1
|
Azua-Bustos A, González-Silva C, Freedman K, Carrizo D, Sánchez-García L, Fernández-Martínez MÁ, Balsera-Manzanero M, Muñoz-Iglesias V, Fernández-Sampedro M, Dang TQ, Vargas-Carrera C, Wierzchos J. Sea spray allows for the growth of subaerial microbialites at the driest desert on Earth. Sci Rep 2024; 14:19915. [PMID: 39198637 PMCID: PMC11358262 DOI: 10.1038/s41598-024-70447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Due to its extreme conditions, microbial life in the Atacama Desert is known to survive in well-protected micro-habitats (hypolithic, endolithic, etc.), but rarely directly exposed to the environment, that is, epilithic habitats. Here we report a unique site, La Portada, a cliff confronting the Pacific Ocean in the Coastal Range of this desert, in which the constant input of water provided by the sea spray allows for the growth of a black-colored epilithic subaerial microbial ecosystem. Formed by a complex community of halophilic microorganisms belonging to the three domains of life, this ecosystem displays the typical three-dimensional structure of benthic microbialites, coherent with the presence of a diversity of cyanobacteria (including species from the genera that are known to form them), a constant high water activity and an ample availability of carbonate ions. From these microbialites we isolated Hortae werneckii, a fungal species which by producing melanin, not only explains the dark color of these microbialites, but may also play the role of protecting the whole community from extreme UV radiation. A number of biosignatures not only confirmed sea spray as the main source of water, but also suggests that one place to consider for the search of evidences of life on Mars would be on the paleo-coastlines that surrounded vanished oceans such as that on Aeolis Dorsa.
Collapse
Affiliation(s)
| | | | | | - Daniel Carrizo
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Madrid, Spain
| | | | - Miguel Ángel Fernández-Martínez
- Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid y Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Madrid, Spain
| | | | - Victoria Muñoz-Iglesias
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Madrid, Spain
- Laboratoire de Planétologie et Géosciences, CNRS, LPG UMR 6112, Nantes Université, Univ Angers, Le Mans Université, 44000, Nantes, France
| | | | | | | | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| |
Collapse
|
2
|
Landeta C, Medina-Ortiz D, Escobar N, Valdez I, González-Troncoso MP, Álvares-Saravia D, Aldridge J, Gómez C, Lienqueo ME. Integrative workflows for the characterization of hydrophobin and cerato-platanin in the marine fungus Paradendryphiella salina. Arch Microbiol 2024; 206:385. [PMID: 39177836 DOI: 10.1007/s00203-024-04087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
Hydrophobins (HFBs) and cerato-platanins (CPs) are surface-active extracellular proteins produced by filamentous fungi. This study identified two HFB genes (pshyd1 and pshyd2) and one CP gene (pscp) in the marine fungus Paradendryphiella salina. The proteins PsCP, PsHYD2, and PsHYD1 had molecular weights of 12.70, 6.62, and 5.98 kDa, respectively, with isoelectric points below 7. PsHYD1 and PsHYD2 showed hydrophobicity (GRAVY score 0.462), while PsCP was hydrophilic (GRAVY score - 0.202). Stability indices indicated in-solution stability. Mass spectrometry identified 2,922 proteins, including CP but not HFB proteins. qPCR revealed differential gene expression influenced by developmental stage and substrate, with pshyd1 consistently expressed. These findings suggest P. salina's adaptation to marine ecosystems with fewer hydrophobin genes than other fungi but capable of producing surface-active proteins from seaweed carbohydrates. These proteins have potential applications in medical biocoatings, food industry foam stabilizers, and environmental bioremediation.
Collapse
Affiliation(s)
- Catalina Landeta
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - David Medina-Ortiz
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Natalia Escobar
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Iván Valdez
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - María Paz González-Troncoso
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - Diego Álvares-Saravia
- Teaching and Research Assistance Center, CADI, University of Magallanes, Av. los Flamencos, Punta Arenas, 01364, Chile
| | - Jacqueline Aldridge
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Carlos Gómez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Chile
| | - María Elena Lienqueo
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile.
| |
Collapse
|
3
|
Yarzábal Rodríguez LA, Álvarez Gutiérrez PE, Gunde-Cimerman N, Ciancas Jiménez JC, Gutiérrez-Cepeda A, Ocaña AMF, Batista-García RA. Exploring extremophilic fungi in soil mycobiome for sustainable agriculture amid global change. Nat Commun 2024; 15:6951. [PMID: 39138171 PMCID: PMC11322326 DOI: 10.1038/s41467-024-51223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals. Yet, extremophilic fungi's potential remains underexplored and, therefore, comprehensive research is needed to understand their roles as tools to foster sustainable agriculture practices amid climate change. Efforts should concentrate on unraveling the complex dynamics of plant-fungi interactions and harnessing extremophilic fungi's ecological functions to influence plant growth and development. Aspects such as plant's epigenome remodeling, fungal extracellular vesicle production, secondary metabolism regulation, and impact on native soil microbiota are among many deserving to be explored in depth. Caution is advised, however, as extremophilic and extremotolerant fungi can act as both mitigators of crop diseases and as opportunistic pathogens, underscoring the necessity for balanced research to optimize benefits while mitigating risks in agricultural settings.
Collapse
Grants
- This work was supported by Fondo Nacional de Innovación y Desarrollo Científico-Tecnológico (FONDOCYT), Ministerio de Educación Superior, Ciencia y Tecnología (MESCYT), Government of Dominican Republic: Project COD. 2022-2B2-078. This work was supported by Darwin Initiative Round 27: Partnership Project DARPP220, and Darwin Initiative Round 30: Project DIR30S2/1004. This study was also supported by funding from the Slovenian Research Agency to Infrastructural Centre Mycosmo (MRIC UL, I0-0022), programs P4-0432 and P1-0198. Authors appreciate the support received from the European Commission – Program H2020, Project GEN4OLIVE: 101000427, Topic SFS-28-2018-2019-2020 Genetic resources and pre-breeding communities. RAB-G received a Sabbatical fellowship (CVU: 389616) from the National Council of Humanities, Sciences and Technologies (CONAHCyT), Government of Mexico. This work was supported by RYC2022-037554-I project funded by MCIN/AEI/10.13039/501100011033 and FSE+.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal Rodríguez
- Carrera de Bioquímica y Farmacia. Grupo de Microbiología Molecular y Biotecnología (GI-M2YB). Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Cuenca, Ecuador
| | | | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Adrián Gutiérrez-Cepeda
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Ana María Fernández Ocaña
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Ramón Alberto Batista-García
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain.
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Fu Y, Gou W, Wu P, Lai Y, Liang X, Zhang K, Shuai M, Tang J, Miao Z, Chen J, Yuan J, Zhao B, Yang Y, Liu X, Hu Y, Pan A, Pan XF, Zheng JS. Landscape of the gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health. Gut 2024; 73:1302-1312. [PMID: 38724219 PMCID: PMC11287620 DOI: 10.1136/gutjnl-2024-332260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE The remodelling of gut mycobiome (ie, fungi) during pregnancy and its potential influence on host metabolism and pregnancy health remains largely unexplored. Here, we aim to examine the characteristics of gut fungi in pregnant women, and reveal the associations between gut mycobiome, host metabolome and pregnancy health. DESIGN Based on a prospective birth cohort in central China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth Cohort, we included 4800 participants who had available ITS2 sequencing data, dietary information and clinical records during their pregnancy. Additionally, we established a subcohort of 1059 participants, which included 514 women who gave birth to preterm, low birthweight or macrosomia infants, as well as 545 randomly selected controls. In this subcohort, a total of 750, 748 and 709 participants had ITS2 sequencing data, 16S sequencing data and serum metabolome data available, respectively, across all trimesters. RESULTS The composition of gut fungi changes dramatically from early to late pregnancy, exhibiting a greater degree of variability and individuality compared with changes observed in gut bacteria. The multiomics data provide a landscape of the networks among gut mycobiome, biological functionality, serum metabolites and pregnancy health, pinpointing the link between Mucor and adverse pregnancy outcomes. The prepregnancy overweight status is a key factor influencing both gut mycobiome compositional alteration and the pattern of metabolic remodelling during pregnancy. CONCLUSION This study provides a landscape of gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health, which lays the foundation of the future gut mycobiome investigation for healthy pregnancy.
