1
|
Freire V, Condón S, Gayán E. Impact of sporulation temperature on germination of Bacillus subtilis spores under optimal and adverse environmental conditions. Food Res Int 2024; 182:114064. [PMID: 38519157 DOI: 10.1016/j.foodres.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 03/24/2024]
Abstract
Bacillus subtilis spores are important food spoilage agents and are occasionally involved in food poisoning. In foods that are not processed with intense heat, such bacterial spores are controlled by a combination of different hurdles, such as refrigeration, acidification, and low water activity (aw), which inhibit or delay germination and/or growth. Sporulation temperature has long been regarded as a relevant factor for the assessment of germination in chemically defined media, but little is known about its impact on food preservation environments. In this study, we compared germination dynamics of B. subtilis spores produced at optimal temperature (37 °C) with others incubated at suboptimal (20 °C) and supraoptimal (43 °C) temperatures in a variety of nutrients (rich-growth medium, L-alanine, L-valine, and AGFK) under optimal conditions as well as under food-related stresses (low aw, pH, and temperature). Spores produced at 20 °C had a lower germination rate and efficiency than those incubated at 37 °C in all the nutrients, while those sporulated at 43 °C displayed a higher germination rate and/or efficiency in response to rich-growth medium and mostly to L-alanine and AGFK under optimal environmental conditions. However, differences in germination induced by changes in sporulation temperature decreased when spores were activated by heat, mainly due to the greater benefit of heat for spores produced at 20 °C and 37 °C than at 43 °C, especially in AGFK. Non-heat-activated spores produced at 43 °C still displayed superior germination fitness under certain stresses that had considerably impaired the germination of the other two populations, such as reduced temperature and aw. Moreover, they presented lower temperature and pH boundaries for the inhibition of germination in rich-growth medium, while requiring a higher NaCl concentration threshold compared to spores obtained at optimal and suboptimal temperature. Sporulation temperature is therefore a relevant source of variability in spore germination that should be taken into account for the accurate prediction of spore behaviour under variable food preservation conditions with the aim of improving food safety and stability.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
2
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguerinel I, Couvert O, Broussolle V, Carlin F, Coroller L. Suboptimal Bacillus licheniformis and Bacillus weihenstephanensis Spore Incubation Conditions Increase Heterogeneity of Spore Outgrowth Time. Appl Environ Microbiol 2020; 86:e02061-19. [PMID: 31900309 PMCID: PMC7054099 DOI: 10.1128/aem.02061-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/14/2019] [Indexed: 11/20/2022] Open
Abstract
Changes with time of a population of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 dormant spores into germinated spores and vegetative cells were followed by flow cytometry, at pH ranges of 4.7 to 7.4 and temperatures of 10°C to 37°C for B. weihenstephanensis and 18°C to 59°C for B. licheniformis Incubation conditions lower than optimal temperatures or pH led to lower proportions of dormant spores able to germinate and extended time of germination, a lower proportion of germinated spores able to outgrow, an extension of their times of outgrowth, and an increase of the heterogeneity of spore outgrowth time. A model based on the strain growth limits was proposed to quantify the impact of incubation temperature and pH on the passage through each physiological stage. The heat treatment temperature or time acted independently on spore recovery. Indeed, a treatment at 85°C for 12 min or at 95°C for 2 min did not have the same impact on spore germination and outgrowth kinetics of B. weihenstephanensis despite the fact that they both led to a 10-fold reduction of the population. Moreover, acidic sporulation pH increased the time of outgrowth 1.2-fold and lowered the proportion of spores able to germinate and outgrow 1.4-fold. Interestingly, we showed by proteomic analysis that some proteins involved in germination and outgrowth were detected at a lower abundance in spores produced at pH 5.5 than in those produced at pH 7.0, maybe at the origin of germination and outgrowth behavior of spores produced at suboptimal pH.IMPORTANCE Sporulation and incubation conditions have an impact on the numbers of spores able to recover after exposure to sublethal heat treatment. Using flow cytometry, we were able to follow at a single-cell level the changes in the physiological states of heat-stressed spores of Bacillus spp. and to discriminate between dormant spores, germinated spores, and outgrowing vegetative cells. We developed original mathematical models that describe (i) the changes with time of the proportion of cells in their different states during germination and outgrowth and (ii) the influence of temperature and pH on the kinetics of spore recovery using the growth limits of the tested strains as model parameters. We think that these models better predict spore recovery after a sublethal heat treatment, a common situation in food processing and a concern for food preservation and safety.
