1
|
Carrillo-Díaz MI, Miranda-Romero LA, Chávez-Aguilar G, Zepeda-Batista JL, González-Reyes M, García-Casillas AC, Tirado-González DN, Tirado-Estrada G. Improvement of Ruminal Neutral Detergent Fiber Degradability by Obtaining and Using Exogenous Fibrolytic Enzymes from White-Rot Fungi. Animals (Basel) 2022; 12:843. [PMID: 35405833 PMCID: PMC8997131 DOI: 10.3390/ani12070843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The present review examines the factors and variables that should be considered to obtain, design, and evaluate EFEs that might enhance ruminal NDF degradability. Different combinations of words were introduced in Google Scholar, then scientific articles were examined and included if the reported factors and variables addressed the objective of this review. One-hundred-and-sixteen articles were included. The fungal strains and culture media used to grow white-rot fungi induced the production of specific isoforms of cellulases and xylanases; therefore, EFE products for ruminant feed applications should be obtained in cultures that include the high-fibrous forages used in the diets of those animals. Additionally, the temperature, pH, osmolarity conditions, and EFE synergisms and interactions with ruminal microbiota and endogenous fibrolytic enzymes should be considered. More consistent results have been observed in studies that correlate the cellulase-to-xylanase ratio with ruminant productive behavior. EFE protection (immobilization) allows researchers to obtain enzymatic products that may act under ruminal pH and temperature conditions. It is possible to generate multi-enzyme cocktails that act at different times, re-associate enzymes, and simulate natural protective structures such as cellulosomes. Some EFEs could consistently improve ruminal NDF degradability if we consider fungal cultures and ruminal environmental conditions variables, and include biotechnological tools that might be useful to design novel enzymatic products.
Collapse
Affiliation(s)
- María Isabel Carrillo-Díaz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Luis Alberto Miranda-Romero
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Edo. México, Mexico;
| | - Griselda Chávez-Aguilar
- Centro Nacional de Investigación Disciplinaria Agricultura Familiar (CENID AF), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ojuelos de Jalisco 47540, Jalisco, Mexico;
| | - José Luis Zepeda-Batista
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Mónica González-Reyes
- División de Estudios de Posgrado (DEPI), Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico;
| | - Arturo César García-Casillas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Deli Nazmín Tirado-González
- Departamento de Ingenierías, Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico
| | - Gustavo Tirado-Estrada
- División de Estudios de Posgrado (DEPI), Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico;
| |
Collapse
|
2
|
Shin SK, Ko YJ, Hyeon JE, Han SO. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. BIORESOURCE TECHNOLOGY 2019; 289:121728. [PMID: 31277889 DOI: 10.1016/j.biortech.2019.121728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Lignin is a robust material that is considered useless because it has an inhibitory effect on microbes and acts as a physical barrier for cellulose degradation. Therefore, it has been removed from cellulosic biomass to produce high-value materials. However, lignin monomers can be converted to value-added chemicals such as biodegradable plastics and food additives by appropriately engineered microbes. Lignin degradation through peroxidase, laccase and other proteins with auxiliary activity is the first step in lignin valorization. Metabolic engineering of microorganisms for increased tolerance and production yield is the second step for lignin valorization. Here, this review offers a summary of current biotechnologies using various enzymatic activities, synergistic enzyme mixtures and metabolic engineering for lignin valorization in biorefinery.
Collapse
Affiliation(s)
- Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Ben-David Y, Morais S, Stern J, Mizrahi I, Bayer EA. Cell-surface display of designer cellulosomes by Lactobacillus plantarum. Methods Enzymol 2019; 617:241-263. [PMID: 30784404 DOI: 10.1016/bs.mie.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cell-surface display of designer cellulosomes complexes has attracted increased interest in recent years. These engineered microorganisms can efficiently degrade lignocellulosic biomass that represents an abundant resource for conversion into fermentable sugars, suitable for production of biofuels. The designer cellulosome is an artificial enzymatic complex that mimics the architecture of the natural cellulosome and allows the control of the positions, type, and copy number of the cellulosomal enzymes within the complex. Lactobacillus plantarum is an attractive candidate for metabolic engineering of lignocellulosic biomass to biofuels, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize hexose sugars. In recent years, successful expression of a variety of designer cellulosomes on the cell surface of this bacterium has been demonstrated using the cell-consortium approach. This strategy minimized genomic interference on each strain upon genetic engineering, thereby maximizing the ability of each strain to grow, express, and secrete each enzyme. In addition, this strategy allows stoichiometric control of the cellulosome elements and facile exchange of the secreted proteins. A detailed procedure for display of designer cellulosomes on the cell surface of L. plantarum is described in this chapter.