Collapse
Affiliation(s)
- Yuanqing Fu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wanglong Gou
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxiu Liang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ke Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Menglei Shuai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jun Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zelei Miao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jieteng Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Bin Zhao
- Antenatal Care Clinics, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Yunhaonan Yang
- Section of Epidemiology and Population Health & Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, China
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ju-Sheng Zheng
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
5
|
Agrawal S, Chavan P, Dufossé L. Hidden Treasure: Halophilic Fungi as a Repository of Bioactive Lead Compounds. J Fungi (Basel) 2024; 10:290. [PMID: 38667961 PMCID: PMC11051466 DOI: 10.3390/jof10040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The pressing demand for novel compounds to address contemporary health challenges has prompted researchers to venture into uncharted territory, including extreme ecosystems, in search of new natural pharmaceuticals. Fungi capable of tolerating extreme conditions, known as extremophilic fungi, have garnered attention for their ability to produce unique secondary metabolites crucial for defense and communication, some of which exhibit promising clinical significance. Among these, halophilic fungi thriving in high-salinity environments have particularly piqued interest for their production of bioactive molecules. This review highlights the recent discoveries regarding novel compounds from halotolerant fungal strains isolated from various saline habitats. From diverse fungal species including Aspergillus, Penicillium, Alternaria, Myrothecium, and Cladosporium, a plethora of intriguing molecules have been elucidated, showcasing diverse chemical structures and bioactivity. These compounds exhibit cytotoxicity against cancer cell lines such as A549, HL60, and K-562, antimicrobial activity against pathogens like Escherichia coli, Bacillus subtilis, and Candida albicans, as well as radical-scavenging properties. Notable examples include variecolorins, sclerotides, alternarosides, and chrysogesides, among others. Additionally, several compounds display unique structural motifs, such as spiro-anthronopyranoid diketopiperazines and pentacyclic triterpenoids. The results emphasize the significant promise of halotolerant fungi in providing bioactive compounds for pharmaceutical, agricultural, and biotechnological uses. However, despite their potential, halophilic fungi are still largely unexplored as sources of valuable compounds.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research (ICMR), V Ramalingaswami Bhawan, Ansari Nagar-AIIMS (All India Institute of Medical Sciences), Delhi 110029, India
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Pruthviraj Chavan
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, ChemBioPro, Université de La Réunion, Ecole Supérieure d’Ingénieurs—Réunion, Océan Indien ESIROI Agroalimentaire, 97410 Saint-Denis, France
| |
Collapse
|
6
|
Fernando LD, Pérez-Llano Y, Dickwella Widanage MC, Jacob A, Martínez-Ávila L, Lipton AS, Gunde-Cimerman N, Latgé JP, Batista-García RA, Wang T. Structural adaptation of fungal cell wall in hypersaline environment. Nat Commun 2023; 14:7082. [PMID: 37925437 PMCID: PMC10625518 DOI: 10.1038/s41467-023-42693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Halophilic fungi thrive in hypersaline habitats and face a range of extreme conditions. These fungal species have gained considerable attention due to their potential applications in harsh industrial processes, such as bioremediation and fermentation under unfavorable conditions of hypersalinity, low water activity, and extreme pH. However, the role of the cell wall in surviving these environmental conditions remains unclear. Here we employ solid-state NMR spectroscopy to compare the cell wall architecture of Aspergillus sydowii across salinity gradients. Analyses of intact cells reveal that A. sydowii cell walls contain a rigid core comprising chitin, β-glucan, and chitosan, shielded by a surface shell composed of galactomannan and galactosaminogalactan. When exposed to hypersaline conditions, A. sydowii enhances chitin biosynthesis and incorporates α-glucan to create thick, stiff, and hydrophobic cell walls. Such structural rearrangements enable the fungus to adapt to both hypersaline and salt-deprived conditions, providing a robust mechanism for withstanding external stress. These molecular principles can aid in the optimization of halophilic strains for biotechnology applications.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
- Fungal Respiratory Infections Research Unit, University of Angers, Angers, France
| | | | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
8
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
9
|
Moreno-Perlin T, Valdés-Muñoz G, Jiménez-Gómez I, Gunde-Cimerman N, Yarzábal Rodríguez LA, Sánchez-Carbente MDR, Vargas-Fernández A, Gutiérrez-Cepeda A, Batista-García RA. Extremely chaotolerant and kosmotolerant Aspergillus atacamensis - a metabolically versatile fungus suitable for recalcitrant biosolid treatment. Front Microbiol 2023; 14:1191312. [PMID: 37455742 PMCID: PMC10338856 DOI: 10.3389/fmicb.2023.1191312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Obligate halophily is extremely rare in fungi. Nevertheless, Aspergillus atacamensis (strain EXF-6660), isolated from a salt water-exposed cave in the Coastal Range hills of the hyperarid Atacama Desert in Chile, is an obligate halophile, with a broad optimum range from 1.5 to 3.4 M of NaCl. When we tested its ability to grow at varied concentrations of both kosmotropic (NaCl, KCl, and sorbitol) and chaotropic (MgCl2, LiCl, CaCl2, and glycerol) solutes, stereoscopy and laser scanning microscopy revealed the formation of phialides and conidia. A. atacamensis EXF-6660 grew up to saturating levels of NaCl and at 2.0 M concentration of the chaotropic salt MgCl2. Our findings confirmed that A. atacamensis is an obligate halophile that can grow at substantially higher MgCl2 concentrations than 1.26 M, previously considered as the maximum limit supporting prokaryotic life. To assess the fungus' metabolic versatility, we used the phenotype microarray technology Biolog FF MicroPlates. In the presence of 2.0 M NaCl concentration, strain EXF-6660 metabolism was highly versatile. A vast repertoire of organic molecules (~95% of the substrates present in Biolog FF MicroPlates) was metabolized when supplied as sole carbon sources, including numerous polycyclic aromatic hydrocarbons, benzene derivatives, dyes, and several carbohydrates. Finally, the biotechnological potential of A. atacamensis for xenobiotic degradation and biosolid treatment was investigated. Interestingly, it could remove biphenyls, diphenyl ethers, different pharmaceuticals, phenols, and polyaromatic hydrocarbons. Our combined findings show that A. atacamensis EXF-6660 is a highly chaotolerant, kosmotolerant, and xerotolerant fungus, potentially useful for xenobiotic and biosolid treatments.
Collapse
Affiliation(s)
- Tonatiuh Moreno-Perlin
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Gisell Valdés-Muñoz
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Alfaniris Vargas-Fernández
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Adrián Gutiérrez-Cepeda
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
10
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
11
|
Lee HB, Jeong DH, Park JS. Accumulation patterns of intracellular salts in a new halophilic amoeboflagellate, Euplaesiobystra salpumilio sp. nov., (Heterolobosea; Discoba) under hypersaline conditions. Front Microbiol 2022; 13:960621. [PMID: 35992684 PMCID: PMC9389213 DOI: 10.3389/fmicb.2022.960621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Halophilic microbial eukaryotes are present in many eukaryotic lineages and major groups; however, our knowledge of their diversity is still limited. Furthermore, almost nothing is known about the intracellular accumulation of salts in most halophilic eukaryotes. Here, we isolate a novel halophilic microbial eukaryote from hypersaline water of 134 practical salinity units (PSU) in a solar saltern. This species is an amoeboflagellate (capable of the amoeba-flagellate-cyst transformation) in the heterolobosean group and belongs to the genus Euplaesiobystra based on morphological data and 18S rDNA sequences. However, the isolate is distinct from any of the described Euplaesiobystra species. Especially, it is the smallest Euplaesiobystra to date, has a distinct cytostome, and grows optimally at 75–100 PSU. Furthermore, the phylogenetic tree of the 18S rDNA sequences demonstrates that the isolate forms a strongly supported group, sister to Euplaesiobystra hypersalinica. Thus, we propose that the isolate, Euplaesiobystra salpumilio, is a novel species. E. salpumilio displays a significantly increased influx of the intracellular Na+ and K+ at 50, 100, and 150 PSU, compared to freshwater species. However, the intracellular retention of the Na+ and K+ at 150 PSU does not significantly differ from 100 PSU, suggesting that E. salpumilio can extrude the Na+ and K+ from cells under high-salinity conditions. Interestingly, actively growing E. salpumilio at 100 and 150 PSU may require more intracellular accumulation of Na+ than the no-growth but-viable state at 50 PSU. It seems that our isolate displays two salt metabolisms depending on the tested salinities. E. salpumilio shows a salt-in strategy for Na+ at lower salinity of 100 PSU, while it displays a salt-out strategy for Na+ at higher salinity of 150 PSU. Our results suggest that the novel halophilic E. salpumilio fundamentally uses a salt-out strategy at higher salinities, and the accumulation patterns of intracellular salts in this species are different from those in other halophilic microbial eukaryotes.
