 39436126 DOI: 10.1128/spectrum.01176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024] Open
Abstract
Microbial-induced oil degradation (MIOD) has a wide range of applications, such as microbial enhanced oil recovery and bioremediation of oil pollution. However, our understanding of MIOD is still far from complete. Particularly, how is the dynamics of degradation process at the microscale level with a single-cell resolution remains to be disclosed. In this work, using hexadecane droplets in water as a model system, we have studied the dynamics of hexadecane degradation by different strains, including Pseudomonas aeruginosa PAO1, IMP68, O-2-2, and Dietzia sp. DQ12-45-1b, at the microscale. Based on visualization of MIOD, the dynamics of MIOD can be characterized by a three-stage process, including adhesion, adaptation, and degradation stages. Although different strains showed similar three-stage dynamics of MIOD, the effective degradation rate varied and followed an order of PAO1 > O-2-2 > IMP68 > DQ12-45-1b under aerobic conditions. Different oxygen conditions were also tested, and the dynamics of MIOD was slowed down under anaerobic conditions in comparison to under aerobic conditions. Further investigations at the degradation stage revealed that biofilms formed at the oil-water interface enhanced oil degradation, but a prerequisite for such enhanced degradation is proper stimulation of biofilm cells in the course of biofilm formation. The findings in this work provided a detailed picture on the dynamics of MIOD at the microscale and would be beneficial for better applications of MIOD.IMPORTANCEMicrobial-induced oil degradation is environmental friendly and economic and has become a promising technique in the fields of enhanced oil recovery and remediation of crude oil-polluted environments. For better applications of microbial-induced oil degradation, understanding the degradation dynamics particularly at the microscale is crucial. In this study, we investigated the degradation dynamics of hexadecane oil droplets incubated with different strains, including Pseudomonas aeruginosa PAO1, O-2-2, IMP68, and Dietzia sp. DQ12-45-1b at the microscale by employing microdroplet-based methods and bacterial tracking techniques. The findings in this study provided a detailed picture on the dynamics of microbial-induced oil degradation at the microscale, which will deepen our understandings on the biodegradation mechanisms of alkanes and shed insights for developing more effective biodegradation techniques.
Collapse
Affiliation(s)
- Hong Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin, China
- Petrochemical Research Institute of Petrochina Co., Ltd., Beijing, China
| | - Wenchao Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin, China
| | - Dongyang Kong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin, China
| | - Luyan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China
| | - Kun Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Yun Y, Lv T, Gui Z, Su T, Cao W, Tian X, Chen Y, Wang S, Jia Z, Li G, Ma T. Composition and metabolic flexibility of hydrocarbon-degrading consortia in oil reservoirs. BIORESOURCE TECHNOLOGY 2024; 409:131244. [PMID: 39127363 DOI: 10.1016/j.biortech.2024.131244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hydrocarbon-degrading consortia (HDC) play an important role in petroleum exploitation. However, the real composition and metabolic mechanism of HDC in the microbial enhanced oil recovery (MEOR) process remain unclear. By combining 13C-DNA stable isotope probing microcosms with metagenomics, some newly reported phyla, including Chloroflexi, Synergistetes, Thermotogae, and Planctomycetes, dominated the HDC in the oil reservoirs. In the field trials, the HDC in the aerobic-facultative-anaerobic stage of oilfields jointly promoted the MEOR process, with monthly oil increments of up to 189 tons. Pseudomonas can improve oil recovery by producing rhamnolipid in the facultative condition. Roseovarius was the novel taxa potentially oxidizing alkane and producing acetate to improve oil porosity and permeability in the aerobic condition. Ca. Bacteroidia were the new members potentially degrading hydrocarbons by fumarate addition in the anaerobic environment. Comprehensive identification of the active HDC in oil reservoirs provides a novel theoretical basis for oilfield regulatory scheme.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Tianhua Lv
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
3
|
Kundu A, Gao X, Khandelwal N, Banerjee A, Ghoshal S. Oleic-acid functionalized mesoporous silica nanoparticles with a hydroxyapatite core enhanced growth of the hydrocarbon degrader Dietzia maris at oil-water interfaces. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132653. [PMID: 37820524 DOI: 10.1016/j.jhazmat.2023.132653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Rapid biodegradation of poorly water-soluble hydrocarbons as nonaqueous (oil) phases in contaminated aquatic environments is enabled by attachment of hydrocarbon-degrading bacteria to the oil-water interface. Herein, we report the synthesis of nanoparticles comprising a hydroxyapatite (Ca5(PO4)3(OH)) core encapsulated in a mesoporous silica shell and surface-modified with oleic acid (OA-nHAP@MSN) for targeted binding at the oil-water interface and to supply P to bacteria at the interface. P is an essential and often limiting nutrient for bacteria in hydrocarbon-contaminated environments. In microcosm experiments, where the hydrocarbon-degrading bacteria, Dietzia maris strain NWWC4, and OA-nHAP@MSN were inoculated in mineral media in contact with pure liquid hexadecane (sole C source), there was 419.6-fold growth at the hexadecane-water interface, compared to 31.2-fold in identical, but NP-free microcosms. The continuous release of P from the hydroxyapatite core in OA-nHAP@MSN to water was demonstrated in separate experiments in well mixed batch systems and was found to be pH-sensitive. Environmental Scanning Electron Microscopy showed significantly larger cell aggregates and dense biofilms in the OA-nHAP@MSN-amended systems, compared to NP-free systems. Our results demonstrate a strategy for enhancing oil-spill bioremediation using NPs targeting nutrient supply to hydrocarbon-degrading bacteria at oil-water interfaces.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Xiaoyu Gao
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Nitin Khandelwal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Anwesha Banerjee
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
4
|
Rellegadla S, Prajapat G, Jain S, Agrawal A. Microbial communities succession post to polymer flood demonstrate a role in enhanced oil recovery. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12673-3. [PMID: 37428189 DOI: 10.1007/s00253-023-12673-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
The role of indigenous microbial communities in residual oil extraction following a recovery process is not well understood. This study investigated the dynamics of resident microbial communities in oil-field simulating sand pack bioreactors after the polymer flooding stage resumed with waterflooding and explored their contribution to the oil extraction process. The microbial community succession was studied through high-throughput sequencing of 16S rRNA genes. The results revealed alternating dominance of minority populations, including Dietzia sps., Acinetobacter sps., Soehngenia sps., and Paracoccus sps., in each bioreactor following the flooding process. Additionally, the post-polymer waterflooding stage led to higher oil recovery, with hydroxyethylcellulose, tragacanth gum, and partially hydrolyzed polyacrylamide polymer-treated bioreactors yielding additional recovery of 4.36%, 5.39%, and 3.90% residual oil in place, respectively. The dominant microbial communities were previously reported to synthesize biosurfactants and emulsifiers, as well as degrade and utilize hydrocarbons, indicating their role in aiding the recovery process. However, the correlation analysis of the most abundant taxa showed that some species were more positively correlated with the oil recovery process, while others acted as competitors for the carbon source. The study also found that higher biomass favored the plugging of high permeability zones in the reservoir, facilitating the dislodging of crude oil in new channels. In conclusion, this study suggests that microbial populations significantly shift upon polymer treatment and contribute synergistically to the oil recovery process depending on the characteristics of the polymers injected. KEY POINTS: • Post-polymer flooded microbial ecology shows unique indigenous microbial consortia. • Injected polymers are observed to act as enrichment substrates by resident communities. • The first study to show successive oil recovery stage post-polymer flood without external influence.
Collapse
Affiliation(s)
- Sandeep Rellegadla
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Ganshyam Prajapat
- The Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
| | - Shikha Jain
- Enercosm Pvt. Ltd., Jaipur, Rajasthan, 302019, India
| | - Akhil Agrawal
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
5
|
Xu HX, Tang YQ, Nie Y, Wu XL. Comparative transcriptome analysis reveals different adaptation mechanisms for degradation of very long-chain and normal long-chain alkanes in Dietzia sp. DQ12-45-1b. Environ Microbiol 2022; 24:1932-1945. [PMID: 35191184 DOI: 10.1111/1462-2920.15928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Abstract
Hydrocarbon-degrading bacteria typically metabolize a broad range of alkane substrates, but global metabolic characteristics of strains growing on alkane substrates in different chain lengths remain unclear. In this study, we analysed the transcriptional profiles of a hydrocarbon degrading bacterium, Dietzia sp. DQ12-45-1b, during growth on octacosane (C28), hexadecane (C16) and glucose as the sole carbon sources. Our results highlight that C16 and C28 induced common genes of core alkane degradation pathways in DQ12-45-1b, whereas transcriptional patterns of genes related to lipid metabolism, energy metabolism, biomass synthesis, and metal ion transportation were distinct. In addition, the transcriptional differences of genes related to glyoxylate shunt (GS) as well as growth phenotypes of mutant strain with defects in GS demonstrated that GS is essential for C16 degradation, though it is dispensable for C28 degradation in DQ12-45-1b. These results demonstrate that DQ12-45-1b cells exhibited considerable metabolic flexibility by using various mechanisms during growth on alkane substrates in different chain lengths. This study advances our knowledge of microbial hydrocarbon degradation and provides valuable information for the application of alkane-degrading bacteria in bioremediation and microbial enhanced oil recovery.
