1
|
Zhang H, Ren X, Xu H, Qi H, Du S, Huang J, Zhang J, Wang J. Phenopyrrolizins A and B, Two Novel Pyrrolizine Alkaloids from Marine-Derived Actinomycetes Micromonospora sp. HU138. Molecules 2023; 28:7672. [PMID: 38005394 PMCID: PMC10675482 DOI: 10.3390/molecules28227672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Two previously undescribed pyrrolizine alkaloids, named phenopyrrolizins A and B (1 and 2), were obtained from the fermentation broth of marine-derived Micromonospora sp. HU138. Their structures were established by extensive spectroscopic analysis, including 1D and 2D NMR spectra as well as HRESIMS data. The structure of 1 was confirmed by single-crystal diffraction analysis and its racemization mechanism was proposed. The antifungal activity assay showed that 2 could inhibit the mycelial growth of Botrytis cinerea with the inhibitory rates of 18.9% and 35.9% at 20 μg/disc and 40 μg/disc, respectively.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
- Key Laboratory of Horticultural Biotechnology of Taizhou, School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou 318020, China;
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Xiaohan Ren
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
| | - Haiju Xu
- Key Laboratory of Horticultural Biotechnology of Taizhou, School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou 318020, China;
| | - Huan Qi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
| | - Shihua Du
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Jun Huang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
- Zhejiang Makohs Biotech Co., Ltd., Taizhou 318000, China
| | - Ji Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Jidong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
| |
Collapse
|
2
|
Raja MMM, Reehana N, Ahamed AA, Begum AF. Characterization of bioactive compound isolated from Micromonospora marina KPMS1 and its activity against emerging antibiotics resistant strains of Klebsiella pneumoniae HAUTI7 and Proteus vulgaris HAUTI14. Int J Biol Macromol 2023; 250:125954. [PMID: 37532185 DOI: 10.1016/j.ijbiomac.2023.125954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Multiple antibiotic resistances have increased gradually in many classes of antibiotics among the gram negative organisms like Klebsiella pneumoniae and Proteus vulgaris which are the major causes of infection among worldwide. Nearly a hundred urine samples were collected, among them 16 urine samples were having plasmid and its resistant to various antibiotics. This present investigation has determined the resistant plasmid pattern of multi drug resistant Klebsiella pneumoniae and Proteus vulgaris from urinary tract site isolated from hospital patients. The detection and characterization of antimicrobial metabolite derived from marine sediments that produce potent activity against multidrug resistant pathogen. The 16S rRNA sequencing results and phylogeny showed that the resistant bacteria belong to the genera of Klebsiella pneumoniae HAUTI7 and Proteus vulgaris HAUTI14. The antibacterial activity and the characterization of bioactive compound like FT-IR and NMR studies were performed to analyze the structural elucidation of active compounds derived from marine source Micromonospora marina KPMS1. The 16S rRNA sequences of Micromonospora marina KPMS1was deposited in the Gen bank with the accession number MH036351. The effective bioactive compound derived from marine sediments are virtually unlimited interest that control the emerging multiple antibiotic resistant strains.
Collapse
Affiliation(s)
- M Mohamed Mahroop Raja
- PG and Research Department of Microbiology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620 020, Tamil Nadu, India.