Collapse
|
12
|
Fungi are key players in extreme ecosystems. Trends Ecol Evol 2022; 37:517-528. [PMID: 35246323 DOI: 10.1016/j.tree.2022.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Extreme environments on Earth are typically devoid of macro life forms and are inhabited predominantly by highly adapted and specialized microorganisms. The discovery and persistence of these extremophiles provides tools to model how life arose on Earth and inform us on the limits of life. Fungi, in particular, are among the most extreme-tolerant organisms with highly versatile lifestyles and stunning ecological and morphological plasticity. Here, we overview the most notable examples of extremophilic and stress-tolerant fungi, highlighting their key roles in the functionality and balance of extreme ecosystems. The remarkable ability of fungi to tolerate and even thrive in the most extreme environments, which preclude most organisms, have reshaped current concepts regarding the limits of life on Earth.
Collapse
|
13
|
Dutta B, Bandopadhyay R. Biotechnological potentials of halophilic microorganisms and their impact on mankind. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:75. [PMID: 35669848 PMCID: PMC9152817 DOI: 10.1186/s43088-022-00252-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Halophiles are extremophilic organisms represented by archaea, bacteria and eukaryotes that thrive in hypersaline environment. They apply different osmoadaptation strategies to survive in hostile conditions. Habitat diversity of halophilic microorganisms in hypersaline system provides information pertaining the evolution of life on Earth. Main body The microbiome-gut-brain axis interaction contributes greatly to the neurodegenerative diseases. Gut resident halophilic bacteria are used as alternative medication for chronic brain diseases. Halophiles can be used in pharmaceuticals, drug delivery, agriculture, saline waste water treatment, biodegradable plastic production, metal recovery, biofuel energy generation, concrete crack repair and other sectors. Furthermore, versatile biomolecules, mainly enzymes characterized by broad range of pH and thermostability, are suitable candidate for industrial purposes. Reflectance pattern of halophilic archaeal pigment rhodopsin is considered as potential biosignature for Earth-like planets. Short conclusions This review represents important osmoadaptation strategies acquired by halophilic archaea and bacteria and their potential biotechnological applications to resolve present day challenges. Graphical Abstract
Collapse
Affiliation(s)
- Bhramar Dutta
- Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| |
Collapse
|
14
|
Jiménez-Gómez I, Valdés-Muñoz G, Moreno-Ulloa A, Pérez-Llano Y, Moreno-Perlín T, Silva-Jiménez H, Barreto-Curiel F, Sánchez-Carbente MDR, Folch-Mallol JL, Gunde-Cimerman N, Lago-Lestón A, Batista-García RA. Surviving in the Brine: A Multi-Omics Approach for Understanding the Physiology of the Halophile Fungus Aspergillus sydowii at Saturated NaCl Concentration. Front Microbiol 2022; 13:840408. [PMID: 35586858 PMCID: PMC9108488 DOI: 10.3389/fmicb.2022.840408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Although various studies have investigated osmoadaptations of halophilic fungi to saline conditions, only few analyzed the fungal mechanisms occurring at saturated NaCl concentrations. Halophilic Aspergillus sydowii is a model organism for the study of molecular adaptations of filamentous fungi to hyperosmolarity. For the first time a multi-omics approach (i.e., transcriptomics and metabolomics) was used to compare A. sydowii at saturated concentration (5.13 M NaCl) to optimal salinity (1 M NaCl). Analysis revealed 1,842 genes differentially expressed of which 704 were overexpressed. Most differentially expressed genes were involved in metabolism and signal transduction. A gene ontology multi-scale network showed that ATP binding constituted the main network node with direct interactions to phosphorelay signal transduction, polysaccharide metabolism, and transferase activity. Free amino acids significantly decreased and amino acid metabolism was reprogrammed at 5.13 M NaCl. mRNA transcriptional analysis revealed upregulation of genes involved in methionine and cysteine biosynthesis at extreme water deprivation by NaCl. No modifications of membrane fatty acid composition occurred. Upregulated genes were involved in high-osmolarity glycerol signal transduction pathways, biosynthesis of β-1,3-glucans, and cross-membrane ion transporters. Downregulated genes were related to the synthesis of chitin, mannose, cell wall proteins, starvation, pheromone synthesis, and cell cycle. Non-coding RNAs represented the 20% of the total transcripts with 7% classified as long non-coding RNAs (lncRNAs). The 42% and 69% of the total lncRNAs and RNAs encoding transcription factors, respectively, were differentially expressed. A network analysis showed that differentially expressed lncRNAs and RNAs coding transcriptional factors were mainly related to the regulation of metabolic processes, protein phosphorylation, protein kinase activity, and plasma membrane composition. Metabolomic analyses revealed more complex and unknown metabolites at saturated NaCl concentration than at optimal salinity. This study is the first attempt to unravel the molecular ecology of an ascomycetous fungus at extreme water deprivation by NaCl (5.13 M). This work also represents a pioneer study to investigate the importance of lncRNAs and transcriptional factors in the transcriptomic response to high NaCl stress in halophilic fungi.
Collapse
Affiliation(s)
- Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Gisell Valdés-Muñoz
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Hortencia Silva-Jiménez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Ramón Alberto Batista-García, ;
| |
Collapse
|
15
|
Metabolic Potential of Halophilic Filamentous Fungi—Current Perspective. Int J Mol Sci 2022; 23:ijms23084189. [PMID: 35457008 PMCID: PMC9030287 DOI: 10.3390/ijms23084189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salty environments are widely known to be inhospitable to most microorganisms. For centuries salt has been used as a food preservative, while highly saline environments were considered uninhabited by organisms, and if habited, only by prokaryotic ones. Nowadays, we know that filamentous fungi are widespread in many saline habitats very often characterized also by other extremes, for example, very low or high temperature, lack of light, high pressure, or low water activity. However, fungi are still the least understood organisms among halophiles, even though they have been shown to counteract these unfavorable conditions by producing multiple secondary metabolites with interesting properties or unique biomolecules as one of their survival strategies. In this review, we focused on biomolecules obtained from halophilic filamentous fungi such as enzymes, pigments, biosurfactants, and osmoprotectants.
Collapse
|
16
|
|
17
|
Recent developments in the biology and biotechnological applications of halotolerant yeasts. World J Microbiol Biotechnol 2022; 38:27. [PMID: 34989905 DOI: 10.1007/s11274-021-03213-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Natural hypersaline environments are inhabited by an abundance of prokaryotic and eukaryotic microorganisms capable of thriving under extreme saline conditions. Yeasts represent a substantial fraction of halotolerant eukaryotic microbiomes and are frequently isolated as food contaminants and from solar salterns. During the last years, a handful of new species has been discovered in moderate saline environments, including estuarine and deep-sea waters. Although Saccharomyces cerevisiae is considered the primary osmoadaptation model system for studies of hyperosmotic stress conditions, our increasing understanding of the physiology and molecular biology of halotolerant yeasts provides new insights into their distinct metabolic traits and provides novel and innovative opportunities for genome mining of biotechnologically relevant genes. Yeast species such as Debaryomyces hansenii, Zygosaccharomyces rouxii, Hortaea werneckii and Wallemia ichthyophaga show unique properties, which make them attractive for biotechnological applications. Select halotolerant yeasts are used in food processing and contribute to aromas and taste, while certain gene clusters are used in second generation biofuel production. Finally, both pharmaceutical and chemical industries benefit from applications of halotolerant yeasts as biocatalysts. This comprehensive review summarizes the most recent findings related to the biology of industrially-important halotolerant yeasts and provides a detailed and up-to-date description of modern halotolerant yeast-based biotechnological applications.