Collapse
Affiliation(s)
- Hong-Xiu Xu
- College of Architecture and Environment, Sichuan University, Chengdu, 610207, China.,College of Engineering, Peking University, Beijing, 100871, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610207, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China.,Institute of Ecology, Peking University, Beijing, 100871, China.,Institute of Ocean Research, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Hu B, Zhao JY, Nie Y, Qin XY, Zhang KD, Xing JM, Wu XL. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms 2021; 9:microorganisms9102054. [PMID: 34683375 PMCID: PMC8539444 DOI: 10.3390/microorganisms9102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.
Collapse
Affiliation(s)
- Bing Hu
- Group of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102401, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China, Beijing 102401, China
| | - Jie-Yu Zhao
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Correspondence: (Y.N.); (X.-L.W.)
| | - Xiao-Yu Qin
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Kai-Duan Zhang
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Jian-Min Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Institute of Ecology, Peking University, Beijing 100871, China
- Correspondence: (Y.N.); (X.-L.W.)
| |
Collapse
|
7
|
Akbari A, David C, Rahim AA, Ghoshal S. Salt selected for hydrocarbon-degrading bacteria and enhanced hydrocarbon biodegradation in slurry bioreactors. WATER RESEARCH 2021; 202:117424. [PMID: 34332190 DOI: 10.1016/j.watres.2021.117424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/12/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Hydrocarbon and salt contamination of surface and groundwater resources often co-occur from oil production activities. However, salt is often considered as a potential inhibitor of microbial activity. The feasibility of microbiome-based biotechnologies to treat the hydrocarbon contamination is contingent on the ability of the indigenous community to adapt to saline conditions. Here, we demonstrate enhanced hydrocarbon biodegradation in soil slurries under saline conditions of up to ~1 M (5%) compared to non-saline systems and the underlying causes. The mineralization extent of hexadecane was enhanced by salinity in the absence of nutrients. Salinity, similar to nutrients, enhanced the mineralization but through ecological selection. Microbial community analysis indicated a significant enrichment of Actinobacteria phylum and an increase in the absolute abundance of the hydrocarbon-degrading Dietzia genus, but a decrease in the total population size with salinity. Moreover, the in situ expression of alkane hydroxylases genes of Dietzia was generally increased with salinity. The data demonstrate that indigenous halotolerant hydrocarbon degraders were enriched, and their hydrocarbon degradation genes upregulated under saline conditions. These findings have positive implications for engineered biotreatment approaches for hydrocarbons in saline environments such as those affected with produced waters and oil sands tailing ponds.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Carolyn David
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Arshath Abdul Rahim
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
8
|
Characterization of Dietzia maris AURCCBT01 from oil-contaminated soil for biodegradation of crude oil. 3 Biotech 2021; 11:291. [PMID: 34109094 DOI: 10.1007/s13205-021-02807-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
A bacterial strain was isolated from an oil-contaminated site and on its' further characterization, exhibited the potential of synthesising metabolites and the ability to degrade crude oil. Its' morphological, biochemical and 16S rRNA analysis suggested that the bacterium belongs to Dietzia maris AURCCBT01. This strain rapidly grew in the medium supplemented with n-alkanes C14, C18, C20, C28 and C32 utilizing them as a sole carbon source and produced a maximum canthaxanthin pigment of 971.37 µg/L in the n-C14 supplemented medium and produced the lowest pigment yield of 389.48 µg/L in the n-C-32 supplemented medium. Moreover, the strain effectively degraded 91.87% of crude oil in 7 days. The emulsification activity of the strain was 25% with the highest cell surface hydrophobicity (70.26%) and it showed a decrease in surface tension, indicating that the biosurfactant production lowers the surface tension. This is the first report on the characterization of the strain, Dietzia maris AURCCBT01 and its' novelty of alkane degradation and simultaneous production of canthaxanthin pigment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02807-7.