Collapse
Affiliation(s)
- C Trunet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - N Mtimet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - A-G Mathot
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - F Postollec
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - I Leguerinel
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - O Couvert
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - V Broussolle
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - F Carlin
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - L Coroller
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| |
Collapse
|
3
|
A quantitative microbiological exposure assessment model for Bacillus cereus in pasteurized rice cakes using computational fluid dynamics and Monte Carlo simulation. Food Res Int 2019; 125:108562. [PMID: 31554100 DOI: 10.1016/j.foodres.2019.108562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 11/21/2022]
Abstract
The objective of this study was to develop quantitative microbial exposure assessment models for Bacillus cereus in packaged rice cakes (PRC). Probability distribution for growth of B. cereus in PRC was estimated and effects of thermal processing and acidification on extending the shelf-life of PRC were quantitatively assessed. Heat penetration curves at cold point of pasteurized PRC were successfully predicted using heat transfer simulation model and nonlinear regression model (root mean squared errors (RMSE) < 1.64 °C). The final contamination level in PRC of slab-shape package (>-0.85 log CFU/g at 95% percentile) was lower than that in oval-shape package (>3.41 log CFU/g at 95% percentile). This is due to the shorter come-up time at the cold point in the slab-shape in comparison with the oval package. Acidification significantly inhibited the growth of B. cereus and decreased the thermal resistance of B. cereus, which resulted in a decrease of the median values (1.82 log CFU/g for both B2C and B2B products). Results of quantitative microbial exposure assessment for Bacillus cereus in PRC showed that a combination of acidification and low temperature pasteurization could improve the safety of PRC (<-2.43 log CFU/g at 95% percentile).
Collapse
|
4
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguérinel I, Couvert O, Carlin F, Coroller L. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light. Int J Food Microbiol 2018; 278:81-87. [DOI: 10.1016/j.ijfoodmicro.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/01/2022]
|
5
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
6
|
Kakagianni M, Aguirre JS, Lianou A, Koutsoumanis KP. Effect of storage temperature on the lag time of Geobacillus stearothermophilus individual spores. Food Microbiol 2017. [PMID: 28648296 DOI: 10.1016/j.fm.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The lag times (λ) of Geobacillus stearothermophilus single spores were studied at different storage temperatures ranging from 45 to 59 °C using the Bioscreen C method. A significant variability of λ was observed among individual spores at all temperatures tested. The storage temperature affected both the position and the spread of the λ distributions. The minimum mean value of λ (i.e. 10.87 h) was observed at 55 °C, while moving away from this temperature resulted in an increase for both the mean and standard deviation of λ. A Cardinal Model with Inflection (CMI) was fitted to the reverse mean λ, and the estimated values for the cardinal parameters Tmin, Tmax, Topt and the optimum mean λ of G. stearothermophilus were found to be 38.1, 64.2, 53.6 °C and 10.3 h, respectively. To interpret the observations, a probabilistic growth model for G. stearothermophilus individual spores, taking into account λ variability, was developed. The model describes the growth of a population, initially consisting of N0 spores, over time as the sum of cells in each of the N0 imminent subpopulations originating from a single spore. Growth simulations for different initial contamination levels showed that for low N0 the number of cells in the population at any time is highly variable. An increase in N0 to levels exceeding 100 spores results in a significant decrease of the above variability and a shorter λ of the population. Considering that the number of G. stearothermophilus surviving spores in the final product is usually very low, the data provided in this work can be used to evaluate the probability distribution of the time-to-spoilage and enable decision-making based on the "acceptable level of risk".
Collapse
Affiliation(s)
- Myrsini Kakagianni
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Juan S Aguirre
- Laboratorio de Microbiología y Probioticos, INTA, Universidad de Chile, Avenida El Líbano 5524, Macul, Santiago, Chile
| | - Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
7
|
Trunet C, Carlin F, Coroller L. Investigating germination and outgrowth of bacterial spores at several scales. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions. Food Microbiol 2016; 56:87-95. [DOI: 10.1016/j.fm.2015.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/02/2015] [Accepted: 12/25/2015] [Indexed: 11/24/2022]
|
9
|
Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T. Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annu Rev Food Sci Technol 2016; 7:457-82. [DOI: 10.1146/annurev-food-041715-033144] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marjon H.J. Wells-Bennik
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Robyn T. Eijlander
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Heidy M.W. den Besten
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Erwin M. Berendsen
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Alicja K. Warda
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Antonina O. Krawczyk
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel H. Zwietering
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
10
|
Barker GC, Malakar PK, Plowman J, Peck MW. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials. Appl Environ Microbiol 2016; 82:1675-85. [PMID: 26729721 PMCID: PMC4784027 DOI: 10.1128/aem.03630-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022] Open
Abstract
We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg(-1). Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments.
