1
|
Feng R, Dai Q, Ma M, Zhao S, Wang Z, Wang H, Zhang Y, Huo L, Yan F. Discovery of Ureido-Containing Alteropeptilides and Intramolecular Cyclized Alteramides in Pseudoalteromonas flavipulchra S16 by Promoter Engineering of Cryptic Biosynthetic Gene Clusters. JOURNAL OF NATURAL PRODUCTS 2024; 87:2801-2809. [PMID: 39625252 DOI: 10.1021/acs.jnatprod.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Pseudoalteromonas are abundant in the oceans and possess great potential in the synthesis of bioactive natural products. Although many secondary metabolite biosynthetic gene clusters have been identified from Pseudoalteromonas genomes, most of their products have not been characterized. In this study, endogenous constitutive promoters with high transcriptional activity were obtained from Pseudoalteromonas flavipulchra S16 through RNA-seq and a fluorescence assay of luciferase gene expression. Through in situ promoter replacement two silent biosynthetic gene clusters (BGCs) were successfully activated, leading to production of intramolecular cyclized alteramides and two novel ureido-containing linear peptides, alteropeptilides. This study provides a feasible approach for the activation of silent BGCs and the mining of novel compounds from marine bacteria.
Collapse
Affiliation(s)
- Ruiying Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Quan Dai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Meina Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Shuang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Zongjie Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Fu Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
2
|
Wang J, Li P, Di X, Lu H, Wei H, Zhi S, Fewer DP, He S, Liu L. Phylogenomic analysis uncovers an unexpected capacity for the biosynthesis of secondary metabolites in Pseudoalteromonas. Eur J Med Chem 2024; 279:116840. [PMID: 39244863 DOI: 10.1016/j.ejmech.2024.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Pseudoalteromonas is a genus of marine bacteria and a promising source of natural products with antibacterial, antifungal, and antifouling bioactivities. To accelerate the exploration of new compounds from this genus, we applied the gene-first approach to study 632 public Pseudoalteromonas genomes. We identified 3968 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites and classified them into 995 gene cluster families (GCFs). Surprisingly, only 9 GCFs (0.9 %) included an experimentally identified reference biosynthetic gene cluster from the Minimum Information about a Biosynthetic Gene cluster database (MIBiG), suggesting a striking novelty of secondary metabolites in Pseudoalteromonas. Bioinformatic analysis of the biosynthetic diversity encoded in the identified BGCs uncovered six dominant species of this genus, P. citrea, P. flavipulchra, P. luteoviolacea, P. maricaloris, P. piscicida, and P. rubra, that encoded more than 17 BGCs on average. Moreover, each species exhibited a species-specific distribution of BGC. However, a deep analysis revealed two BGCs conserved across five of the six dominant species. These BGCS encoded an unknown lanthipeptide and the siderophore myxochelin B implying an essential role of antibiotics for Pseudoalteromonas. We chemically profiled 11 strains from the 6 dominant species and identified four new antibiotics, korormicins L-O (1-4), from P. citrea WJX-3. Our results highlight the unexplored biosynthetic potential for bioactive compounds in Pseudoalteromonas and provide an important guideline for targeting exploration.
Collapse
Affiliation(s)
- Jingxuan Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Peng Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue Di
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongmei Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huamao Wei
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Pienaari 9, FI-00014 Helsinki, Finland
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang 315800, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
3
|
Wang Y, Xie J, Feng Z, Ma L, Wu W, Guo C, He J. Genomic insights into the cold adaptation and secondary metabolite potential of Pseudoalteromonas sp. WY3 from Antarctic krill. Front Microbiol 2024; 15:1459716. [PMID: 39564484 PMCID: PMC11573776 DOI: 10.3389/fmicb.2024.1459716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
In the Antarctic marine ecosystem, krill play a pivotal role, yet the intricate microbial community intertwined with these diminutive crustaceans remains largely unmapped. In this study, we successfully isolated and characterized a unique bacterial strain, Pseudoalteromonas sp. WY3, from Antarctic krill. Genomic analysis revealed that WY3 harbors a multitude of genes associated with cold shock proteins, oxidoreductases, and enzymes involved in the osmotic stress response, equipping it with a robust molecular arsenal to withstand frigid Antarctic conditions. Furthermore, the presence of two distinct biosynthesis-related gene clusters suggests that WY3 has the potential to synthesize diverse secondary metabolites, including aryl polyenes and ribosomally synthesized and post-translationally modified peptides. Notably, the identification of genes encoding enzymes crucial for biological immunity pathways, such as apeH and ubiC, hints at a complex symbiotic relationship between WY3 and its krill host. This comprehensive study highlights the robust potential of WY3 for secondary metabolite production and its remarkable ability to thrive at extremely low temperatures in the Antarctic ecosystem, shedding light on the interplay between culturable microorganisms and their hosts in harsh environments, and providing insights into the underexplored microbial communities associated with Antarctic marine organisms and their role in environmental adaptation and biotechnological applications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinxuan Xie