| | - N Reehana
- PG and Research Department of Microbiology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620 020, Tamil Nadu, India
| | - A Asrar Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620 020, Tamil Nadu, India
| | - A Fasila Begum
- PG and Research Department of Microbiology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620 020, Tamil Nadu, India
| |
Collapse
|
3
|
Pham NT, Alves J, Sargison FA, Cullum R, Wildenhain J, Fenical W, Butler MS, Mead DA, Duggan BM, Fitzgerald JR, La Clair JJ, Auer M. Nanoscaled Discovery of a Shunt Rifamycin from Salinispora arenicola Using a Three-Color GFP-Tagged Staphylococcus aureus Macrophage Infection Assay. ACS Infect Dis 2023; 9:1499-1507. [PMID: 37433130 PMCID: PMC10425972 DOI: 10.1021/acsinfecdis.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 07/13/2023]
Abstract
Antimicrobial resistance has emerged as a global public health threat, and development of novel therapeutics for treating infections caused by multi-drug resistant bacteria is urgent. Staphylococcus aureus is a major human and animal pathogen, responsible for high levels of morbidity and mortality worldwide. The intracellular survival of S. aureus in macrophages contributes to immune evasion, dissemination, and resilience to antibiotic treatment. Here, we present a confocal fluorescence imaging assay for monitoring macrophage infection by green fluorescent protein (GFP)-tagged S. aureus as a front-line tool to identify antibiotic leads. The assay was employed in combination with nanoscaled chemical analyses to facilitate the discovery of a new, active rifamycin analogue. Our findings indicate a promising new approach for the identification of antimicrobial compounds with macrophage intracellular activity. The antibiotic identified here may represent a useful addition to our armory in tackling the silent pandemic of antimicrobial resistance.
Collapse
Affiliation(s)
- Nhan T. Pham
- School
of Biological Sciences, The University of
Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, U.K.
| | - Joana Alves
- The
Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, U.K.
| | - Fiona A. Sargison
- The
Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, U.K.
| | - Reiko Cullum
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204, United
States
| | - Jan Wildenhain
- Exscientia
Oxford Science Park, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K.
| | - William Fenical
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204, United
States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Mark S. Butler
- Xenobe Research Institute, P. O. Box 3052, San Diego, California 92163, United States
| | - David A. Mead
- Terra
Bioforge
Inc., 3220 Deming Way
Suite 100, Middleton, Wisconsin 53562, United States
| | - Brendan M. Duggan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - J. Ross Fitzgerald
- The
Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, U.K.
| | - James J. La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, California 92163, United States
- Department
of Chemistry and Biochemistry, University
of California at San Diego, La
Jolla, California 92093-0358, United States
| | - Manfred Auer
- School
of Biological Sciences, The University of
Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, U.K.
- Xenobe Research Institute, P. O. Box 3052, San Diego, California 92163, United States
| |
Collapse
|
4
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Han T, Zhang K, Tang G, Zhou Q. Characterizing
Post‐PKS
Modifications of
16‐Demethyl
‐rifamycin Revealed Two Dehydrogenases Diverting the Aromatization Mode of Naphthalenic Ring in Ansamycin Biosynthesis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ting‐Yan Han
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kai Zhang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sublane Xiangshan Hangzhou 310024 China
| | - Qiang Zhou
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
7
|
In Silico Analysis of PKS and NRPS Gene Clusters in Arisostatin- and Kosinostatin-Producers and Description of Micromonospora okii sp. nov. Antibiotics (Basel) 2021; 10:antibiotics10121447. [PMID: 34943659 PMCID: PMC8698034 DOI: 10.3390/antibiotics10121447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Micromonospora sp. TP-A0316 and Micromonospora sp. TP-A0468 are producers of arisostatin and kosinostatin, respectively. Micromonospora sp. TP-A0316 showed a 16S rRNA gene sequence similarity of 100% to Micromonosporaoryzae CP2R9-1T whereas Micromonospora sp. TP-A0468 showed a 99.3% similarity to Micromonospora haikouensis 232617T. A phylogenetic analysis based on gyrB sequences suggested that Micromonospora sp. TP-A0316 is closely related to Micromonospora oryzae whereas Micromonospora TP-A0468 is an independent genomospecies. As Micromonospora sp. TP-A0468 showed some phenotypic differences to its closely related species, it was classified as a novel species, for which the name Micromonospora okii sp. nov. is proposed. The type strain is TP-A0468T (= NBRC 110461T). Micromonospora sp. TP-A0316 and M. okii TP-A0468T were both found to harbor 15 gene clusters for secondary metabolites such as polyketides and nonribosomal peptides in their genomes. Arisostatin-biosynthetic gene cluster (BGC) of Micromonospora sp. TP-A0316 closely resembled tetrocarcin A-BGC of Micromonospora chalcea NRRL 11289. A large type-I polyketide synthase gene cluster was present in each genome of Micromonospora sp. TP-A0316 and M. okii TP-A0468T. It was an ortholog of quinolidomicin-BGC of M. chalcea AK-AN57 and widely distributed in the genus Micromonospora.