Collapse
|
9
|
Wang M, Geng S, Hu B, Nie Y, Wu X. Sessile bacterium unlocks ability of surface motility through mutualistic interspecies interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:112-118. [PMID: 33225572 PMCID: PMC7984234 DOI: 10.1111/1758-2229.12911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
In addition to their common planktonic lifestyle, bacteria frequently live in surface-associated habitats. Surface motility is essential for exploring these habitats for food sources. However, many bacteria are found on surfaces, even though they lack features required for migrating along surfaces. How these canonical non-motile bacteria adapt to the environmental fluctuations on surfaces remains unknown. Here, we report a previously unknown surface motility mode of the canonical non-motile bacterium, Dietzia sp. DQ12-45-1b, which is triggered by interaction with a dimorphic prosthecate bacterium, Glycocaulis alkaliphilus 6B-8T. Dietzia cells exhibits 'sliding'-like motility in an area where the strain Glycocaulis cells was pre-colonized with a sufficient density. Our analysis also demonstrates that Dietzia degrade n-alkanes and provide Glycocaulis with the resulting metabolites for survival, which in turn induced directional migration of Dietzia towards nutrient-rich environments. Such interaction-triggered migration was also found between Dietzia and Glycocaulis strains isolated from other habitats, suggesting that this mutualistic relationship ubiquitously occurs in natural environments. In conclusion, we propose a novel model for such a 'win-win' strategy, whereby non-motile bacteria pay metabolites to dimorphic prosthecate bacteria in return for migrating to seek for nutrients, which may represent a common strategy for canonically non-motile bacteria living on a surface.
Collapse
Affiliation(s)
- Miaoxiao Wang
- College of EngineeringPeking UniversityBeijing100871China
| | - Shuang Geng
- College of EngineeringPeking UniversityBeijing100871China
| | - Bing Hu
- College of EngineeringPeking UniversityBeijing100871China
| | - Yong Nie
- College of EngineeringPeking UniversityBeijing100871China
| | - Xiao‐Lei Wu
- College of EngineeringPeking UniversityBeijing100871China
- Institute of EcologyPeking UniversityBeijing100871China
- Institute of Ocean ResearchPeking UniversityBeijing100871China
| |
Collapse
|
10
|
John WC, Ogbonna IO, Gberikon GM, Iheukwumere CC. Evaluation of biosurfactant production potential of Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-workshop soil. Braz J Microbiol 2021; 52:663-674. [PMID: 33462721 DOI: 10.1007/s42770-021-00432-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Biosurfactants are amphipathic biological compounds with surface active potential and are produced by many microorganisms. Biosurfactant production by Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-shop soil was investigated with a view to assessing its potential for production and potential for optimization. MATERIALS AND METHODS Effects of carbon and nitrogen sources, pH, temperature and incubation periods on biosurfactant production were evaluated with a view to optimizing the processes. Fourier Transform Infra-Red absorption peaks and Gas chromatography mass spectrometry were used to determine the functional groups of the chemical make-up and the chemical profile of the biosurfactant respectively. RESULTS Lysinibacillus fusiformis surfactant had emulsification index of 65.15 ± 0.35 %, oil displacement of 2.7 ± 0.26 mm, zone of haemolysis of 7.3 ± 0.16 mm and a positive drop collapse test. Optimized culture conditions for biosurfactant production: temperature, 35 ºC; pH, 7.0; starch solution, 40 g/L and urea, 1.5 g/L showed a reduction in surface tension to 28.46 ± 1.11 mN/m and increased emulsification index to 93.80 ± 0.41 %. Maximum biosurfactant production of 2.92 ± 0.04 g/L was obtained after 72 h. The biosurfactant contained peptides and fatty acids. The predominant fatty acid was 9-Octadecenoic acid (80.80%). CONCLUSIONS The above results showing high emulsification potential and remarkable reduction in the surface tension are good biosurfactant attributes. Consequently, Lysinibacillus fusiformis MK559526 is a good candidate for biosurfactant production.
Collapse
Affiliation(s)
- Walter Chinaka John
- Department of Science Laboratory Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Grace M Gberikon
- Department of Microbiology, Federal University of Agriculture, Makurdi, Nigeria
| | | |
Collapse
|
11
|
Fang H, Xu JB, Nie Y, Wu XL. Pan-genomic analysis reveals that the evolution of Dietzia species depends on their living habitats. Environ Microbiol 2020; 23:861-877. [PMID: 32715552 DOI: 10.1111/1462-2920.15176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
The bacterial genus Dietzia is widely distributed in various environments. The genomes of 26 diverse strains of Dietzia, including almost all the type strains, were analysed in this study. This analysis revealed a lipid metabolism gene richness, which could explain the ability of Dietzia to live in oil related environments. The pan-genome consists of 83,976 genes assigned into 10,327 gene families, 792 of which are shared by all the genomes of Dietzia. Mathematical extrapolation of the data suggests that the Dietzia pan-genome is open. Both gene duplication and gene loss contributed to the open pan-genome, while horizontal gene transfer was limited. Dietzia strains primarily gained their diverse metabolic capacity through more ancient gene duplications. Phylogenetic analysis of Dietzia isolated from aquatic and terrestrial environments showed two distinct clades from the same ancestor. The genome sizes of Dietzia strains from aquatic environments were significantly larger than those from terrestrial environments, which was mainly due to the occurrence of more gene loss events during the evolutionary progress of the strains from terrestrial environments. The evolutionary history of Dietzia was tightly coupled to environmental conditions, and iron concentrations should be one of the key factors shaping the genomes of the Dietzia lineages.