Collapse
|
18
|
Tirumalai MR, Anane-Bediakoh D, Rajesh S, Fox GE. Net Charges of the Ribosomal Proteins of the S10 and spc Clusters of Halophiles Are Inversely Related to the Degree of Halotolerance. Microbiol Spectr 2021; 9:e0178221. [PMID: 34908470 PMCID: PMC8672879 DOI: 10.1128/spectrum.01782-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less positively charged. Here, the analysis is extended to non-archaeal halophilic bacteria, eukaryotes, and halotolerant archaea. The net charges (pH 7.4) of the r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that, as a general rule, the net charges of individual proteins remained mostly basic as the salt tolerance of the bacterial strains increased from 5 to 15%. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18% to 21% salt for their growth. All three strains have higher numbers of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins are a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions: these were positively charged despite the halophilicity of the organisms. IMPORTANCE The net charges (at pH 7.4) of the ribosomal proteins (r-proteins) that comprise the S10-spc cluster show an inverse relationship with the halophilicity/halotolerance levels in both bacteria and archaea. In non-halophilic bacteria, the S10-spc cluster r-proteins are generally basic (positively charged), while the rest of the proteomes in these strains are generally acidic. On the other hand, the whole proteomes of the extremely halophilic strains are overall negatively charged, including the S10-spc cluster r-proteins. Given that the distribution of charged residues in the ribosome exit tunnel influences cotranslational folding, the contrasting charges observed in the S10-spc cluster r-proteins have potential implications for the rate of passage of these proteins through the ribosomal exit tunnel. Furthermore, the universal protein uL2, which lies in the oldest part of the ribosome, is always positively charged irrespective of the strain/organism it belongs to. This has implications for its role in the prebiotic context.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Sidharth Rajesh
- Clements High School (Class of 2023), Fort Bend Independent School District, Sugar Land, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
19
|
Plemenitaš A. Sensing and Responding to Hypersaline Conditions and the HOG Signal Transduction Pathway in Fungi Isolated from Hypersaline Environments: Hortaea werneckii and Wallemia ichthyophaga. J Fungi (Basel) 2021; 7:jof7110988. [PMID: 34829275 PMCID: PMC8620582 DOI: 10.3390/jof7110988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sensing and responding to changes in NaCl concentration in hypersaline environments is vital for cell survival. In this paper, we identified and characterized key components of the high-osmolarity glycerol (HOG) signal transduction pathway, which is crucial in sensing hypersaline conditions in the extremely halotolerant black yeast Hortaea werneckii and in the obligate halophilic fungus Wallemia ichthyophaga. Both organisms were isolated from solar salterns, their predominating ecological niche. The identified components included homologous proteins of both branches involved in sensing high osmolarity (SHO1 and SLN1) and the homologues of mitogen-activated protein kinase module (MAPKKK Ste11, MAPKK Pbs2, and MAPK Hog1). Functional complementation of the identified gene products in S. cerevisiae mutant strains revealed some of their functions. Structural protein analysis demonstrated important structural differences in the HOG pathway components between halotolerant/halophilic fungi isolated from solar salterns, salt-sensitive S. cerevisiae, the extremely salt-tolerant H. werneckii, and halophilic W. ichthyophaga. Known and novel gene targets of MAP kinase Hog1 were uncovered particularly in halotolerant H. werneckii. Molecular studies of many salt-responsive proteins confirm unique and novel mechanisms of adaptation to changes in salt concentration.
Collapse
Affiliation(s)
- Ana Plemenitaš
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Menéndez-Serra M, Triadó-Margarit X, Casamayor EO. Ecological and Metabolic Thresholds in the Bacterial, Protist, and Fungal Microbiome of Ephemeral Saline Lakes (Monegros Desert, Spain). MICROBIAL ECOLOGY 2021; 82:885-896. [PMID: 33725151 DOI: 10.1007/s00248-021-01732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 05/20/2023]
Abstract
We studied the 16S and 18S rRNA genes of the bacterial, protist, and fungal microbiomes of 131 samples collected in 14 ephemeral small inland lakes located in the endorheic area of the Monegros Desert (NE Spain). The sampling covered different temporal flooding/desiccation cycles that created natural salinity gradients between 0.1% (w/v) and salt saturation. We aimed to test the hypothesis of a lack of competitive advantage for microorganisms using the "salt-in" strategy in highly fluctuating hypersaline environments where temperature and salinity transitions widely vary within short time periods, as in ephemeral inland lakes. Overall, 5653 bacterial zOTUs and 2658 eukaryal zOTUs were detected heterogeneously distributed with significant variations on taxonomy and general energy-yielding metabolisms and trophic strategies along the gradient. We observed a more diverse bacterial assembly than initially expected at extreme salinities and a lack of dominance of a few "salt-in" organisms. Microbial thresholds were unveiled for these highly fluctuating hypersaline environments with high selective pressures. We conclude that the extremely high dynamism observed in the ephemeral lakes of Monegros may have given a competitive advantage for more versatile ("salt-out") organisms compared to those better adapted to stable high salinities usually more common in solar salterns. Ephemeral inland saline lakes offered a well-suited natural framework for highly detailed evolutionary and ecological studies.
Collapse
Affiliation(s)
- Mateu Menéndez-Serra
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Xavier Triadó-Margarit
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain.
| |
Collapse
|
21
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Rodríguez-Pupo EC, Pérez-Llano Y, Tinoco-Valencia JR, Sánchez NS, Padilla-Garfias F, Calahorra M, Sánchez NDC, Sánchez-Reyes A, Rodríguez-Hernández MDR, Peña A, Sánchez O, Aguirre J, Batista-García RA, Folch-Mallol JL, Sánchez-Carbente MDR. Osmolyte Signatures for the Protection of Aspergillus sydowii Cells under Halophilic Conditions and Osmotic Shock. J Fungi (Basel) 2021; 7:414. [PMID: 34073303 PMCID: PMC8228332 DOI: 10.3390/jof7060414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus sydowii is a moderate halophile fungus extensively studied for its biotechnological potential and halophile responses, which has also been reported as a coral reef pathogen. In a recent publication, the transcriptomic analysis of this fungus, when growing on wheat straw, showed that genes related to cell wall modification and cation transporters were upregulated under hypersaline conditions but not under 0.5 M NaCl, the optimal salinity for growth in this strain. This led us to study osmolyte accumulation as a mechanism to withstand moderate salinity. In this work, we show that A. sydowii accumulates trehalose, arabitol, mannitol, and glycerol with different temporal dynamics, which depend on whether the fungus is exposed to hypo- or hyperosmotic stress. The transcripts coding for enzymes responsible for polyalcohol synthesis were regulated in a stress-dependent manner. Interestingly, A. sydowii contains three homologs (Hog1, Hog2 and MpkC) of the Hog1 MAPK, the master regulator of hyperosmotic stress response in S. cerevisiae and other fungi. We show a differential regulation of these MAPKs under different salinity conditions, including sustained basal Hog1/Hog2 phosphorylation levels in the absence of NaCl or in the presence of 2.0 M NaCl, in contrast to what is observed in S. cerevisiae. These findings indicate that halophilic fungi such as A. sydowii utilize different osmoadaptation mechanisms to hypersaline conditions.