Collapse
Affiliation(s)
- Yonit Ben-David
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Morais
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel; Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Abstract
Proteins are not designed to be standalone entities and must coordinate their collective action for optimum performance. Nature has developed through evolution the ability to colocalize the functional partners of a cascade enzymatic reaction in order to ensure efficient exchange of intermediates. Inspired by these natural designs, synthetic scaffolds have been created to enhance the overall biological pathway performance. In this chapter, we describe several DNA- and protein-based scaffold approaches to assemble artificial enzyme cascades for a wide range of applications. We highlight the key benefits and drawbacks of these approaches to provide insights on how to choose the appropriate scaffold for different cascade systems.
Collapse
Affiliation(s)
- Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
5
|
Kouzuma S, Fujii K. Biochemical characteristics of cellulose and a green alga degradation by Gilvimarinus japonicas 12-2 T, and its application potential for seaweed saccharification. Biosci Biotechnol Biochem 2018; 82:2198-2204. [PMID: 30198387 DOI: 10.1080/09168451.2018.1516542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cellulose is one of the major constituents of seaweeds, but reports of mechanisms in microbial seaweed degradation in marine environment are limited, in contrast to the multitude of reports for lignocellulose degradation in terrestrial environment. We studied the biochemical characteristics for marine cellulolytic bacterium Gilvimarinus japonicas 12-2T in seaweed degradation. The bacterial strain was found to degrade green and red algae, but not brown algae. It was shown that the bacterial strain employs various polysaccharide hydrolases (endocellulase, agarase, carrageenanase, xylanase, and laminarinase) to degrade seaweed polysaccharides. Electrophoretic analysis and peptide sequencing showed that the major protein bands on the electrophoresis gel were homologous to known glucanases and glycoside hydrolases. A seaweed hydrolysate harvested from the bacterial culture was found useful as a substrate for yeasts to produce ethanol. These findings will provide insights into possible seaweed decomposition mechanisms of Gilvimarinus, and its biotechnological potential for ethanol production from inedible seaweeds.
Collapse
Affiliation(s)
- Shousei Kouzuma
- a Faculty of Agriculture , Yamaguchi University , Yoshida , Japan
| | - Katsuhiko Fujii
- a Faculty of Agriculture , Yamaguchi University , Yoshida , Japan.,b Graduate School of Science and Technology for Innovation , Yamaguchi University , Yoshida , Japan
| |
Collapse
|
6
|
Xu Y, Yu Y, Tian Y, Su Y, Li X, Zhang Z, Zhu H, Han J, Zhang H, Liu L, Zhang L. Analysis of Beijing Douzhir Microbiota by High-Throughput Sequencing and Isolation of Acidogenic, Starch-Flocculating Strains. Front Microbiol 2018; 9:1142. [PMID: 29896188 PMCID: PMC5987674 DOI: 10.3389/fmicb.2018.01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Beijing Douzhir is a traditional Chinese fermented drink produced by the natural fermentation of mung beans as the raw material. Ma tofu is an edible by-product of Douzhir processing. Douzhir microbiota, particularly bacteria involved in the natural fermentation process, has not been clearly established, resulting in limited industrial Douzhir production. Here, three uncooked Douzhir samples (D group) and three uncooked Ma tofu samples (M group) (two replicates per sample) were collected from three manufacturers in different locations in Beijing. The composition and diversity of the bacterial communities in each sample were analyzed by high-throughput sequencing. In total, 637 operational taxonomic units (OTUs) were revealed in the D group through database alignment, and 656 OTUs were found in the M group. The Chao, ACE, and Shannon indices were not significantly different in Douzhir samples from different manufacturers (p > 0.05). Representatives of six phyla were found in all 12 samples. Dominant bacteria were isolated and identified using mung bean juice as the growth medium. In both Douzhir and Ma tofu samples, dominant bacteria belonging to Firmicutes and Proteobacteria comprised > 94% of the total microbiota. The dominant bacteria included members of the Lactococcus, Acetobacter, Streptococcus, and Lactobacillus genera. Considering the dominant-microbiota information, we employed a plate-separation technique and isolated two strains of acid-producing bacteria from the Douzhir and Ma tofu samples with starch-flocculating activity: Acetobacter indonesiensis and Lactococcus lactis subsp. lactis. Such strains can serve as a foundation for the standardized industrial production of Douzhir.