Collapse
Affiliation(s)
- Hui Fang
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jin-Bo Xu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China.,Institute of Ocean Research, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Low-Abundance Dietzia Inhabiting a Water-Flooding Oil Reservoir and the Application Potential for Oil Recovery. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2193453. [PMID: 31662970 PMCID: PMC6791240 DOI: 10.1155/2019/2193453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 01/19/2023]
Abstract
With the development of molecular ecology, increasing low-abundance microbial populations were detected in oil reservoirs. However, our knowledge about the oil recovery potential of these populations is lacking. In this study, the oil recovery potential of low-abundance Dietzia that accounts for less than 0.5% in microbial communities of a water-flooding oil reservoir was investigated. On the one hand, Dietzia sp. strain ZQ-4 was isolated from the water-flooding reservoir, and the oil recovery potential was evaluated from the perspective of metabolisms and oil-displacing test. On the other hand, the strain has alkane hydroxylase genes alkB and P450 CYP153 and can degrade hydrocarbons and produce surfactants. The core-flooding test indicated that displacing fluid with 2% ZQ-4 fermentation broth increased 18.82% oil displacement efficiency, and in situ fermentation of ZQ-4 increased 1.97% oil displacement efficiency. Furthermore, the responses of Dietzia in the reservoir accompanied by the nutrient stimulation process was investigated and showed that Dietzia in some oil production wells significantly increased in the initial phase of nutrient injection and sharply decreased along with the continuous nutrient injection. Overall, this study indicates that Dietzia sp. strain has application potential for enhancing oil recovery through an ex situ way, yet the ability of oil recovery in situ based on nutrient injection is limited.
Collapse
|
13
|
Li H, Martin FL, Jones KC, Zhang D. Interrogating the Transient Selectivity of Bacterial Chemotaxis-Driven Affinity and Accumulation of Carbonaceous Substances via Raman Microspectroscopy. Front Microbiol 2019; 10:2215. [PMID: 31636611 PMCID: PMC6787638 DOI: 10.3389/fmicb.2019.02215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Carbonaceous substances are fundamental organic nutrients for microbial metabolism and catabolism in natural habitats. Microbial abilities to sense, accumulate, and utilize organic carbonaceous substances in the complex nutrient environment are important for their growth and ecological functions. Bacterial chemotaxis is an effective mechanism for microbial utilization of carbonaceous substances under nutrient depletion conditions. Although bacterial accumulation and utilization to individual carbonaceous substance in long-term cultivation has been well studied, their selective affinity of mixed carbonaceous substances remains to be investigated, primarily because of technical limitations of conventional methods. Herein, we applied Raman microspectroscopy to identify chemotaxis-driven affinity and accumulation of four organic carbonaceous substances (glucose, succinate, acetate, and salicylate) by three bacterial strains (Acinetobacter baylyi, Pseudomonas fluorescence, and Escherichia coli). A. baylyi exhibited strong binding affinity toward glucose and succinate, whereas P. fluorescence and E. coli were preferentially responsive to glucose and acetate. For the first time, bacterial transient selectivity of carbonaceous substances was studied via interrogating Raman spectral alterations. Post-exposure to carbonaceous-substance mixtures, the three bacterial strains showed distinct selective behaviors. Stronger selective affinity enhanced the chemotaxis-related signal transduction in A. baylyi cells, whereas the carbonaceous substance signal transduction in E. coli was decreased by higher selective affinity. In P. fluorescence, there was no specific effect of selective affinity on signal transduction. Our study suggests that Raman microspectroscopy can successfully investigate and distinguish different scenarios of bacterial competitive and transient unitization of organic carbonaceous substances.