Collapse
Affiliation(s)
- Gary C Barker
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United KingdomRutgers, The State University of New Jersey
| | - Pradeep K Malakar
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United KingdomRutgers, The State University of New Jersey
| | - June Plowman
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United KingdomRutgers, The State University of New Jersey
| | - Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United KingdomRutgers, The State University of New Jersey
| |
Collapse
|
11
|
Carter AT, Austin JW, Weedmark KA, Corbett C, Peck MW. Three classes of plasmid (47-63 kb) carry the type B neurotoxin gene cluster of group II Clostridium botulinum. Genome Biol Evol 2015; 6:2076-87. [PMID: 25079343 PMCID: PMC4231633 DOI: 10.1093/gbe/evu164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pulsed-field gel electrophoresis and DNA sequence analysis of 26 strains of Group II (nonproteolytic) Clostridium botulinum type B4 showed that 23 strains carried their neurotoxin gene cluster on a 47–63 kb plasmid (three strains lacked any hybridization signal for the neurotoxin gene, presumably having lost their plasmid). Unexpectedly, no neurotoxin genes were found on the chromosome. This apparent constraint on neurotoxin gene transfer to the chromosome stands in marked contrast to Group I C. botulinum, in which neurotoxin gene clusters are routinely found in both locations. The three main classes of type B4 plasmid identified in this study shared different regions of homology, but were unrelated to any Group I or Group III plasmid. An important evolutionary aspect firmly links plasmid class to geographical origin, with one class apparently dominant in marine environments, whereas a second class is dominant in European terrestrial environments. A third class of plasmid is a hybrid between the other two other classes, providing evidence for contact between these seemingly geographically separated populations. Mobility via conjugation has been previously demonstrated for the type B4 plasmid of strain Eklund 17B, and similar genes associated with conjugation are present in all type B4 plasmids now described. A plasmid toxin–antitoxin system pemI gene located close to the neurotoxin gene cluster and conserved in each type B4 plasmid class may be important in understanding the mechanism which regulates this unique and unexpected bias toward plasmid-borne neurotoxin genes in Group II C. botulinum type B4.
Collapse
Affiliation(s)
- Andrew T Carter
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - John W Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kelly A Weedmark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Cindi Corbett
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael W Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
12
|
Warda AK, den Besten HMW, Sha N, Abee T, Nierop Groot MN. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Int J Food Microbiol 2015; 201:27-34. [PMID: 25727186 DOI: 10.1016/j.ijfoodmicro.2015.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 11/26/2022]
Abstract
Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads. However consumers prefer mildly processed products that have less impact on its quality and this trend steers industry towards milder preservation treatments. Such treatments may result in damaged instead of inactivated spores, and these spores may germinate, repair, and grow out, possibly leading to quality and safety issues. The ability to repair and grow out is influenced by the properties of the food matrix. In the current communication we studied the outgrowth from heat damaged Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed following outgrowth heterogeneity of individual spores on broccoli and rice-based media as well as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 media resulted in delayed outgrowth from untreated spores, and increased heterogeneity compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet heat for 1 min at 95 °C caused 2 log inactivation and approximately 95% of the spores in the surviving fraction were damaged resulting in substantial delay in outgrowth based on the time required to reach a maximum microcolony size of 256 cells. The delay was most pronounced for heat-treated spores on broccoli medium followed by spores on rice media (both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage repair. This study compares the effects of three main factors, namely heat treatment, pH of BHI and the effect of food matrix highlighting the impact of different (model) food recovery media on outgrowth efficiency and heterogeneity of non-heat-treated and heat-damaged B. cereus spores.
Collapse
Affiliation(s)
- Alicja K Warda
- TI Food and Nutrition, Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands; Food & Biobased Research, Wageningen UR, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Na Sha
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands.
| | - Masja N Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands; Food & Biobased Research, Wageningen UR, Wageningen, The Netherlands
| |
Collapse
|
13
|
Abstract
Since the first application of high hydrostatic pressure (HHP) for food preservation more than 100 years ago, a wealth of knowledge has been gained on molecular mechanisms underlying the HHP-mediated destruction of microorganisms. However, one observation made back then is still valid, i.e. that HHP alone is not sufficient for the complete inactivation of bacterial endospores. To achieve "commercial sterility" of low-acid foods, i.e. inactivation of spores capable of growing in a specific product under typical storage conditions, a combination of HHP with other hurdles is required (most effectively with heat (HPT)). Although HPT processes are not yet industrially applied, continuous technical progress and increasing consumer demand for minimally processed, additive-free food with long shelf life, makes HPT sterilization a promising alternative to thermal processing.In recent years, considerable progress has been made in understanding the response of spores of the model organism B. subtilis to HPT treatments and detailed insights into some basic mechanisms in Clostridium species shed new light on differences in the HPT-mediated inactivation of Bacillus and Clostridium spores. In this chapter, current knowledge on sporulation and germination processes, which presents the basis for understanding development and loss of the extreme resistance properties of spores, is summarized highlighting commonalities and differences between Bacillus and Clostridium species. In this context, the effect of HPT treatments on spores, inactivation mechanism and kinetics, the role of population heterogeneity, and influence factors on the results of inactivation studies are discussed.