Collapse
Affiliation(s)
- Yunhe Xu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yang Yu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yumin Tian
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yuhong Su
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Xiaona Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhen Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Hongyan Zhu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Jie Han
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Huajiang Zhang
- School of Food Science, Northeast Agricultural University, Harbin, China
| | - Liying Liu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Stern J, Moraïs S, Ben-David Y, Salama R, Shamshoum M, Lamed R, Shoham Y, Bayer EA, Mizrahi I. Assembly of Synthetic Functional Cellulosomal Structures onto the Cell Surface of Lactobacillus plantarum, a Potent Member of the Gut Microbiome. Appl Environ Microbiol 2018; 84:e00282-18. [PMID: 29453253 PMCID: PMC5881048 DOI: 10.1128/aem.00282-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/27/2022] Open
Abstract
Heterologous display of enzymes on microbial cell surfaces is an extremely desirable approach, since it enables the engineered microbe to interact directly with the plant wall extracellular polysaccharide matrix. In recent years, attempts have been made to endow noncellulolytic microbes with genetically engineered cellulolytic capabilities for improved hydrolysis of lignocellulosic biomass and for advanced probiotics. Thus far, however, owing to the hurdles encountered in secreting and assembling large, intricate complexes on the bacterial cell wall, only free cellulases or relatively simple cellulosome assemblies have been introduced into live bacteria. Here, we employed the "adaptor scaffoldin" strategy to compensate for the low levels of protein displayed on the bacterial cell surface. That strategy mimics natural elaborated cellulosome architectures, thus exploiting the exponential features of their Lego-like combinatorics. Using this approach, we produced several bacterial consortia of Lactobacillus plantarum, a potent gut microbe which provides a very robust genetic framework for lignocellulosic degradation. We successfully engineered surface display of large, fully active self-assembling cellulosomal complexes containing an unprecedented number of catalytic subunits all produced in vivo by the cell consortia. Our results demonstrate that the enzyme stability and performance of the cellulosomal machinery, which are superior to those seen with the equivalent secreted free enzyme system, and the high cellulase-to-xylanase ratios proved beneficial for efficient degradation of wheat straw.IMPORTANCE The multiple benefits of lactic acid bacteria are well established in health and industry. Here we present an approach designed to extensively increase the cell surface display of proteins via successive assembly of interactive components. Our findings present a stepping stone toward proficient engineering of Lactobacillus plantarum, a widespread, environmentally important bacterium and potent microbiome member, for improved degradation of lignocellulosic biomass and advanced probiotics.
Collapse
Affiliation(s)
- Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonit Ben-David
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, The Technion Israel Institute of Technology, Haifa, Israel
| | - Melina Shamshoum
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, The Technion Israel Institute of Technology, Haifa, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
8
|
Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O'Malley MA. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2017; 2:17087. [PMID: 28555641 DOI: 10.1038/nmicrobiol.2017.87] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/25/2017] [Indexed: 12/16/2022]
Abstract
Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic biology2,3. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs)4. However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown5,6. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure-an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.