Collapse
Affiliation(s)
- Hanbing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.,Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Single-Homology-Arm Linear DNA Recombination by the Nonhomologous End Joining Pathway as a Novel and Simple Gene Inactivation Method: a Proof-of-Concept Study in Dietzia sp. Strain DQ12-45-1b. Appl Environ Microbiol 2018; 84:AEM.00795-18. [PMID: 30030230 DOI: 10.1128/aem.00795-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
Nonhomologous end joining (NHEJ) is critical for genome stability because of its roles in double-strand break repair. Ku and ligase D (LigD) are the crucial proteins in this process, and strains expressing Ku and LigD can cyclize linear DNA in vivo Here, we established a proof-of-concept single-homology-arm linear DNA recombination for gene inactivation or genome editing by which cyclization of linear DNA in vivo by NHEJ could be used to generate nonreplicable circular DNA and could allow allelic exchanges between the circular DNA and the chromosome. We achieved this approach in Dietzia sp. strain DQ12-45-1b, which expresses Ku and LigD homologs and presents NHEJ activity. By transforming the strain with a linear DNA single homolog to the sequence in the chromosome, we mutated the genome. This method did not require the screening of suitable plasmids and was easy and time-effective. Bioinformatic analysis showed that more than 20% of prokaryotic organisms contain Ku and LigD, suggesting the wide distribution of NHEJ activities. Moreover, an Escherichia coli strain also showed NHEJ activity when the Ku and LigD of Dietzia sp. DQ12-45-1b were introduced and expressed in it. Therefore, this method may be a widely applicable genome editing tool for diverse prokaryotic organisms, especially for nonmodel microorganisms.IMPORTANCE Many nonmodel Gram-positive bacteria lack efficient genetic manipulation systems, but they express genes encoding Ku and LigD. The NHEJ pathway in Dietzia sp. DQ12-45-1b was evaluated and was used to successfully knock out 11 genes in the genome. Since bioinformatic studies revealed that the putative genes encoding Ku and LigD ubiquitously exist in phylogenetically diverse bacteria and archaea, the single-homology-arm linear DNA recombination by the NHEJ pathway could be a potentially applicable genetic manipulation method for diverse nonmodel prokaryotic organisms.
Collapse
|
15
|
Nurfarahin AH, Mohamed MS, Phang LY. Culture Medium Development for Microbial-Derived Surfactants Production-An Overview. Molecules 2018; 23:molecules23051049. [PMID: 29723959 PMCID: PMC6099601 DOI: 10.3390/molecules23051049] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Surfactants are compounds that can reduce the surface tension between two different phases or the interfacial tension of the liquid between water and oil, possessing both hydrophilic and hydrophobic moieties. Biosurfactants have traits that have proven to be advantageous over synthetic surfactants, but these compounds do not compete economically with synthetic surfactants. Different alternatives increase the yield of biosurfactants; development of an economical production process and the usage of cheaper substrates during process have been employed. One of the solutions relies on the suitable formulation of a production medium by including alternative raw materials sourced from agro-wastes, hydrocarbons, or by-products of a process might help in boosting the biosurfactant production. Since the nutritional factors required will be different among microorganisms, the establishment of a suitable formulation for biosurfactant production will be challenging. The present review describes various nutrients and elements considered in the formulation of a production medium with an approach focusing on the macronutrient (carbon, nitrogen source, and C/N ratio), minerals, vitamins, metabolic regulators, and salinity levels which may aid in the study of biosurfactant production in the future.
Collapse
Affiliation(s)
- Abdul Hamid Nurfarahin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
16
|
Monica M, Priyanka T, Akshaya M, Rajeswari V, Sivakumar L, Somasundaram ST, Shenbhagarathai R. The efficacy of Poly-β-Hydroxy Butyrate (PHB)/biosurfactant derived from Staphylococcus hominis against White Spot Syndrome Virus (WSSV) in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2017; 71:399-410. [PMID: 29032039 DOI: 10.1016/j.fsi.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
White Spot Syndrome Virus (WSSV) is one of the most important causative agents of Penaeid shrimps diseases that incur heavy losses to the shrimp aquaculture. It has severe impact on the sustainability and the production of Penaeus monodon. Hence, the present study focussed on the investigation of Poly-β-hydroxybutyrate/biosurfactant as immunostimulants against WSSV infected shrimps. Infection of WSSV was periodically checked in all the experimental shrimps using PCR diagnostic kit. After ensuring all shrimps were free of viral infection, experiments were carried out to analyze the nonspecific immune responses (prophenol oxidase, nitro blue tetrazolium reduction assay and total haemocyte count) both in control and experimental group. Further, gills and muscles of Penaeus monodon were subjected to proteome analysis after treated it with PHB/biosurfactant independently in the concentration of 2% and 5% each. Increase in the level of haemocytes was observed in both PHB (26 ± 2 × 10⁴ cells)/biosurfactant (28 ± 2 × 104 cells) treated shrimps, when compared with control (17 ± 2 × 10⁴ cells). proPhenolOxidase (proPO) activity was also enhanced in treated groups compared to WSSV infected shrimps. Less production of superoxide anion was observed in control and treated groups. Differences in the protein expression was analyzed in muscle tissue of control, WSSV infected and PHB/biosurfactant treated shrimps. Our finding suggested that partial substitution of feed with 2% PHB and biosurfactant showed increased rate on the survival of WSSV infected P. monodon which might be due to either the over expression/down regulation of proteins that play a vital role in enhancing the immune system/the progression of the disease respectively.