Collapse
Affiliation(s)
- Eya Caridad Rodríguez-Pupo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Yordanis Pérez-Llano
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - José Raunel Tinoco-Valencia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Norma Silvia Sánchez
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Francisco Padilla-Garfias
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Martha Calahorra
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Nilda del C. Sánchez
- Centro de Ciencias Genómicas, UNAM, Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Ayixón Sánchez-Reyes
- Catedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - María del Rocío Rodríguez-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| | - Antonio Peña
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Olivia Sánchez
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Jesús Aguirre
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| | - María del Rayo Sánchez-Carbente
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| |
Collapse
|
23
|
Selbmann L, Benkő Z, Coleine C, de Hoog S, Donati C, Druzhinina I, Emri T, Ettinger CL, Gladfelter AS, Gorbushina AA, Grigoriev IV, Grube M, Gunde-Cimerman N, Karányi ZÁ, Kocsis B, Kubressoian T, Miklós I, Miskei M, Muggia L, Northen T, Novak-Babič M, Pennacchio C, Pfliegler WP, Pòcsi I, Prigione V, Riquelme M, Segata N, Schumacher J, Shelest E, Sterflinger K, Tesei D, U’Ren JM, Varese GC, Vázquez-Campos X, Vicente VA, Souza EM, Zalar P, Walker AK, Stajich JE. Shed Light in the DaRk LineagES of the Fungal Tree of Life-STRES. Life (Basel) 2020; 10:life10120362. [PMID: 33352712 PMCID: PMC7767062 DOI: 10.3390/life10120362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023] Open
Abstract
The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.
Collapse
Affiliation(s)
- Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Section of Mycology, Italian National Antarctic Museum (MNA), 16121 Genoa, Italy
- Correspondence: (L.S.); (J.E.S.); Tel.: +39-0761-357012 (L.S.); +1-951-827-2363 (J.E.S.)
| | - Zsigmond Benkő
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, 6532 Nijmegen, The Netherlands;
| | - Claudio Donati
- Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Irina Druzhinina
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China;
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Cassie L. Ettinger
- Genome Center, University of California, Davis, CA 95616, USA;
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Anna A. Gorbushina
- Department of Materials and Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), 10115 Berlin, Germany; (A.A.G.); (J.S.)
- Department of Earth Sciences & Department of Biology, Chemistry, Pharmacy, Freie Universität, Berlin 10115 Berlin, Germany
| | - Igor V. Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Martin Grube
- Institute of Biology, University of Graz, Graz A-8010, Austria;
| | - Nina Gunde-Cimerman
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Zsolt Ákos Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Tania Kubressoian
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Márton Miskei
- Department of Biochemistry and Molecular Biology, Faculty of Medicine University of Debrecen, 4032 Debrecen, Hungary;
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, 34121 Trieste, Italy;
| | - Trent Northen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
| | - Monika Novak-Babič
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Christa Pennacchio
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
| | - Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Istvàn Pòcsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis, University of Torino, 10125 Torino, Italy; (V.P.); (G.C.V.)
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22980, Mexico;
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Julia Schumacher
- Department of Materials and Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), 10115 Berlin, Germany; (A.A.G.); (J.S.)
| | - Ekaterina Shelest
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Katja Sterflinger
- Institute of Natural Sciences and Technology in the Arts, Academy of Fine Arts Vienna, Vienna 22180, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 22180, Austria;
| | - Jana M. U’Ren
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA;
| | - Giovanna C. Varese
- Mycotheca Universitatis Taurinensis, University of Torino, 10125 Torino, Italy; (V.P.); (G.C.V.)
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2006, Australia;
| | - Vania A. Vicente
- Department of Biochemistry, Federal University of Paraná, Paraná E3100, Brazil; (V.A.V.); (E.M.S.)
| | - Emanuel M. Souza
- Department of Biochemistry, Federal University of Paraná, Paraná E3100, Brazil; (V.A.V.); (E.M.S.)
| | - Polona Zalar
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Allison K. Walker
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jason E. Stajich
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
- Correspondence: (L.S.); (J.E.S.); Tel.: +39-0761-357012 (L.S.); +1-951-827-2363 (J.E.S.)
| |
Collapse
|
24
|
Gaber DA, Berthelot C, Camehl I, Kovács GM, Blaudez D, Franken P. Salt Stress Tolerance of Dark Septate Endophytes Is Independent of Melanin Accumulation. Front Microbiol 2020; 11:562931. [PMID: 33362727 PMCID: PMC7758464 DOI: 10.3389/fmicb.2020.562931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Dark septate endophytes (DSEs) represent a diverse group of root-endophytic fungi that have been isolated from plant roots in many different natural and anthropogenic ecosystems. Melanin is widespread in eukaryotic organisms and possesses various functions such as protecting human skin from UV radiation, affecting the virulence of pathogens, and playing a role in development and physiology of insects. Melanin is a distinctive feature of the cell walls of DSEs and has been thought to protect these fungi from abiotic stress. Melanin in DSEs is assumed to be synthesized via the 1,8-dihydroxynaphthalene (DHN) pathway. Its function in alleviation of salt stress is not yet known. The aims of this study were: (i) investigating the growth responses of three DSEs (Periconia macrospinosa, Cadophora sp., and Leptodontidium sp.) to salt stress, (ii) analyzing melanin production under salt stress and, (iii) testing the role of melanin in salt stress tolerance of DSEs. The study shows that the three DSE species can tolerate high salt concentrations. Melanin content increased in the hyphae of all DSEs at 100 mM salt, but decreased at 500 mM. This was not reflected in the RNA accumulation of the gene encoding scytalone dehydratase which is involved in melanin biosynthesis. The application of tricyclazole, a DHN-melanin biosynthesis inhibitor, did not affect either salt stress tolerance or the accumulation of sodium in the hyphae. In addition, melanin biosynthesis mutants of Leptodontidium sp. did not show decreased growth performance compared to the wild-type, especially not at high salt concentrations. This indicates that DSEs can live under salt stress and withstand these conditions regardless of melanin accumulation.
Collapse
Affiliation(s)
- Dalia A. Gaber
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | | | - Iris Camehl
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | | | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
25
|
Haloadaptative Responses of Aspergillus sydowii to Extreme Water Deprivation: Morphology, Compatible Solutes, and Oxidative Stress at NaCl Saturation. J Fungi (Basel) 2020; 6:jof6040316. [PMID: 33260894 PMCID: PMC7711451 DOI: 10.3390/jof6040316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Water activity (aw) is critical for microbial growth, as it is severely restricted at aw < 0.90. Saturating NaCl concentrations (~5.0 M) induce extreme water deprivation (aw ≅ 0.75) and cellular stress responses. Halophilic fungi have cellular adaptations that enable osmotic balance and ionic/oxidative stress prevention to grow at high salinity. Here we studied the morphology, osmolyte synthesis, and oxidative stress defenses of the halophile Aspergillus sydowii EXF-12860 at 1.0 M and 5.13 M NaCl. Colony growth, pigmentation, exudate, and spore production were inhibited at NaCl-saturated media. Additionally, hyphae showed unpolarized growth, lower diameter, and increased septation, multicellularity and branching compared to optimal NaCl concentration. Trehalose, mannitol, arabitol, erythritol, and glycerol were produced in the presence of both 1.0 M and 5.13 M NaCl. Exposing A. sydowii cells to 5.13 M NaCl resulted in oxidative stress evidenced by an increase in antioxidant enzymes and lipid peroxidation biomarkers. Also, genes involved in cellular antioxidant defense systems were upregulated. This is the most comprehensive study that investigates the micromorphology and the adaptative cellular response of different non-enzymatic and enzymatic oxidative stress biomarkers in halophilic filamentous fungi.