Collapse
Affiliation(s)
- Christian A Lenz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
14
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguerinel I, Sohier D, Couvert O, Carlin F, Coroller L. Modeling the recovery of heat-treated Bacillus licheniformis Ad978 and Bacillus weihenstephanensis KBAB4 spores at suboptimal temperature and pH using growth limits. Appl Environ Microbiol 2015; 81:562-8. [PMID: 25381235 PMCID: PMC4277591 DOI: 10.1128/aem.02520-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory.
Collapse
Affiliation(s)
- C Trunet
- ADRIA Développement, UMT14.01 SPORE-RISK, Z.A. de Creac'h Gwen, Quimper, France Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - N Mtimet
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France Bonduelle, Villeneuve d'Ascq, France
| | - A-G Mathot
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - F Postollec
- ADRIA Développement, UMT14.01 SPORE-RISK, Z.A. de Creac'h Gwen, Quimper, France
| | - I Leguerinel
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - D Sohier
- ADRIA Développement, UMT14.01 SPORE-RISK, Z.A. de Creac'h Gwen, Quimper, France
| | - O Couvert
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - F Carlin
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France
| | - L Coroller
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| |
Collapse
|
15
|
Brunt J, Plowman J, Gaskin DJH, Itchner M, Carter AT, Peck MW. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems. PLoS Pathog 2014; 10:e1004382. [PMID: 25210747 PMCID: PMC4161481 DOI: 10.1371/journal.ppat.1004382] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023] Open
Abstract
Clostridium botulinum is a dangerous pathogen that forms the highly potent botulinum toxin, which when ingested causes a deadly neuroparalytic disease. The closely related Clostridium sporogenes is occasionally pathogenic, frequently associated with food spoilage and regarded as the non-toxigenic equivalent of Group I C. botulinum. Both species form highly resistant spores that are ubiquitous in the environment and which, under favourable growth conditions germinate to produce vegetative cells. To improve the control of botulinum neurotoxin-forming clostridia, it is imperative to comprehend the mechanisms by which spores germinate. Germination is initiated following the recognition of small molecules (germinants) by a specific germinant receptor (GR) located in the spore inner membrane. The present study precisely defines clostridial GRs, germinants and co-germinants. Group I C. botulinum ATCC3502 contains two tricistronic and one pentacistronic GR operons, while C. sporogenes ATCC15579 has three tricistronic and one tetracistronic GR operons. Insertional knockout mutants, allied with characterisation of recombinant GRs shows for the first time that amino acid stimulated germination in C. botulinum requires two tri-cistronic encoded GRs which act in synergy and cannot function individually. Spore germination in C. sporogenes requires one tri-cistronic GR. Two other GRs form part of a complex involved in controlling the rate of amino-acid stimulated germination. The suitability of using C. sporogenes as a substitute for C. botulinum in germination studies and food challenge tests is discussed. Clostridium botulinum is a dangerous pathogen that forms the deadly botulinum neurotoxin. Strains of C. botulinum are present in the environment as spores. Under suitable conditions, the dormancy of the bacterial spore is broken, and germination occurs. Germination is initiated following the recognition of small molecules by a specific germinant receptor (GR) located within spores. Currently, the identification and characterisation of these GRs remains unknown, but is critical if strategies are to be developed to either prevent spore germination altogether, or to germinate all the spores and then inactivate the emergent sensitive vegetative cells. The present study has characterised two functionally active GRs in C. botulinum which act in synergy and cannot function individually, and a related functionally active GR in C. sporogenes. These GRs respond to amino acids. Other GRs appear to form part of a complex involved in controlling the speed of germination, or are not functionally active. This study provides new insights into the mechanisms involved in germination and will allow us to develop new strategies to control this deadly pathogen.