Collapse
Affiliation(s)
- Charles H Haitjema
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Randall de Groot
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Asaf A Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Jennifer Chiniquy
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Aaron T Wright
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille, France.,INRA, USC 1408 AFMB, Marseille, France
| | - Brigitte Boxma
- Department of Evolutionary Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Evolutionary Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Johannes H P Hackstein
- Department of Evolutionary Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille, France.,INRA, USC 1408 AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
9
|
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 2017; 15:83-95. [PMID: 27941816 DOI: 10.1038/nrmicro.2016.164] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Hasunuma T, Kondo A. Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Tomohisa Hasunuma
- Kobe University; Graduate School of Science, Technology and Innovation; 1-1 Rokkodai Nada Kobe 657-8501 Japan
| | - Akihiko Kondo
- RIKEN; Biomass Engineering Program; 1-7-22 Suehiro-cho, Tsurumi Yokohama 230-0045 Japan
| |
Collapse
|
11
|
Tozakidis IEP, Brossette T, Lenz F, Maas RM, Jose J. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and β-glucosidase. Microb Cell Fact 2016; 15:103. [PMID: 27287198 PMCID: PMC4901517 DOI: 10.1186/s12934-016-0505-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The production and employment of cellulases still represents an economic bottleneck in the conversion of lignocellulosic biomass to biofuels and other biocommodities. This process could be simplified by displaying the necessary enzymes on a microbial cell surface. Such an approach, however, requires an appropriate host organism which on the one hand can withstand the rough environment coming along with lignocellulose hydrolysis, and on the other hand does not consume the generated glucose so that it remains available for subsequent fermentation steps. RESULTS The robust soil bacterium Pseudomonas putida showed a strongly reduced uptake of glucose above a temperature of 50 °C, while remaining structurally intact hence recyclable, which makes it suitable for cellulose hydrolysis at elevated temperatures. Consequently, three complementary, thermophilic cellulases from Ruminiclostridium thermocellum were displayed on the surface of the bacterium. All three enzymes retained their activity on the cell surface. A mixture of three strains displaying each one of these enzymes was able to synergistically hydrolyze filter paper at 55 °C, producing 20 μg glucose per mL cell suspension in 24 h. CONCLUSION We could establish Pseudomonas putida as host for the surface display of cellulases, and provided proof-of-concept for a fast and simple cellulose breakdown process at elevated temperatures. This study opens up new perspectives for the application of P. putida in the production of biofuels and other biotechnological products.
Collapse
Affiliation(s)
- Iasson E P Tozakidis
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany.,NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany
| | - Tatjana Brossette
- Autodisplay Biotech GmbH, Merowingerplatz 1a, 40225, Düsseldorf, Germany
| | - Florian Lenz
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany
| | - Ruth M Maas
- Autodisplay Biotech GmbH, Merowingerplatz 1a, 40225, Düsseldorf, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany. .,NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
12
|
Jeon SD, Kim SJ, Park SH, Choi GW, Han SO. Hydrolytic effects of scaffolding proteins CbpB and CbpC on crystalline cellulose mediated by the major cellulolytic complex from Clostridium cellulovorans. BIORESOURCE TECHNOLOGY 2015; 191:505-511. [PMID: 25748018 DOI: 10.1016/j.biortech.2015.02.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
The role of the scaffolding proteins, cellulose binding protein B and C (CbpB and CbpC, respectively) were identified in cellulolytic complex (cellulosome) of Clostridium cellulovorans for efficient degradation of cellulose. Recombinant CbpB and CbpC directly anchored to the cell surface of C. cellulovorans. In addition, CbpB and CbpC showed increased hydrolytic activity on crystalline cellulose incubated with exoglucanase S (ExgS) and endoglucanase Z (EngZ) compared with the activity of free enzymes. Moreover, the results showed synergistic effects of crystalline cellulose hydrolytic activity (1.8- to 2.2-fold) when CbpB and CbpC complex with ExgS and EngZ are incubated with cellulolytic complex containing mini-CbpA. The results suggest C. cellulovorans critically uses CbpB and CbpC, which can directly anchor cells for the hydrolysis of cellulosic material with the major cellulosome complex.