Collapse
|
26
|
Biodeteriogens Characterization and Molecular Analyses of Diverse Funeral Accessories from XVII Century. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A historical crypt offers us a particular view of the conditions of some buried materials (in this case textiles) and the various biogenic phenomena to which they were subjected over the centuries. In addition, significant knowledge can come by studying the DNA of buried objects which allows the recognition of materials, but also to reveal some practice of the funeral ceremony. In this study, the deteriorating microbial communities colonizing various funeral textile items were identified and characterized using microscopic observation, cultivation, polymerase chain reaction (PCR) and sequencing, hydrolytic tests; and culture-independent analysis (high-throughput sequencing, MinION platform). Different PCR assays and consequent sequencing of amplicons were employed to recognize the animal origin of bodice reinforcements and the type of plant used to embellish the young girl. The analysis of ancient DNA (aDNA from animal and plant) was also completed by the application of high-throughput sequencing through Illumina platform. The combination of all these techniques permitted the identification of a complex microbiota composed by dangerous degradative microorganisms able to hydrolyze various organic substrates such as fibroin, keratin, and cellulose. Bacteria responsible for metal corrosion and bio-mineralization, and entomopathogenic and phytopathogenic fungi. The analysis of aDNA identified the animal component used in bodice manufacturing, the plant utilized as ornament and probably the season of this fatal event.
Collapse
|
27
|
Ianutsevich EA, Danilova OA, Tereshina VM. Combinatorial Action of Different Stress Factors on the Composition of Membrane Lipids and Osmolytes of Aspergillus niger. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
28
|
Pérez-Llano Y, Rodríguez-Pupo EC, Druzhinina IS, Chenthamara K, Cai F, Gunde-Cimerman N, Zalar P, Gostinčar C, Kostanjšek R, Folch-Mallol JL, Batista-García RA, Sánchez-Carbente MDR. Stress Reshapes the Physiological Response of Halophile Fungi to Salinity. Cells 2020; 9:E525. [PMID: 32106416 PMCID: PMC7140475 DOI: 10.3390/cells9030525] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Mechanisms of cellular and molecular adaptation of fungi to salinity have been commonly drawn from halotolerant strains and few studies in basidiomycete fungi. These studies have been conducted in settings where cells are subjected to stress, either hypo- or hyperosmotic, which can be a confounding factor in describing physiological mechanisms related to salinity. (2) Methods: We have studied transcriptomic changes in Aspergillussydowii, a halophilic species, when growing in three different salinity conditions (No NaCl, 0.5 M, and 2.0 M NaCl). (3) Results: In this fungus, major physiological modifications occur under high salinity (2.0 M NaCl) and not when cultured under optimal conditions (0.5 M NaCl), suggesting that most of the mechanisms described for halophilic growth are a consequence of saline stress response and not an adaptation to saline conditions. Cell wall modifications occur exclusively at extreme salinity, with an increase in cell wall thickness and lamellar structure, which seem to involve a decrease in chitin content and an augmented content of alfa and beta-glucans. Additionally, three hydrophobin genes were differentially expressed under hypo- or hyperosmotic stress but not when the fungus grows optimally. Regarding compatible solutes, glycerol is the main compound accumulated in salt stress conditions, whereas trehalose is accumulated in the absence of salt. (4) Conclusions: Physiological responses to salinity vary greatly between optimal and high salt concentrations and are not a simple graded effect as the salt concentration increases. Our results highlight the influence of stress in reshaping the response of extremophiles to environmental challenges.
Collapse
Affiliation(s)
- Yordanis Pérez-Llano
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - Eya Caridad Rodríguez-Pupo
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - Irina S. Druzhinina
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
- Fungal Genomics Group, Nanjing Agricultural University, Nanjing 210095, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
| | - Feng Cai
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
- Fungal Genomics Group, Nanjing Agricultural University, Nanjing 210095, China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Jorge Luis Folch-Mallol
- Laboratory of Molecular Biology of Fungi, Center for Research on Biotechnology, Autonomous University of the State of Morelos, Morelos 62210, Mexico;
| | - Ramón Alberto Batista-García
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - María del Rayo Sánchez-Carbente
- Laboratory of Molecular Biology of Fungi, Center for Research on Biotechnology, Autonomous University of the State of Morelos, Morelos 62210, Mexico;
| |
Collapse
|
29
|
Wang N, Chi P, Zou Y, Xu Y, Xu S, Bilal M, Fickers P, Cheng H. Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:176. [PMID: 33093870 PMCID: PMC7576711 DOI: 10.1186/s13068-020-01815-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/10/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yield and only under high osmotic pressure together with other undesired polyols, such as mannitol or d-arabitol. The yeast is also able to catabolize erythritol in non-stressing conditions. RESULTS Herein, Y. lipolytica has been metabolically engineered to increase erythritol production titer, yield, and productivity from glucose. This consisted of the disruption of anabolic pathways for mannitol and d-arabitol together with the erythritol catabolic pathway. Genes ZWF1 and GND encoding, respectively, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also constitutively expressed in regenerating the NADPH2 consumed during erythritol synthesis. Finally, the gene RSP5 gene from Saccharomyces cerevisiae encoding ubiquitin ligase was overexpressed to improve cell thermoresistance. The resulting strain HCY118 is impaired in mannitol or d-arabitol production and erythritol consumption. It can grow well up to 35 °C and retain an efficient erythritol production capacity at 33 °C. The yield, production, and productivity reached 0.63 g/g, 190 g/L, and 1.97 g/L·h in 2-L flasks, and increased to 0.65 g/g, 196 g/L, and 2.51 g/L·h in 30-m3 fermentor, respectively, which has economical practical importance. CONCLUSION The strategy developed herein yielded an engineered Y. lipolytica strain with enhanced thermoresistance and NADPH supply, resulting in a higher ability to produce erythritol, but not mannitol or d-arabitol from glucose. This is of interest for process development since it will reduce the cost of bioreactor cooling and erythritol purification.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - M. Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Patrick Fickers
- Microbial Process and Interaction, TERRA Teaching and Research Centre, University of Liege – Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Gostinčar C, Sun X, Zajc J, Fang C, Hou Y, Luo Y, Gunde-Cimerman N, Song Z. Population Genomics of an Obligately Halophilic Basidiomycete Wallemia ichthyophaga. Front Microbiol 2019; 10:2019. [PMID: 31551960 PMCID: PMC6738226 DOI: 10.3389/fmicb.2019.02019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/19/2019] [Indexed: 11/15/2022] Open
Abstract
Background Wallemia ichthyophaga is a highly specialized basidiomycetous fungus. It is one of the most halophilic fungi ever described, only able to grow at low water activity. This specialization is thought to explain why it is only rarely isolated from nature. Results Genomes of 21 W. ichthyophaga strains were sequenced with PE150 reads on BGISEQ500 platform. The genomes shared high similarity with the reference genome of the species, they were all smaller than 10 Mbp and had a low number of predicted genes. Groups of strains isolated in the same location encompassed clones as well as very divergent strains. There was little concordance between phylogenies of predicted genes. Linkage disequilibrium of pairs of polymorphic loci decayed relatively quickly as a function of distance between the loci (LD decay distance 1270 bp). For the first time a putative mating-type locus was identified in the genomes of W. ichthyophaga. Conclusion Based on the comparison of W. ichthyophaga genomes it appears that some phylogenetic lineages of the species can persist in the same location over at least several years. Apart from this, the differences between the strains do not reflect the isolation habitat or geographic location. Together with results supporting the existence of (sexual) recombination in W. ichthyophaga, the presented results indicate that strains of W. ichthyophaga can form a single recombining population even between different habitats and over large geographical distances.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China
| | - Xiaohuan Sun
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Janja Zajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,National Institute of Biology, Ljubljana, Slovenia
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
31
|
Fungi in salterns. J Microbiol 2019; 57:717-724. [DOI: 10.1007/s12275-019-9195-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
32
|
González-Martínez S, Galindo-Sánchez C, López-Landavery E, Paniagua-Chávez C, Portillo-López A. Aspergillus loretoensis, a single isolate from marine sediment of Loreto Bay, Baja California Sur, México resulting as a new obligate halophile species. Extremophiles 2019; 23:557-568. [PMID: 31227903 DOI: 10.1007/s00792-019-01107-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
An obligate halophile fungal was isolated from 275 m deep marine sediments and is characterized here for the first time. Its optimal growth was at 15% NaCl even though it was able to grow at 25% and is incapable of growth with no NaCl. Based on its morphological characteristics as conidia chain production in a single phialide, the fungal is related to the genus Aspergillus, subgenus Polypaecilum. Phylogenetic molecular analysis using several markers (ITS1-2; RPB1; RPB2; Cct8; TSR1; CaM; BenA) places the fungal isolate closer to Aspergillus salinarus and A. baarnensis. However, its morphological and molecular differences establish it as a new species, Aspergillus loretoensis sp. nov.