Collapse
Affiliation(s)
- Jason Brunt
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
- * E-mail:
| | - June Plowman
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Duncan J. H. Gaskin
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Manoa Itchner
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Andrew T. Carter
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Michael W. Peck
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| |
Collapse
|
16
|
Anniballi F, Lonati D, Fiore A, Auricchio B, De Medici D, Locatelli CA. New targets in the search for preventive and therapeutic agents for botulism. Expert Rev Anti Infect Ther 2014; 12:1075-86. [PMID: 25089560 DOI: 10.1586/14787210.2014.945917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Botulism is a severe neuroparalytic disease resulting from exposure to one of the most poisonous toxins to humans. Because of this high potency and the use of toxins as biological weapons, botulism is a public health concern and each case represents an emergency. Current therapy involves respiratory supportive care and anti-toxins administration. As a preventive measure, vaccination against toxins represents an effective strategy but is undesirable due the rarity of botulism and the effectiveness of toxins in treating several neuromuscular disorders. This paper summarizes the current issues in botulism treatment and prevention, highlighting the challenge for future researches.
Collapse
Affiliation(s)
- Fabrizio Anniballi
- Department of Veterinary Public Health and Food Safety, National Reference Centre for Botulism, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Modeling of fungal and bacterial spore germination under static and dynamic conditions. Appl Environ Microbiol 2013; 79:6765-75. [PMID: 23995922 DOI: 10.1128/aem.02521-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isothermal germination curves, sigmoid and nonsigmoid, can be described by a variety of models reminiscent of growth models. Two of these, which are consistent with the percent of germinated spores being initially zero, were selected: one, Weibullian (or "stretched exponential"), for more or less symmetric curves, and the other, introduced by Dantigny's group, for asymmetric curves (P. Dantigny, S. P.-M. Nanguy, D. Judet-Correia, and M. Bensoussan, Int. J. Food Microbiol. 146:176-181, 2011). These static models were converted into differential rate models to simulate dynamic germination patterns, which passed a test for consistency. In principle, these and similar models, if validated experimentally, could be used to predict dynamic germination from isothermal data. The procedures to generate both isothermal and dynamic germination curves have been automated and posted as freeware on the Internet in the form of interactive Wolfram demonstrations. A fully stochastic model of individual and small groups of spores, developed in parallel, shows that when the germination probability is constant from the start, the germination curve is nonsigmoid. It becomes sigmoid if the probability monotonically rises from zero. If the probability rate function rises and then falls, the germination reaches an asymptotic level determined by the peak's location and height. As the number of individual spores rises, the germination curve of their assemblies becomes smoother. It also becomes more deterministic and can be described by the empirical phenomenological models.
Collapse
|
19
|
Markland SM, Farkas DF, Kniel KE, Hoover DG. Pathogenic psychrotolerant sporeformers: an emerging challenge for low-temperature storage of minimally processed foods. Foodborne Pathog Dis 2013; 10:413-9. [PMID: 23536982 DOI: 10.1089/fpd.2012.1355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sporeforming bacteria are a significant problem in the food industry as they are ubiquitous in nature and capable of resisting inactivation by heat and chemical treatments designed to inactivate them. Beyond spoilage issues, psychrotolerant sporeformers are becoming increasingly recognized as a potential hazard given the ever-expanding demand for refrigerated processed foods with extended shelf-life. In these products, the sporeforming pathogens of concern are Bacillus cereus, Bacillus weihenstephanensis, and Clostridium botulinum type E. This review article examines the foods, conditions, and organisms responsible for the food safety issue caused by the germination and outgrowth of psychrotolerant sporeforming pathogens in minimally processed refrigerated foods.
Collapse
Affiliation(s)
- Sarah M Markland
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
20
|
Pandey R, Ter Beek A, Vischer NOE, Smelt JPPM, Brul S, Manders EMM. Live cell imaging of germination and outgrowth of individual bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker. PLoS One 2013; 8:e58972. [PMID: 23536843 PMCID: PMC3607599 DOI: 10.1371/journal.pone.0058972] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/08/2013] [Indexed: 11/25/2022] Open
Abstract
Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program “SporeTracker” allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less) and fewer grew out (48.4% less) after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased) and the distribution and average of the duration of germination itself (increased). However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.