Collapse
Affiliation(s)
- M Monica
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625 002, Tamilnadu, India.
| | - T Priyanka
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625 002, Tamilnadu, India.
| | - Murugesan Akshaya
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625 002, Tamilnadu, India.
| | - V Rajeswari
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625 002, Tamilnadu, India.
| | - Lingappa Sivakumar
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608502, Tamilnadu, India.
| | - S T Somasundaram
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608502, Tamilnadu, India.
| | - R Shenbhagarathai
- PG and Research Department of Zoology, Lady Doak College, Thallakulam, Madurai 625 002, Tamilnadu, India.
| |
Collapse
|
17
|
Li H, Martin FL, Zhang D. Quantification of Chemotaxis-Related Alkane Accumulation in Acinetobacter baylyi Using Raman Microspectroscopy. Anal Chem 2017; 89:3909-3918. [DOI: 10.1021/acs.analchem.6b02297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hanbing Li
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Francis Luke Martin
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
- School
of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, U.K
| | - Dayi Zhang
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| |
Collapse
|
18
|
The complete genome of Dietzia timorensis ID05-A0528 T revealed the genetic basis for its saline-alkali tolerance. J Biotechnol 2017; 241:11-13. [DOI: 10.1016/j.jbiotec.2016.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022]
|
19
|
Nie Y, Zhao JY, Tang YQ, Guo P, Yang Y, Wu XL, Zhao F. Species Divergence vs. Functional Convergence Characterizes Crude Oil Microbial Community Assembly. Front Microbiol 2016; 7:1254. [PMID: 27570522 PMCID: PMC4981601 DOI: 10.3389/fmicb.2016.01254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022] Open
Abstract
Oil reservoirs exhibit extreme environmental conditions such as high salinity and high temperature. Insights into microbial community assemblages in oil reservoirs and their functional potentials are important for understanding biogeochemical cycles in the subterranean biosphere. In this study, we performed shotgun metagenomic sequencing of crude oil samples from two geographically distant oil reservoirs in China, and compared them with all the 948 available environmental metagenomes deposited in IMG database (until October 2013). Although the dominant bacteria and the proportion of hydrogenotrophic and acetoclastic methanogens were different among oil metagenomes, compared with the metagenomes from other environments, all the oil metagenomes contained higher abundances of genes involved in methanogenic hydrocarbon degradation and stress response systems. In addition, a "shape-sorting" manner was proposed for the assembly of microbial communities in oil reservoirs, with the oil reservoir acting as a function sorter to select microbes with special functions from its endemic pool of microorganisms. At the functional level, we found that environmental metagenomes were generally clustered according to their isolation environments but not their geographical locations, suggesting selective processes to be involved in the assembly of microbial communities based on functional gene composition.
Collapse
Affiliation(s)
- Yong Nie
- College of Engineering, Peking University, Beijing China
| | - Jie-Yu Zhao
- College of Engineering, Peking University, Beijing China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu China
| | - Peng Guo
- College of Engineering, Peking University, Beijing China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, BeijingChina; Institute of Engineering (Baotou), College of Engineering, Peking University, BaotouChina
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing China
| |
Collapse
|
20
|
Kavyanifard A, Ebrahimipour G, Ghasempour A. Structure characterization of a methylated ester biosurfactant produced by a newly isolated Dietzia cinnamea KA1. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716040111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Gao P, Li G, Li Y, Li Y, Tian H, Wang Y, Zhou J, Ma T. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery. Front Microbiol 2016; 7:186. [PMID: 26925051 PMCID: PMC4757698 DOI: 10.3389/fmicb.2016.00186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/03/2016] [Indexed: 12/03/2022] Open
Abstract
This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.
Collapse
Affiliation(s)
- Peike Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Yanshu Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Yan Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Huimei Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Yansen Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Jiefang Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
22
|
Dong H, Zhang ZZ, He YL, Luo YJ, Xia WJ, Sun SS, Zhang GQ, Zhang ZY, Gao DL. Biostimulation of biogas producing microcosm for enhancing oil recovery in low-permeability oil reservoir. RSC Adv 2015. [DOI: 10.1039/c5ra18089a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Indigenous microbial enhanced oil recovery (IMEOR) has been successfully applied in conventional oil reservoirs, however the mechanism in low-permeability oil reservoirs is still misunderstood.