Collapse
Affiliation(s)
- Sophia González-Martínez
- Facultad de Ciencias, Universidad Autónoma de Baja California, Km 103, Carretera Tijuana-Ensenada, Ensenada, 22860, Baja California, Mexico
| | - Clara Galindo-Sánchez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, Baja California, Mexico
| | - Edgar López-Landavery
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, Baja California, Mexico
| | - Carmen Paniagua-Chávez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, Baja California, Mexico
| | - Amelia Portillo-López
- Facultad de Ciencias, Universidad Autónoma de Baja California, Km 103, Carretera Tijuana-Ensenada, Ensenada, 22860, Baja California, Mexico.
| |
Collapse
|
33
|
Sun X, Gostinčar C, Fang C, Zajc J, Hou Y, Song Z, Gunde-Cimerman N. Genomic Evidence of Recombination in the Basidiomycete Wallemia mellicola. Genes (Basel) 2019; 10:genes10060427. [PMID: 31167502 PMCID: PMC6628117 DOI: 10.3390/genes10060427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
One of the most commonly encountered species in the small basidiomycetous sub-phylum Wallemiomycotina is Wallemia mellicola, a xerotolerant fungus with a widespread distribution. To investigate the population characteristics of the species, whole genomes of twenty-five strains were sequenced. Apart from identification of four strains of clonal origin, the distances between the genomes failed to reflect either the isolation habitat of the strains or their geographical origin. Strains from different parts of the world appeared to represent a relatively homogenous and widespread population. The lack of concordance between individual gene phylogenies and the decay of linkage disequilibrium indicated that W. mellicola is at least occasionally recombining. Two versions of a putative mating-type locus have been found in all sequenced genomes, each present in approximately half of the strains. W. mellicola thus appears to be capable of (sexual) recombination and shows no signs of allopatric speciation or specialization to specific habitats.
Collapse
Affiliation(s)
- Xiaohuan Sun
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China.
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China.
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.
| | - Chao Fang
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China.
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China.
| | - Janja Zajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Department of Biotechnology and Systems biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| | - Yong Hou
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China.
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China.
| | - Zewei Song
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China.
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China.
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
34
|
Ding X, Liu K, Lu Y, Gong G. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions. Appl Microbiol Biotechnol 2019; 103:3829-3846. [PMID: 30859256 DOI: 10.1007/s00253-019-09705-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Halophilic fungi in hypersaline habitats require multiple cellular responses for high-salinity adaptation. However, the exact mechanisms behind these adaptation processes remain to be slightly known. The current study is aimed at elucidating the morphological, transcriptomic, and metabolomic changes of the halophilic fungus Aspergillus montevidensis ZYD4 under hypersaline conditions. Under these conditions, the fungus promoted conidia formation and suppressed cleistothecium development. Furthermore, the fungus differentially expressed genes (P < 0.0001) that controlled ion transport, amino acid transport and metabolism, soluble sugar accumulation, fatty acid β-oxidation, saturated fatty acid synthesis, electron transfer, and oxidative stress tolerance. Additionally, the hypersalinized mycelia widely accumulated metabolites, including amino acids, soluble sugars, saturated fatty acids, and other carbon- and nitrogen-containing compounds. The addition of metabolites-such as neohesperidin, biuret, aspartic acid, alanine, proline, and ornithine-significantly promoted the growth (P ≤ 0.05) and the morphological adaptations of A. montevidensis ZYD4 grown in hypersaline environments. Our study demonstrated that morphological shifts, ion equilibrium, carbon and nitrogen metabolism for solute accumulation, and energy production are vital to halophilic fungi so that they can build tolerance to high-salinity environments.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.,School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. .,School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China.
| | - Yuxin Lu
- School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
35
|
Yalçınkaya S, Kılıç GB. Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. Journal of Food Science and Technology 2019; 56:2027-2037. [PMID: 30996437 DOI: 10.1007/s13197-019-03679-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/19/2019] [Accepted: 02/24/2019] [Indexed: 11/30/2022]
Abstract
Isolation, identification and technological properties of halophilic lactic acid bacteria (HLAB) from olive samples which were collected from different places in Turkey were examined in the present work. According to the genetic analysis of the isolates, it was determined that 42 (%57.53) Lactobacillus plantarum, 20 (%27.39) Lactobacillus acidipiscis, 7 (%9.58) Enterococcus faecium, 2 (%2.73) Lactobacillus alimentarius, 1 (%1.36) Lactobacillus farciminis, 1 (%1.36) Lactobacillus namurensis. L. plantarum, L. alimentarius, L. farciminis and L. namurensis were able to tolerate 8% NaCl. Twenty-seven isolates showed lipolytic activity between 0.2 and 1.09 U ml-1. Thirty isolates had pectolytic activity as 3.24-5.29 U ml-1. A total of twelve L. acidipiscis, L. alimentarius, L. farciminis and L. plantarum strains showed positive decarboxylase activity by decarboxylating tyrosine. Results indicated that L. plantarum Z64A, Z64B, Z66A, Z83B, Z100A and L. acidipiscis Z112D showed high salt resistance, no biogenic amine production, low pectinolytic and low lipolytic activity. HLAB are dominant bacteria in the fermented foods containing high levels of salt. There are no many studies about the presence of HLAB in table olives and their technological properties. The present work showed that HLAB isolates of L. plantarum, L. acidipiscis and E. faecium were the predominant species found in table olives collected from the western part of Turkey. The selected strains which have high salt resistance, low pectinolytic and lipolytic activity are potentially good candidates as starter culture source in olive fermentations.
Collapse
Affiliation(s)
- Seda Yalçınkaya
- 1Department of Food Engineering, Institute of Science and Technology, Süleyman Demirel University, Isparta, Turkey
| | - Gülden Başyiğit Kılıç
- 2Department of Food Engineering, Faculty of Engineering Architecture, Mehmet Akif Ersoy University, Istiklal Campus, 15030 Burdur, Turkey
| |
Collapse
|
36
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
37
|
|
38
|
The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms 2018; 6:microorganisms6020046. [PMID: 29883408 PMCID: PMC6027281 DOI: 10.3390/microorganisms6020046] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
The fungal genus Wallemia of the order Wallemiales (Wallemiomycotina, Basidiomycota) comprises the most xerotolerant, xerophilic and also halophilic species worldwide. Wallemia spp. are found in various osmotically challenged environments, such as dry, salted, or highly sugared foods, dry feed, hypersaline waters of solar salterns, salt crystals, indoor and outdoor air, and agriculture aerosols. Recently, eight species were recognized for the genus Wallemia, among which four are commonly associated with foods: W. sebi, W. mellicola, W. muriae and W. ichthyophaga. To date, only strains of W. sebi, W. mellicola and W. muriae have been reported to be related to human health problems, as either allergological conditions (e.g., farmer’s lung disease) or rare subcutaneous/cutaneous infections. Therefore, this allergological and infective potential, together with the toxins that the majority of Wallemia spp. produce even under saline conditions, defines these fungi as filamentous food-borne pathogenic fungi.