Collapse
Affiliation(s)
- Rachna Pandey
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex Ter Beek
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Norbert O. E. Vischer
- Van Leeuwenhoek Centre for Advanced Microscopy Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan P. P. M. Smelt
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik M. M. Manders
- Van Leeuwenhoek Centre for Advanced Microscopy Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
21
|
Pujol L, Albert I, Johnson NB, Membré JM. Potential application of quantitative microbiological risk assessment techniques to an aseptic-UHT process in the food industry. Int J Food Microbiol 2013; 162:283-96. [PMID: 23454820 DOI: 10.1016/j.ijfoodmicro.2013.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/08/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
Aseptic ultra-high-temperature (UHT)-type processed food products (e.g., milk or soup) are ready to eat products which are consumed extensively globally due to a combination of their comparative high quality and long shelf life, with no cold chain or other preservation requirements. Due to the inherent microbial vulnerability of aseptic-UHT product formulations, the safety and stability-related performance objectives (POs) required at the end of the manufacturing process are the most demanding found in the food industry. The key determinants to achieving sterility, and which also differentiates aseptic-UHT from in-pack sterilised products, are the challenges associated with the processes of aseptic filling and sealing. This is a complex process that has traditionally been run using deterministic or empirical process settings. Quantifying the risk of microbial contamination and recontamination along the aseptic-UHT process, using the scientifically based process quantitative microbial risk assessment (QMRA), offers the possibility to improve on the currently tolerable sterility failure rate (i.e., 1 defect per 10,000 units). In addition, benefits of applying QMRA are (i) to implement process settings in a transparent and scientific manner; (ii) to develop a uniform common structure whatever the production line, leading to a harmonisation of these process settings, and; (iii) to bring elements of a cost-benefit analysis of the management measures. The objective of this article is to explore how QMRA techniques and risk management metrics may be applied to aseptic-UHT-type processed food products. In particular, the aseptic-UHT process should benefit from a number of novel mathematical and statistical concepts that have been developed in the field of QMRA. Probabilistic techniques such as Monte Carlo simulation, Bayesian inference and sensitivity analysis, should help in assessing the compliance with safety and stability-related POs set at the end of the manufacturing process. The understanding of aseptic-UHT process contamination will be extended beyond the current "as-low-as-reasonably-achievable" targets to a risk-based framework, through which current sterility performance and future process designs can be optimised.
Collapse
Affiliation(s)
- Laure Pujol
- INRA, UMR1014 Secalim, Nantes, F-44307, France; LUNAM Université, Oniris, Nantes, F-44307, France
| | | | | | | |
Collapse
|
22
|
Smelt J, Stringer S, Brul S. Behaviour of individual spores of non proteolytic Clostridium botulinum as an element in quantitative risk assessment. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Reduction of spoilage of chilled vacuum-packed lamb by psychrotolerant clostridia. Meat Sci 2013; 93:310-5. [DOI: 10.1016/j.meatsci.2012.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 11/19/2022]
|
24
|
Impact of sorbic acid on germination and outgrowth heterogeneity of Bacillus cereus ATCC 14579 spores. Appl Environ Microbiol 2012; 78:8477-80. [PMID: 23001664 DOI: 10.1128/aem.02361-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population heterogeneity complicates the predictability of the outgrowth kinetics of individual spores. Flow cytometry sorting and monitoring of the germination and outgrowth of single dormant spores allowed the quantification of acid-induced spore population heterogeneity at pH 5.5 and in the presence of sorbic acid. This showed that germination efficiency was not a good predictor for heterogeneity in final outgrowth.
Collapse
|
25
|
Wang G, Paredes-Sabja D, Sarker M, Green C, Setlow P, Li YQ. Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens. J Appl Microbiol 2012; 113:824-36. [DOI: 10.1111/j.1365-2672.2012.05387.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Affiliation(s)
- G. Wang
- Department of Physics; East Carolina University; Greenville; NC; USA
| | | | - M.R. Sarker
- Departments of Biomedical Sciences and Microbiology; Oregon State University; Corvallis; OR; USA
| | - C. Green
- Department of Molecular, Microbial and Structural Biology; University of Connecticut Health Center; Farmington; CT; USA
| | - P. Setlow
- Department of Molecular, Microbial and Structural Biology; University of Connecticut Health Center; Farmington; CT; USA
| | - Y-q. Li
- Department of Physics; East Carolina University; Greenville; NC; USA
| |
Collapse
|
26
|
Webb MD, Stringer SC, Le Marc Y, Baranyi J, Peck MW. Does proximity to neighbours affect germination of spores of non-proteolytic Clostridium botulinum? Food Microbiol 2012; 32:104-9. [PMID: 22850380 DOI: 10.1016/j.fm.2012.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
It is recognised that inoculum size affects the rate and extent of bacterial spore germination. It has been proposed that this is due to spores interacting: molecules released from germinated spores trigger germination of dormant neighbours. This study investigated whether changes to the total number of spores in a system or proximity to other spores (local spore density) had a more significant effect on interaction between spores of non-proteolytic Clostridium botulinum strain Eklund 17B attached to defined areas of microscope slides. Both the number of spores attached to the slides and local spore density (number of spores per mm(2)) were varied by a factor of nine. Germination was observed microscopically at 15 °C for 8 h and the probability of, and time to, germination calculated from image analysis measurements. Statistical analysis revealed that the effect of total spore number on the probability of germination within 8 h was more significant than that of proximity to neighbours (local spore density); its influence on germination probability was approximately four-times greater. Total spore number had an even more significant affect on time to germination; it had a nine-fold greater influence than proximity to neighbours. The applied models provide a means to characterise, quantitatively, the effect of the total spore number on spore germination relative to the effect of proximity to neighbouring spores.