Collapse
Affiliation(s)
- Sang Duck Jeon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Su Jung Kim
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Sung Hyun Park
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Gi-Wook Choi
- Changhae Advanced Institute of Technology, Changhae Ethanol Co., Ltd., Jeonju 561-203, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
13
|
French CE, Horsfall L, Barnard DK, Duedu K, Fletcher E, Joshi N, Kane SD, Lakhundi SS, Liu CK, Oltmanns J, Radford D, Salinas A, White J, Elfick A. Beyond Genetic Engineering: Technical Capabilities in the Application Fields of Biocatalysis and Biosensors. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
14
|
Kim SJ, Hyeon JE, Jeon SD, Choi GW, Han SO. Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature. Enzyme Microb Technol 2014; 66:67-73. [PMID: 25248702 DOI: 10.1016/j.enzmictec.2014.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022]
Abstract
Introducing cellulases into Corynebacterium glutamicum leads to the direct degradation of lignocellulosic materials for energy sources. In this study, a cellulase complex containing two cellulolytic enzymes, endoglucanase E (CelE) and β-glucosidase A (BglA), was established to completely degrade cellulose to glucose. The cellulases complexes were displayed on the cell surface of C. glutamicum by using the mechanosensitive channel (Msc) to anchor enzymes in the cytoplasmic membrane. As confirmed by comparison enzyme activities in the cell pellet fraction and supernatant and dual color based immunofluorescence microscopy, the cellulolytic enzymes was successfully associated with the cell surface of C. glutamicum. The displayed cellulases complexes had a synergic effect on the direct conversion of biomass to reducing sugars leading to 3.1- to 6.0-fold increase compared to the conversion by the secreted cellulases complexes. In addition, the displayed cellulases complexes increased the residual activities of cCelE and cBglA at 70°C from 28.3% and 24.3% in the secreted form to 65.1% and 82.8%, respectively. The display of cellulases complexes on the cell surface of C. glutamicum enhances the polysaccharide equivalent and the direct saccharification of low cost biomass via the action of multi-thermostable enzyme complexes.
Collapse
Affiliation(s)
- Su Jung Kim
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Sang Duck Jeon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Gi-wook Choi
- Changhae Advanced Institute of Technology, Changhae Ethanol C., Ltd., Jeonju 561-203, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
15
|
Schüürmann J, Quehl P, Festel G, Jose J. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 2014; 98:8031-46. [DOI: 10.1007/s00253-014-5897-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/24/2022]
|
16
|
Moraïs S, Shterzer N, Lamed R, Bayer EA, Mizrahi I. A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:112. [PMID: 25788977 PMCID: PMC4364503 DOI: 10.1186/1754-6834-7-112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/09/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). We recently engineered L. plantarum via separate introduction of a potent cellulase and xylanase, thereby creating two different L. plantarum strains. We used these strains as a combined cell-consortium for synergistic degradation of cellulosic biomass. RESULTS To optimize enzymatic degradation, we applied the cell-consortium approach to assess the significance of enzyme localization by comparing three enzymatic paradigms prevalent in nature: (i) a secreted enzymes system, (ii) enzymes anchored to the bacterial cell surface and (iii) enzymes integrated into cellulosome complexes. The construction of the three paradigmatic systems involved the division of the production and organization of the enzymes and scaffold proteins into different strains of L. plantarum. The spatial differentiation of the components of the enzymatic systems alleviated the load on the cell machinery of the different bacterial strains. Active designer cellulosomes containing a xylanase and a cellulase were thus assembled on L. plantarum cells by co-culturing three distinct engineered strains of the bacterium: two helper strains for enzyme secretion and one producing only the anchored scaffoldin. Alternatively, the two enzymes were anchored separately to the cell wall. The secreted enzyme consortium appeared to have a slight advantage over the designer cellulosome system in degrading the hypochlorite pretreated wheat straw substrate, and both exhibited significantly higher levels of activity compared to the anchored enzyme consortium. However, the secreted enzymes appeared to be less stable than the enzymes integrated into designer cellulosomes, suggesting an advantage of the latter over longer time periods. CONCLUSIONS By developing the potential of L. plantarum to express lignocellulolytic enzymes and to control their functional combination and stoichiometry on the cell wall, this study provides a step forward towards optimal biomass bioprocessing and soluble fermentable sugar production. Future expansion of the preferred secreted-enzyme and designer-cellulosome systems to include additional types of enzymes will promote enhanced deconstruction of cellulosic feedstocks.