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Feng
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linbo Ma
- Key Laboratory of the East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Shanghai, China
| | - Wenbo Wu
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Ouyang J, Zhang C, Deng C, Wen A, Zhou H, You J, Li G. Dietary vitamin B6 supplementation alleviates heat stress-induced intestinal barrier impairment by regulating the gut microbiota and metabolites in broilers. Poult Sci 2024; 103:104202. [PMID: 39222554 PMCID: PMC11402297 DOI: 10.1016/j.psj.2024.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Heat stress (HS) brings great challenges to the poultry industry. Vitamin B6 (VB6) is an essential micro-nutrient for animals to maintain normal physiological functions and possesses antioxidant and anti-inflammatory properties. This study aimed to explore the effect of VB6 on alleviating HS-induced intestinal barrier impairment in broilers. A total of 250 broilers (609.76 ± 0.34 g) were randomly allocated to 5 groups with 5 replicate cages of 10 birds each. The broilers in thermoneutral (TN) group were raised in thermoneutral conditions (23 ± 1°C) and fed with a basal diet. The birds in other four groups were housed under cycle high temperature (34 ± 1°C for 8 h/d) from d 21 to 35 and fed with the basal diet (HS group) or basal diet supplemented with 6, 12, or 24 mg/kg VB6 (HB-6, HB-12, HB-24 groups). The results showed that HS reduced the growth performance, increased ileum inflammatory cytokines levels, and impaired the gut barrier function (P < 0.05). Compared to the HS group, final body weight, average daily gain, and average daily feed intake, and the feed conversion ratio were improved by VB6 supplementation. The diamine oxidase, interleukin (IL)-1β, tumor necrosis factor-α, IL-18, IL-10, and interferon-γ levels were reduced by VB6 supplementation (P < 0.05). Moreover, VB6 supplementation linearly or quadratically enhanced villus height and villus height-to-crypt depth ratio of duodenum and jejunum, and decreased crypt depth of duodenum and ileum. The mRNA expression of Occlaudin, ZO1, Mucin2, Mucin4, E-cadhein, and β-catenin were increased by VB6 treatment (P < 0.05). Furthermore, dietary VB6 altered the diversity and community of gut microbiota (P < 0.05). A total of 83 differential metabolites associated with the amelioration of VB6 were identified, which were primarily enriched in glycerophospholipid metabolism, caffeine metabolism, and glutathione metabolism pathway. Collectively, VB6 may improve the growth performance and intestinal barrier function of heat-stressed broilers by regulating the ileal microbiota and metabolic homeostasis.
Collapse
Affiliation(s)
- Jingxin Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chao Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chenxi Deng
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Ai Wen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China.
| |
Collapse
|
5
|
Kudo R, Yamano R, Yu J, Hatakeyama S, Jiang C, Mino S, Yamaki S, Ando Y, Sakai Y, Sawabe T. The Description of Pseudoalteromonas apostichopi sp. nov., Vibrio apostichopi sp. nov., and Marinobacter apostichopi sp. nov. from the Fertilized Eggs and Larvae of Apostichopus japonicus. Curr Microbiol 2024; 81:246. [PMID: 38940874 DOI: 10.1007/s00284-024-03751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Three novel bacterial strains, FE4T, FE10T, and LA51T, which are phylogenetically affiliated to the genera Pseudoalteromonas, Vibrio, or Marinobacter, respectively, isolated from fertilized eggs and juveniles of sea cucumber Apostichopus japonicus were characterized by a genome-based taxonomical approach including multilocus sequence analysis (MLSA) combined with classical phenotypic and chemotaxonomic characterizations. A molecular network reconstructed on the basis of nucleotide sequences of four phylogenetic maker protein genes revealed that the strains FE4T, FE10T, and LA51T were closely related to Pseudoalteromonas shioyasakiensis, Vibrio lentus, and Marinobacter similis, respectively. Average nucleotide identity (ANI) comparisons against phylogenetically related species to FE4T, FE10T, and LA51T demonstrated that each newly described strain could not be identified as any previously described species within each genus showing < 95% ANI: 91.3% of FE4T against P. shioyasakiensis JCM 18891 T, 92.6% of FE10T against "V. bathopelagicus" Sal10, and 92.6% of LA51T against M. similis A3d10T, in maximum, respectively. Here, we show molecular phylogenetic, genomic, phenotypic, and chemotaxonomic features of the newly described species FE4T, FE10T, and LA51T. We also propose Pseudoalteromonas apostichopi sp. nov. with FE4T (JCM 36173 T = LMG 33143 T) as the type strain, Vibrio apostichopi sp. nov. with FE10T (JCM 36174 T = LMG 33144 T) as the type strain, and Marinobacter apostichopi sp. nov. with LA51T (JCM 36175 T = LMG 33145 T) as the type strain.