Collapse
Affiliation(s)
- Martin D Webb
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | | | |
Collapse
|
27
|
Aguirre JS, Ordóñez JA, García de Fernando GD. A comparison of the effects of E-beam irradiation and heat treatment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells. Int J Food Microbiol 2012; 153:444-52. [DOI: 10.1016/j.ijfoodmicro.2011.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/07/2011] [Accepted: 12/11/2011] [Indexed: 10/14/2022]
|
28
|
Wang G, Zhang P, Paredes-Sabja D, Green C, Setlow P, Sarker M, Li YQ. Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity. J Appl Microbiol 2011; 111:1212-23. [DOI: 10.1111/j.1365-2672.2011.05135.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr Opin Biotechnol 2011; 22:180-6. [DOI: 10.1016/j.copbio.2010.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 11/21/2022]
|
30
|
Augustin JC. Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria. Food Microbiol 2011; 28:209-13. [DOI: 10.1016/j.fm.2010.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/01/2010] [Accepted: 05/03/2010] [Indexed: 11/15/2022]
|
31
|
Jaloustre S, Cornu M, Morelli E, Noël V, Delignette-Muller M. Bayesian modeling of Clostridium perfringens growth in beef-in-sauce products. Food Microbiol 2011; 28:311-20. [DOI: 10.1016/j.fm.2010.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/29/2010] [Accepted: 04/01/2010] [Indexed: 11/29/2022]
|
32
|
Malakar P, Barker G, Peck M. Quantitative risk assessment for hazards that arise from non-proteolytic Clostridium botulinum in minimally processed chilled dairy-based foods. Food Microbiol 2011; 28:321-30. [DOI: 10.1016/j.fm.2010.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/31/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
|
33
|
Ter Beek A, Hornstra LM, Pandey R, Kallemeijn WW, Smelt JPPM, Manders EMM, Brul S. Models of the behaviour of (thermally stressed) microbial spores in foods: tools to study mechanisms of damage and repair. Food Microbiol 2010; 28:678-84. [PMID: 21511127 DOI: 10.1016/j.fm.2010.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/30/2010] [Accepted: 07/03/2010] [Indexed: 10/19/2022]
Abstract
The 'Omics' revolution has brought a wealth of new mechanistic insights in many fields of biology. It offers options to base predictions of microbial behaviour on mechanistic insight. As the cellular mechanisms involved often turn out to be highly intertwined it is crucial that model development aims at identifying the level of complexity that is relevant to work at. For the prediction of microbiologically stable foods insight in the behaviour of bacterial spore formers is crucial. Their chances of germination and likelihood of outgrowth are major food stability indicators, as well as the transition from outgrowth to first cell division and vegetative growth. Current available technology to assess these parameters in a time-resolved manner at the single spore level will be discussed. Tools to study molecular processes operative in heat induced damage will be highlighted.
Collapse
Affiliation(s)
- Alex Ter Beek
- Department of Molecular Biology and Microbial Food Safety (MBMFS), Netherlands Institute for Systems Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Brunt J, Webb MD, Peck MW. Rapid affinity immunochromatography column-based tests for sensitive detection of Clostridium botulinum neurotoxins and Escherichia coli O157. Appl Environ Microbiol 2010; 76:4143-50. [PMID: 20435757 PMCID: PMC2897428 DOI: 10.1128/aem.03059-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/23/2010] [Indexed: 11/20/2022] Open
Abstract
Existing methods for detection of food-borne pathogens and their toxins are frequently time-consuming, require specialized equipment, and involve lengthy culture procedures and/or animal testing and are thus unsuitable for a rapid response to an emergency public health situation. A series of simple and rapid affinity immunochromatography column (AICC) assays were developed to detect Clostridium botulinum neurotoxin types A, B, E, and F and Escherichia coli O157 in food matrices. Specifically, for milk, grape juice with peach juice, and bottled water, the detection limit for the botulinum neurotoxin type A complex was 0.5 ng. Use of this method with a 10-ml sample would therefore result in a detection limit of 50 pg ml(-l). Thus, this assay is approximately 2 orders of magnitude more sensitive than a comparable lateral-flow assay. For botulinum neurotoxin complex types B, E, and F, the minimum detection limit was 5 ng to 50 ng. Sensitive detection of E. coli O157 was achieved, and the detection limit was 500 cells. The AICC test was also shown to be specific, rapid, and user friendly. This test takes only 15 to 30 min to complete without any specialized equipment and thus is suitable for use in the field. It has the potential to replace existing methods for presumptive detection of botulinum neurotoxin types A, B, E, and F and E. coli O157 in contaminated matrices without a requirement for preenrichment.