Collapse
Affiliation(s)
- Sarah Moraïs
- />Department of Biological Chemistry, The Weizmann Institute of Science, 234 Herzl St, Rehovot, 7610001 Israel
| | - Naama Shterzer
- />Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, P.O.B. 6, Bet-Dagan, 50250 Israel
| | - Raphael Lamed
- />Department of Molecular Microbiology and Biotechnology, Tel Aviv University, P.O. Box 39040, Ramat Aviv, 69978 Israel
| | - Edward A Bayer
- />Department of Biological Chemistry, The Weizmann Institute of Science, 234 Herzl St, Rehovot, 7610001 Israel
| | - Itzhak Mizrahi
- />Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, P.O.B. 6, Bet-Dagan, 50250 Israel
| |
Collapse
|
17
|
Examine the characterization of biofilm formation and inhibition by targeting SrtA mechanism in Bacillus subtilis: a combined experimental and theoretical study. J Mol Model 2014; 20:2364. [DOI: 10.1007/s00894-014-2364-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 06/22/2014] [Indexed: 01/31/2023]
|
18
|
Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 2014; 111:1471-82. [PMID: 24788404 DOI: 10.1002/bit.25264] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022]
Abstract
Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications.
Collapse
Affiliation(s)
- Charles H Haitjema
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106
| | | | | | | | | |
Collapse
|
19
|
Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:135. [PMID: 25356086 PMCID: PMC4212100 DOI: 10.1186/s13068-014-0135-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 05/03/2023]
Abstract
Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.
Collapse
Affiliation(s)
- Camilla Lambertz
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Megan Garvey
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: School of Medicine, Deakin University, CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Newcomb, VIC 3219 Australia
| | - Johannes Klinger
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Dirk Heesel
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
20
|
Huang GL, Anderson TD, Clubb RT. Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered 2013; 5:96-106. [PMID: 24430239 PMCID: PMC4049913 DOI: 10.4161/bioe.27461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose.
Collapse
Affiliation(s)
- Grace L Huang
- Department of Chemistry and Biochemistry; University of California-Los Angeles; Los Angeles, CA USA; UCLA-DOE Institute of Genomics and Proteomics; University of California-Los Angeles; Los Angeles, CA USA
| | - Timothy D Anderson
- Department of Chemistry and Biochemistry; University of California-Los Angeles; Los Angeles, CA USA; UCLA-DOE Institute of Genomics and Proteomics; University of California-Los Angeles; Los Angeles, CA USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry; University of California-Los Angeles; Los Angeles, CA USA; UCLA-DOE Institute of Genomics and Proteomics; University of California-Los Angeles; Los Angeles, CA USA; Molecular Biology Institute; University of California-Los Angeles; Los Angeles, CA USA
| |
Collapse
|
21
|
Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 2013; 31:581-93. [DOI: 10.1016/j.tibtech.2013.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
22
|
Unique contribution of the cell wall-binding endoglucanase G to the cellulolytic complex in Clostridium cellulovorans. Appl Environ Microbiol 2013; 79:5942-8. [PMID: 23872560 DOI: 10.1128/aem.01400-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellulosomes produced by Clostridium cellulovorans are organized by the specific interactions between the cohesins in the scaffolding proteins and the dockerins of the catalytic components. Using a cohesin biomarker, we identified a cellulosomal enzyme which belongs to the glycosyl hydrolase family 5 and has a domain of unknown function 291 (DUF291) with functions similar to those of the surface layer homology domain in C. cellulovorans. The purified endoglucanase G (EngG) had the highest synergistic degree with exoglucanase (ExgS) in the hydrolysis of crystalline cellulose (EngG/ExgS ratio = 3:1; 1.71-fold). To measure the binding affinity of the dockerins in EngG for the cohesins of the main scaffolding protein, a competitive enzyme-linked interaction assay was performed. Competitors, such as ExgS, reduced the percentage of EngG that were bound to the cohesins to less than 20%; the results demonstrated that the cohesins prefer to bind to the common cellulosomal enzymes rather than to EngG. Additionally, in surface plasmon resonance analysis, the dockerin in EngG had a relatively weak affinity (30- to 123-fold) for cohesins compared with the other cellulosomal enzymes. In the cell wall affinity assay, EngG anchored to the cell surfaces of C. cellulovorans using its DUF291 domain. Immunofluorescence microscopy confirmed the cell surface display of the EngG complex. These results indicated that in C. cellulovorans, EngG assemble into both the cellulolytic complex and the cell wall complex to aid in the hydrolysis of cellulose substrates.