Collapse
Affiliation(s)
- Rika Kudo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shuya Hatakeyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Chunqi Jiang
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
6
|
Ren Y, Liu R, Zheng Y, Wang H, Meng Q, Zhu T, Yin J, Cao X, Yu Z. Biosynthetic mechanism of the yellow pigments in the marine bacterium Pseudoalteromonas sp. strain T1lg65. Appl Environ Microbiol 2024; 90:e0177923. [PMID: 38193673 PMCID: PMC10880671 DOI: 10.1128/aem.01779-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.
Collapse
Affiliation(s)
- Yixuan Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruoyu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xueqiang Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Irudayarajan L, Ravindran C, Raveendran HP. Antimicrobial activity of coral-associated beneficial bacteria against coral disease-causing microbial pathogens. J Basic Microbiol 2024; 64:81-93. [PMID: 37726211 DOI: 10.1002/jobm.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Microbial infection of immune-compromised corals influences disease severity, resulting in coral mortality. However, coral-associated beneficial bacteria are known to produce antimicrobial compounds that prevent the growth of potential pathogens and invading microbes. Hence, beneficial bacteria associated with coral Porites lutea were isolated and antimicrobial protein and bioactive secondary metabolites were extracted and tested for their antimicrobial activity against putative prokaryotic and eukaryotic coral pathogens. Bioactive secondary metabolites exhibited remarkable antagonism against various coral pathogens such as Serratia marcescens, Vibrio species, and Aspergillus sydowii. Besides, the metabolites of Cobetia marina, Cobetia amphilecti, Pseudoalteromonas neustonica, and Virgibacillus halodenitrificans manifested notable inhibition against the protozoan ciliates (Uronema marinum, Holosticha diademata, Cohnilembus verminus, and Euplotes vannus) and zooplankton that are known to be involved in the secondary pathogenesis in coral diseased lesion progression. Thus, the present study may benefit in understanding coral-associated beneficial bacteria for their antagonistic interactions with microbial pathogens, as well as their potential involvement in reducing coral disease severity.
Collapse
Affiliation(s)
- Lawrance Irudayarajan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chinnarajan Ravindran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Haritha P Raveendran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, India
| |
Collapse
|
8
|
Cumsille A, Serna-Cardona N, González V, Claverías F, Undabarrena A, Molina V, Salvà-Serra F, Moore ERB, Cámara B. Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution. BMC Genomics 2023; 24:622. [PMID: 37858045 PMCID: PMC10588199 DOI: 10.1186/s12864-023-09694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
Collapse
Affiliation(s)
- Andrés Cumsille
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Néstor Serna-Cardona
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina González
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda Claverías
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Vania Molina
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Cámara
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
9
|
Alker AT, Farrell MV, Aspiras AE, Dunbar TL, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. mBio 2023; 14:e0150223. [PMID: 37530556 PMCID: PMC10470607 DOI: 10.1128/mbio.01502-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Morgan V. Farrell
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Alpher E. Aspiras
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andriy Fedoriouk
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jeffrey E. Jones
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Sama R. Mikhail
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
10
|
Liu Y, Feng M, Johansen A, Cheng D, Xue J, Feng Y, Fan S, Li Z. Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161785. [PMID: 36736399 DOI: 10.1016/j.scitotenv.2023.161785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW.
Collapse
Affiliation(s)
- Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Anders Johansen
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde 4000, Denmark
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Scion, Private Bag 29237, Christchurch 8440, New Zealand
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuanghu Fan
- College of Life Science, Langfang Normal University, Langfang 065000, China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Computational Insight into Intraspecies Distinctions in Pseudoalteromonas distincta: Carotenoid-like Synthesis Traits and Genomic Heterogeneity. Int J Mol Sci 2023; 24:ijms24044158. [PMID: 36835570 PMCID: PMC9966250 DOI: 10.3390/ijms24044158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.