Collapse
Affiliation(s)
- Jason Brunt
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom.
| | | | | |
Collapse
|
35
|
Stringer SC, Webb MD, Peck MW. Lag time variability in individual spores of Clostridium botulinum. Food Microbiol 2010; 28:228-35. [PMID: 21315978 DOI: 10.1016/j.fm.2010.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
Quantifying lag times from individual spores and the associated variability is an important part of understanding the hazard associated with spore-forming pathogens such as Clostridium botulinum. Knowledge of the underlying distribution would allow greater refinement of risk assessments. To date most studies have either examined lag time indirectly by measuring time to growth or have only examined the first stage of lag, germination. Recent studies have attempted to quantify the variability of spores during the different stages of lag phase and to examine the relationships between these stages. The effect of incubation temperature (22 °C, 15 °C, 10 °C or 8 °C), heat treatment (unheated or 80 °C for 20 s) and sodium chloride concentration in both the sporulation medium (0 or 3% w/v) or growth medium (0 or 2% w/v) on growth from individual spores has been examined. These studies found spores within a single population are very heterogeneous with large variability in all stages of lag. The duration and variability of times for germination, outgrowth and first doubling depended on both the historic treatment of the spores and the prevailing growth conditions, and the stage of lag most affected was treatment dependant.
Collapse
Affiliation(s)
- S C Stringer
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | |
Collapse
|
36
|
Peck MW, Stringer SC, Carter AT. Clostridium botulinum in the post-genomic era. Food Microbiol 2010; 28:183-91. [PMID: 21315972 DOI: 10.1016/j.fm.2010.03.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Foodborne botulism is a severe neuroparalytic disease caused by consumption of botulinum neurotoxin formed by strains of proteolytic Clostridium botulinum and non-proteolytic C. botulinum during their growth in food. The botulinum neurotoxin is the most potent substance known, with as little as 30-100 ng potentially fatal, and consumption of just a few milligrams of neurotoxin-containing food is likely to be sufficient to cause illness and potentially death. In order to minimise the foodborne botulism hazard, it is necessary to extend understanding of the biology of these bacteria. This process has been recently advanced by genome sequencing and subsequent analysis. In addition to neurotoxin formation, endospore formation is also critical to the success of proteolytic C. botulinum and non-proteolytic C. botulinum as foodborne pathogens. The endospores are highly resistant, and enable survival of adverse treatments such as heating. To better control the botulinum neurotoxin-forming clostridia, it is important to understand spore resistance mechanisms, and the physiological processes involved in germination and lag phase during recovery from this dormant state.
Collapse
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK.
| | | | | |
Collapse
|
37
|
Artin I, Mason DR, Pin C, Schelin J, Peck MW, Holst E, Rådström P, Carter AT. Effects of carbon dioxide on growth of proteolytic Clostridium botulinum, its ability to produce neurotoxin, and its transcriptome. Appl Environ Microbiol 2010; 76:1168-72. [PMID: 20038699 PMCID: PMC2820955 DOI: 10.1128/aem.02247-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/14/2009] [Indexed: 01/02/2023] Open
Abstract
The antimicrobial gas carbon dioxide is frequently used in modified atmosphere packaging. In the present study, the effects of CO2 (10 to 70%, vol/vol) on gene expression (measured using quantitative reverse transcription-PCR and a whole-genome DNA microarray) and neurotoxin formation (measured using an enzyme-linked immunosorbent assay [ELISA]) by proteolytic Clostridium botulinum type A1 strain ATCC 3502 were studied during the growth cycle. Interestingly, in marked contrast to the situation with nonproteolytic C. botulinum types B and E, CO2 had little effect on any of these parameters. At all CO2 concentrations, relative expression of neurotoxin cluster genes peaked in the transition between exponential and stationary phases, with evidence of a second rise in expression in late stationary phase. Microarray analysis enabled identification of coding sequences whose expression profiles matched those of the neurotoxin cluster. Further research is needed to determine whether these are connected to neurotoxin formation or are merely growth phase associated.
Collapse
Affiliation(s)
- Ingrid Artin
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David R. Mason
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Carmen Pin
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jenny Schelin
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Michael W. Peck
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elisabet Holst
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Peter Rådström
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Andrew T. Carter
- Institute of Food Research, Norwich, United Kingdom, Applied Microbiology, Lund Institute of Technology, Lund University, Lund, Sweden, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
| |
Collapse
|