Collapse
|
23
|
Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 2013; 17:462-71. [PMID: 23623045 DOI: 10.1016/j.cbpa.2013.03.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/23/2013] [Accepted: 03/28/2013] [Indexed: 12/15/2022]
Abstract
Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids, and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production.
Collapse
|
24
|
Currie DH, Herring CD, Guss AM, Olson DG, Hogsett DA, Lynd LR. Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:32. [PMID: 23448319 PMCID: PMC3598777 DOI: 10.1186/1754-6834-6-32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/08/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cellulose is highly recalcitrant and thus requires a specialized suite of enzymes to solubilize it into fermentable sugars. In C. thermocellum, these extracellular enzymes are present as a highly active multi-component system known as the cellulosome. This study explores the expression of a critical C. thermocellum cellulosomal component in T. saccharolyticum as a step toward creating a thermophilic bacterium capable of consolidated bioprocessing by employing heterologously expressed cellulosomes. RESULTS We developed an inducible promoter system based on the native T. saccharolyticum xynA promoter, which was shown to be induced by xylan and xylose. The promoter was used to express the cellulosomal component cipA*, an engineered form of the wild-type cipA from C. thermocellum. Expression and localization to the supernatant were both verified for CipA*. When a ΔcipA mutant C. thermocellum strain was cultured with a CipA*-expressing T. saccharolyticum strain, hydrolysis and fermentation of 10 grams per liter SigmaCell 101, a highly crystalline cellulose, were observed. This trans-species complementation of a cipA deletion demonstrated the ability for CipA* to assemble a functional cellulosome. CONCLUSION This study is the first example of an engineered thermophile heterologously expressing a structural component of a cellulosome. To achieve this goal we developed and tested an inducible promoter for controlled expression in T. saccharolyticum as well as a synthetic cipA. In addition, we demonstrate a high degree of hydrolysis (up to 93%) on microcrystalline cellulose.
Collapse
Affiliation(s)
- Devin H Currie
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Mascoma Corporation, Lebanon, NH 03766, USA
| | | | - Adam M Guss
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Mascoma Corporation, Lebanon, NH 03766, USA
| |
Collapse
|
25
|
Tsai SL, DaSilva NA, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2013; 2:14-21. [PMID: 23656322 DOI: 10.1021/sb300047u] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new adaptive strategy was developed for the ex vivo assembly of a functional tetravalent designer cellulosome on the yeast cell surface. The design is based on the use of (1) a surface-bound anchoring scaffoldin composed of two divergent cohesin domains, (2) two dockerin-tagged adaptor scaffoldins to amplify the number of enzyme loading sites based on the specific dockerin-cohesin interaction with the anchoring scaffoldin, and (3) two dockerin-tagged enzymatic subunits (the endoglucanse Gt and the β-glucosidase Bglf) for cellulose hydrolysis. Cells displaying the tetravalent cellulosome on the surface exhibited a 4.2-fold enhancement in the hydrolysis of phosphoric acid swollen cellulose (PASC) compared with free enzymes. More importantly, cells displaying the tetravalent celluosome also exhibited an ~2-fold increase in ethanol production compared with cells displaying a divalent cellulosome using a similar enzyme loading. These results clearly indicate the more crucial role of enzyme proximity than just simply increasing the enzyme loading on the overall cellulosomal synergy. To the best of our knowledge, this is the first report that exploits the natural adaptive assembly strategy in creating artificial cellulosome structures. The unique feature of the anchoring and the adaptor scaffoldin strategy to amplify the number of enzymatic subunits can be easily extended to more complex cellulosomal structures to achieve an even higher level of enzyme synergy.