Collapse
|
12
|
Feng XL, Zhang RQ, Wang DC, Dong WG, Wang ZX, Zhai YJ, Han WB, Yin X, Tian J, Wei J, Gao JM, Qi J. Genomic and Metabolite Profiling Reveal a Novel Streptomyces Strain, QHH-9511, from the Qinghai-Tibet Plateau. Microbiol Spectr 2023; 11:e0276422. [PMID: 36622153 PMCID: PMC9927492 DOI: 10.1128/spectrum.02764-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The prevalence of superbugs, represented by methicillin-resistant Staphylococcus aureus (MRSA), has become a serious clinical and public safety concern with rising incidence in hospitals. Polyketides with diverse chemical structures harbor many antimicrobial activities, including those of rifampin and rapamycin against MRSA. Streptomyces sp. QHH-9511 was isolated from a niche habitat in the Qinghai-Tibet Plateau and used to produce antibacterial metabolites. Herein, an integrated approach combining genome mining and metabolic analysis were employed to decipher the chemical origin of the antibacterial components with pigmented properties in strain QHH-9511, a novel Streptomyces species from a lichen symbiont on the Qinghai-Tibet Plateau. Genomic phylogeny assembled at the chromosome level revealed its unique evolutionary state. Further genome mining uncovered 36 candidate gene clusters, most of which were uncharacterized. Meanwhile, based on liquid chromatography coupled to diode array detection mass spectrometry, a series of granaticins, BSMs, chromones, phaeochromycins, and related molecules were discovered by using the Global Natural Product Social molecular networking platform. Subsequently, several pigment compounds were isolated and identified by high-resolution mass spectrometry and/or nuclear magnetic resonance, among which the structure-activity relationships of seven aromatic polyketides showed that the fused lactone ring of the C-2 carboxyl group could increase antibacterial activity. Genetic experiments indicated that all seven aromatic polyketides are a series of metabolic shunts produced by a single type II polyketide synthase (PKS) cluster. Comparative genomic analysis of granaticin producers showed that the granaticin gene cluster is widely distributed. This study provides an efficient method to combine genome mining and metabolic profiling techniques to uncover bioactive metabolites derived from specific habitats, while deepening our understanding of aromatic polyketide biosynthesis. IMPORTANCE Undescribed microorganisms from special habitats are being screened for anti-superbug drug molecules. In a project to screen actinomycetes for anti-MRSA activity, we isolated a Streptomyces strain from Qinghai Lake lichens. The phylogeny based on the genome assembled at the chromosome level revealed this strain's unique evolutionary state. The chemical origins of the antibacterial components with pigment properties in strain QHH-9511 were determined using an integrated approach combining genome mining and metabolic analysis. Further genome mining uncovered 36 secondary metabolite gene clusters, the majority of which were previously unknown. A series of aromatic compounds were discovered using molecular network analysis, separation, and extraction. Genetic experiments revealed that all seven aromatic polyketides are a series of metabolic shunts produced by a single cluster of type II PKSs. This study describes a method for identifying novel Streptomyces from specific habitats by combining genome mining with metabolic profiling techniques.
Collapse
Affiliation(s)
- Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui-Qi Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Da-Cheng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei-Ge Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Junmian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Hanzhong, Shaanxi, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Almeida JF, Marques M, Oliveira V, Egas C, Mil-Homens D, Viana R, Cleary DFR, Huang YM, Fialho AM, Teixeira MC, Gomes NCM, Costa R, Keller-Costa T. Marine Sponge and Octocoral-Associated Bacteria Show Versatile Secondary Metabolite Biosynthesis Potential and Antimicrobial Activities against Human Pathogens. Mar Drugs 2022; 21:md21010034. [PMID: 36662207 PMCID: PMC9860996 DOI: 10.3390/md21010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.
Collapse
Affiliation(s)
- João F. Almeida
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Matilde Marques
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vanessa Oliveira
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology (CNC), Rua Larga—Faculdade de Medicina, University of Coimbra, 3004-504 Coimbra, Portugal
- Biocant—Transfer Technology Association, BiocantPark, 3060-197 Cantanhede, Portugal
| | - Dalila Mil-Homens
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Romeu Viana
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Daniel F. R. Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong City 880-011, Taiwan
| | - Arsénio M. Fialho
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel C. Teixeira
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Newton C. M. Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| | - Tina Keller-Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| |
Collapse
|
14
|
Alviz-Gazitua P, González A, Lee MR, Aranda CP. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:431-447. [PMID: 35486299 DOI: 10.1007/s10126-022-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.
Collapse
Affiliation(s)
- P Alviz-Gazitua
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - A González
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - M R Lee
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, P. Box 5480000, Puerto Montt, Chile
| | - C P Aranda
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile.
| |
Collapse
|
15
|
Draft Genome Sequences of 10 Bacteria from the Marine Pseudoalteromonas Group. Microbiol Resour Announc 2021; 10:e0040421. [PMID: 34382833 PMCID: PMC8359785 DOI: 10.1128/mra.00404-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequences of 10 marine Pseudoalteromonas bacteria that were isolated, assembled, and annotated by undergraduate students participating in a marine microbial genomics course. Genomic comparisons suggest that 7 of the 10 strains are novel isolates, providing a resource for future marine microbiology investigations.
Collapse
|