Collapse
|
8
|
A New Micromonospora Strain with Antibiotic Activity Isolated from the Microbiome of a Mid-Atlantic Deep-Sea Sponge. Mar Drugs 2021; 19:md19020105. [PMID: 33670308 PMCID: PMC7918784 DOI: 10.3390/md19020105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.
Collapse
|
9
|
Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol Res 2021; 246:126708. [PMID: 33529791 DOI: 10.1016/j.micres.2021.126708] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Actinobacteria are well-recognised biosynthetic factories that produce an extensive spectrum of secondary metabolites. Recent genomic insights seem to impact the exploitation of these metabolically versatile bacteria in several aspects. Notably, from the isolation of novel taxa to the discovery of new compounds, different approaches evolve at a steady pace. Here, we systematically discuss the enduring importance of Actinobacteria in the field of drug discovery, the current focus of isolation efforts targeting bioactive Actinobacteria from diverse sources, recent discoveries of novel compounds with different bioactivities, and the relative employment of different strategies in the search for novel compounds. Ultimately, we highlight notable progress that will have profound impacts on future quests for secondary metabolites of Actinobacteria.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Anjisha Maharshi
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, India.
| |
Collapse
|
10
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
11
|
Malico AA, Nichols L, Williams GJ. Synthetic biology enabling access to designer polyketides. Curr Opin Chem Biol 2020; 58:45-53. [PMID: 32758909 DOI: 10.1016/j.cbpa.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.
Collapse
Affiliation(s)
- Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Lindsay Nichols
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
12
|
Zheng XF, Liu XQ, Peng SY, Zhou Q, Xu B, Yuan H, Tang GL. Characterization of the Rifamycin-Degrading Monooxygenase From Rifamycin Producers Implicating Its Involvement in Saliniketal Biosynthesis. Front Microbiol 2020; 11:971. [PMID: 32582048 PMCID: PMC7283461 DOI: 10.3389/fmicb.2020.00971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
Rifamycin derivatives, such as rifampicin, have potent antibiotic activity and have long been used in the clinic as mainstay components for the treatment of tuberculosis, leprosy, and AIDS-associated mycobacterial infections. However, the extensive usage of these antibiotics has resulted in the rapid development of bacterial resistance. The resistance mechanisms mainly include mutations of the rifamycin target RNA polymerase of bacteria and enzymatic modifications of rifamycin antibiotics. One modification is the recently characterized rifamycin degradation catalyzed by Rox enzymes, which belong to the widely occurring flavin monooxygenases. Intriguingly, our recent sequence analysis revealed the rifamycin producers also encode Rox homologs that are not yet characterized. In this work, we expanded the study of the Rox-catalyzed rifamycin degradation. We first showed that the Rox proteins from rifamycin producers have the enzymatic rifamycin SV-degrading activity. Then we used the structurally diverse rifamycin compounds rifampicin and 16-demethylrifamycin W to probe the substrate scope and found that they each have a slightly different substrate scope. Finally, we demonstrated that Rox proteins can also catalyze the transformation of 16-demethylsalinisporamycin to 16-demethylsaliniketal A. Since 16-demethylsalinisporamycin and 16-demethylsaliniketal A are the counterpart analogs of salinisporamycin and saliniketal A, our biochemical findings not only uncover a previously uncharacterized self-resistance mechanism in the rifamycin producers, but also bridge the gap between the biosynthesis of the potential antitumor compound saliniketal A.
Collapse
Affiliation(s)
- Xiao-Fu Zheng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Xin-Qiang Liu
- CAS-Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Ya Peng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qiang Zhou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Hua Yuan
- College of Life Sciences, Shanghai Normal University, Shanghai, China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|