Collapse
Affiliation(s)
- Shen-Long Tsai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
26
|
Abstract
Lignocellulosic biomass is a promising feedstock to produce biofuels and other valuable biocommodities. A major obstacle to its commercialization is the high cost of degrading biomass into fermentable sugars, which is typically achieved using cellulolytic enzymes from Trichoderma reesei. Here, we explore the use of microbes to break down biomass. Bacillus subtilis was engineered to display a multicellulase-containing minicellulosome. The complex contains a miniscaffoldin protein that is covalently attached to the cell wall and three noncovalently associated cellulase enzymes derived from Clostridium cellulolyticum (Cel48F, Cel9E, and Cel5A). The minicellulosome spontaneously assembles, thus increasing the practicality of the cells. The recombinant bacteria are highly cellulolytic and grew in minimal medium containing industrially relevant forms of biomass as the primary nutrient source (corn stover, hatched straw, and switch grass). Notably, growth did not require dilute acid pretreatment of the biomass and the cells achieved densities approaching those of cells cultured with glucose. An analysis of the sugars released from acid-pretreated corn stover indicates that the cells have stable cellulolytic activity that enables them to break down 62.3% ± 2.6% of the biomass. When supplemented with beta-glucosidase, the cells liberated 21% and 33% of the total available glucose and xylose in the biomass, respectively. As the cells display only three types of enzymes, increasing the number of displayed enzymes should lead to even more potent cellulolytic microbes. This work has important implications for the efficient conversion of lignocellulose to value-added biocommodities.
Collapse
|
27
|
Mazzoli R. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers' tricks. Comput Struct Biotechnol J 2012; 3:e201210007. [PMID: 24688667 PMCID: PMC3962139 DOI: 10.5936/csbj.201210007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 01/04/2023] Open
Abstract
Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks) by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass. Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP). Two paradigms have been applied for such, so far unsuccessful, attempts: a) "native cellulolytic strategies", aimed at conferring high-value product properties to natural cellulolytic microorganisms; b) "recombinant cellulolytic strategies", aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers. By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen) biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes) benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose) with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
28
|
Abstract
Metabolism is a highly interconnected web of chemical reactions that power life. Though the stoichiometry of metabolism is well understood, the multidimensional aspects of metabolic regulation in time and space remain difficult to define, model and engineer. Complex metabolic conversions can be performed by multiple species working cooperatively and exchanging metabolites via structured networks of organisms and resources. Within cells, metabolism is spatially regulated via sequestration in subcellular compartments and through the assembly of multienzyme complexes. Metabolic engineering and synthetic biology have had success in engineering metabolism in the first and second dimensions, designing linear metabolic pathways and channeling metabolic flux. More recently, engineering of the third dimension has improved output of engineered pathways through isolation and organization of multicell and multienzyme complexes. This review highlights natural and synthetic examples of three-dimensional metabolism both inter- and intracellularly, offering tools and perspectives for biological design.
Collapse
|
29
|
Biomass Converting Enzymes as Industrial Biocatalysts for Fuels and Chemicals: Recent Developments. Catalysts 2012. [DOI: 10.3390/catal2020244] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
30
|
Mazzoli R, Lamberti C, Pessione E. Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 2012; 30:111-9. [DOI: 10.1016/j.tibtech.2011.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 01/19/2023]
|
31
|
Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 2011; 78:1437-44. [PMID: 22210210 DOI: 10.1128/aem.07138-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were investigated on low-accessibility recalcitrant Avicel and high-accessibility regenerated amorphous cellulose (RAC). The cell-bound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respectively. The cellulosome-microbe synergy was not completely explained by the removal of hydrolysis products from the bulk fermentation broth by free-living cells and appeared to be due to substrate channeling of long-chain hydrolysis products assimilated by the adjacent cells located in the boundary layer. Our results implied that long-chain hydrolysis products in the boundary layer may inhibit cellulosome activity to a greater extent than the short-chain products in bulk phase. The findings that cell-bound cellulosome expedited the microbial cellulose utilization rate by 2.3- to 4.5-fold would help in the development of better consolidated bioprocessing microorganisms (e.g., B. subtilis) that can hydrolyze recalcitrant cellulose rapidly at low secretory cellulase levels.
Collapse
|