Collapse
Affiliation(s)
- H. Dong
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Z. Z. Zhang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Y. L. He
- School of Petroleum Engineering
- China University of Petroleum
- Qingdao
- China
| | - Y. J. Luo
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - W. J. Xia
- Power Environmental Energy Research Institute
- Covina
- USA
| | - S. S. Sun
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - G. Q. Zhang
- School of Mechanical
- Materials & Mechatronic Engineering
- University of Wollongong
- Wollongong
- Australia
| | - Z. Y. Zhang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - D. L. Gao
- State Key Laboratory of Petroleum Resources and Prospecting
- China University of Petroleum
- Beijing
- P. R. China
| |
Collapse
|
23
|
Wang W, Cai B, Shao Z. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front Microbiol 2014; 5:711. [PMID: 25566224 PMCID: PMC4267283 DOI: 10.3389/fmicb.2014.00711] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022] Open
Abstract
Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL−1, and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m−1. Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| | - Bobo Cai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China ; Life Science College, Xiamen University Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| |
Collapse
|
24
|
Wang W, Cai B, Shao Z. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front Microbiol 2014. [DOI: 10.3389/fmicb.2014.00711 pmid: 25566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Dellagnezze BM, de Sousa GV, Martins LL, Domingos DF, Limache EEG, de Vasconcellos SP, da Cruz GF, de Oliveira VM. Bioremediation potential of microorganisms derived from petroleum reservoirs. MARINE POLLUTION BULLETIN 2014; 89:191-200. [PMID: 25457810 DOI: 10.1016/j.marpolbul.2014.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.
Collapse
Affiliation(s)
- Bruna Martins Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil
| | - Gabriel Vasconcelos de Sousa
- Laboratory of Engineering and Petroleum Exploration, Darcy Ribeiro North Fluminense State University - LENEP/UENF, POB 119562, 27910-970 Macaé, RJ, Brazil
| | - Laercio Lopes Martins
- Laboratory of Engineering and Petroleum Exploration, Darcy Ribeiro North Fluminense State University - LENEP/UENF, POB 119562, 27910-970 Macaé, RJ, Brazil
| | - Daniela Ferreira Domingos
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil
| | - Elmer E G Limache
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil
| | | | - Georgiana Feitosa da Cruz
- Laboratory of Engineering and Petroleum Exploration, Darcy Ribeiro North Fluminense State University - LENEP/UENF, POB 119562, 27910-970 Macaé, RJ, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil.
| |
Collapse
|
26
|
Lu S, Nie Y, Tang YQ, Xiong G, Wu XL. A critical combination of operating parameters can significantly increase the electrotransformation efficiency of a gram-positive Dietzia strain. J Microbiol Methods 2014; 103:144-51. [DOI: 10.1016/j.mimet.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
|
27
|
Nie Y, Fang H, Li Y, Chi CQ, Tang YQ, Wu XL. The genome of the moderate halophile Amycolicicoccus subflavus DQS3-9A1(T) reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment. PLoS One 2013; 8:e70986. [PMID: 23967144 PMCID: PMC3743902 DOI: 10.1371/journal.pone.0070986] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/26/2013] [Indexed: 11/24/2022] Open
Abstract
The moderate halophile Amycolicicoccus subflavus DQS3-9A1(T) is the type strain of a novel species in the recently described novel genus Amycolicicoccus, which was isolated from oil mud precipitated from oil produced water. The complete genome of A. subflavus DQS3-9A1(T) has been sequenced and is characteristic of harboring the genes for adaption to the harsh petroleum environment with salinity, high osmotic pressure, and poor nutrient levels. Firstly, it characteristically contains four types of alkane hydroxylases, including the integral-membrane non-heme iron monooxygenase (AlkB) and cytochrome P450 CYP153, a long-chain alkane monooxygenase (LadA) and propane monooxygenase. It also accommodates complete pathways for the response to osmotic pressure. Physiological tests proved that the strain could grow on n-alkanes ranging from C10 to C36 and propane as the sole carbon sources, with the differential induction of four kinds of alkane hydroxylase coding genes. In addition, the strain could grow in 1-12% NaCl with the putative genes responsible for osmotic stresses induced as expected. These results reveal the effective adaptation of the strain DQS3-9A1(T) to harsh oil environment and provide a genome platform to investigate the global regulation of different alkane metabolisms in bacteria that are crucially important for petroleum degradation. To our knowledge, this is the first report to describe the co-existence of such four types of alkane hydroxylases in a bacterial strain.
Collapse
Affiliation(s)
- Yong Nie
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China
- Institute of Engineering (Baotou), College of Engineering, Peking University, Baotou, China
| | - Hui Fang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Yan Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Chang-Qiao Chi
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China
- Institute of Engineering (Baotou), College of Engineering, Peking University, Baotou, China
| | - Yue-Qin Tang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Xiao-Lei Wu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China
- Institute of Engineering (Baotou), College of Engineering, Peking University, Baotou, China
| |
Collapse
|