Collapse
|
39
|
Gostinčar C, Gunde-Cimerman N. Overview of Oxidative Stress Response Genes in Selected Halophilic Fungi. Genes (Basel) 2018; 9:E143. [PMID: 29509668 PMCID: PMC5867864 DOI: 10.3390/genes9030143] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022] Open
Abstract
Exposure of microorganisms to stress, including to high concentrations of salt, can lead to increased production of reactive oxygen species in the cell. To limit the resulting damage, cells have evolved a variety of antioxidant defenses. The role of these defenses in halotolerance has been proposed before. Whole genome sequencing for some of the most halotolerant and halophilic fungal species has enabled us to investigate the possible links between oxidative and salt stress tolerance on the genomic level. We identified genes involved in oxidative stress response in the halophilic basidiomycete Wallemia ichthyophaga, and halotolerant ascomycetous black yeasts Hortaea werneckii and Aureobasidium pullulans, and compared them to genes from 16 other fungi, both asco- and basidiomycetes. According to our results, W. ichthyophaga can survive salinities detrimental to most other organisms with only a moderate number of oxidative stress response genes. In other investigated species, however, the maximum tolerated salinity correlated with the number of genes encoding three major enzymes of the cellular oxidative stress response: superoxide dismutases, catalases, and peroxiredoxins. This observation supports the hypothetical link between the antioxidant capacity of cells and their halotolerance.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 2018. [DOI: 10.1093/femsre/fuy009] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 1, SI-1000 Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
41
|
Vaidya S, Dev K, Sourirajan A. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas. Curr Microbiol 2018; 75:888-895. [PMID: 29480323 DOI: 10.1007/s00284-018-1462-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/21/2018] [Indexed: 11/28/2022]
Abstract
Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.
Collapse
Affiliation(s)
- Shivani Vaidya
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
42
|
Bondarenko SA, Ianutsevich EA, Sinitsyna NA, Georgieva ML, Bilanenko EN, Tereshina BM. Dynamics of the cytosol soluble carbohydrates and membrane lipids in response to ambient pH in alkaliphilic and alkalitolerant fungi. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Weinisch L, Kühner S, Roth R, Grimm M, Roth T, Netz DJA, Pierik AJ, Filker S. Identification of osmoadaptive strategies in the halophile, heterotrophic ciliate Schmidingerothrix salinarum. PLoS Biol 2018; 16:e2003892. [PMID: 29357351 PMCID: PMC5794333 DOI: 10.1371/journal.pbio.2003892] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/01/2018] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Hypersaline environments pose major challenges to their microbial residents. Microorganisms have to cope with increased osmotic pressure and low water activity and therefore require specific adaptation mechanisms. Although mechanisms have already been thoroughly investigated in the green alga Dunaliella salina and some halophilic yeasts, strategies for osmoadaptation in other protistan groups (especially heterotrophs) are neither as well known nor as deeply investigated as for their prokaryotic counterpart. This is not only due to the recent awareness of the high protistan diversity and ecological relevance in hypersaline systems, but also due to methodological shortcomings. We provide the first experimental study on haloadaptation in heterotrophic microeukaryotes, using the halophilic ciliate Schmidingerothrix salinarum as a model organism. We established three approaches to investigate fundamental adaptation strategies known from prokaryotes. First, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used for the detection, identification, and quantification of intracellular compatible solutes. Second, ion-imaging with cation-specific fluorescent dyes was employed to analyze changes in the relative ion concentrations in intact cells. Third, the effect of salt concentrations on the catalytic performance of S. salinarum malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICDH) was determined. 1H-NMR spectroscopy identified glycine betaine (GB) and ectoine (Ect) as the main compatible solutes in S. salinarum. Moreover, a significant positive correlation of intracellular GB and Ect concentrations and external salinity was observed. The addition of exogenous GB, Ect, and choline (Ch) stimulated the cell growth notably, indicating that S. salinarum accumulates the solutes from the external medium. Addition of external 13C2-Ch resulted in conversion to 13C2-GB, indicating biosynthesis of GB from Ch. An increase of external salinity up to 21% did not result in an increase in cytoplasmic sodium concentration in S. salinarum. This, together with the decrease in the catalytic activities of MDH and ICDH at high salt concentration, demonstrates that S. salinarum employs the salt-out strategy for haloadaptation.
Collapse
Affiliation(s)
- Lea Weinisch
- Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Steffen Kühner
- Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Robin Roth
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Maria Grimm
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tamara Roth
- Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Daili J. A. Netz
- Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Antonio J. Pierik
- Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sabine Filker
- Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
44
|
Mishra B, Choi YJ, Thines M. Phylogenomics of Bartheletia paradoxa reveals its basal position in Agaricomycotina and that the early evolutionary history of basidiomycetes was rapid and probably not strictly bifurcating. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1349-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles 2017; 21:1017-1025. [DOI: 10.1007/s00792-017-0960-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
|
46
|
Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology. Extremophiles 2017; 21:755-773. [PMID: 28500388 DOI: 10.1007/s00792-017-0941-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/29/2017] [Indexed: 01/11/2023]
Abstract
Halophilic fungal strains isolated from historical wooden staircase in a salt mine in Austria, and from wall biofilm and soil of a cave in the Coastal Range of the hyperarid Atacama Desert in Chile were characterised and described newly as Aspergillus salisburgensis and Aspergillus atacamensis. Morphological characters including solitary phialides producing solitary conidia and conidia in chains and/or heads suggested affinity to Aspergillus subgenus Polypaecilum. Strains required salt for growth, grew optimally on media with 10-25% NaCl and at 15-28 °C. These values are similar to those observed for Aspergillus salinarus comb. nov. (Phialosimplex salinarum), while the ex-type strains of Aspergillus sclerotialis, Aspergillus chlamydosporus and Aspergillus caninus (all belonging to Aspergillus subgen. Polypaecilum) grew optimally at 0-5% NaCl and showed fastest growth at 28-37 °C. Phylogenetic analyses on the basis of rDNA sequences, RAPD-PCR fingerprint patterns, and cellobiohydrolase gene (cbh-I) polymorphism clustered the strains into three groups and supported their taxonomic recognition as A. salinarus, A. atacamensis and A. salisburgensis. On the basis of phylogenetic inferences, also Sagenomella keratitidis is newly combined as Aspergillus keratitidis and inferred as a species of Aspergillus subgenus Polypaecilum.
Collapse
|
47
|
Bondarenko SA, Ianutsevich EA, Danilova OA, Grum-Grzhimaylo AA, Kotlova ER, Kamzolkina OV, Bilanenko EN, Tereshina VM. Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH. Extremophiles 2017; 21:743-754. [PMID: 28478604 DOI: 10.1007/s00792-017-0940-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022]
Abstract
Alkaliphily, the ability of an organism to thrive optimally at high ambient pH, has been well-documented in several lineages: archaea, bacteria and fungi. The molecular mechanics of such adaptation has been extensively addressed in alkaliphilic bacteria and alkalitolerant fungi. In this study, we consider an additional property that may have enabled fungi to prosper at alkaline pH: altered contents of membrane lipids and cytoprotectant molecules. In the alkaliphilic Sodiomyces tronii, we showed that at its optimal growth pH 9.2, the fungus accumulates abundant cytosolic trehalose (4-10% dry weight) and phosphatidic acids in the membrane lipids, properties not normally observed in neutrophilic species. At a very high pH 10.2, the major carbohydrate, glucose, was rapidly substituted by mannitol and arabitol. Conversely, lowering the pH to 5.4-7.0 had major implications both on the content of carbohydrates and membrane lipids. It was shown that trehalose dominated at pH 5.4. Fractions of sphingolipids and sterols of plasma membranes rapidly elevated possibly indicating the formation of membrane structures called rafts. Overall, our results reveals complex dynamics of the contents of membrane lipids and cytoplasmic sugars in alkaliphilic S. tronii, suggesting their adaptive functionality against pH stress.
Collapse
Affiliation(s)
- Sofiya A Bondarenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation
| | - Alexey A Grum-Grzhimaylo
- Laboratory of Genetics, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Ekaterina R Kotlova
- Komarov Botanical Institute Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Olga V Kamzolkina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena N Bilanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation.
| |
Collapse
|
48
|
Martínez-Villarreal R, Garza-Romero TS, Moreno-Medina VR, Hernández-Delgado S, Mayek-Pérez N. [Biochemical basis of tolerance to osmotic stress in phytopathogenic fungus: The case of Macrophomina phaseolina (Tassi) Goid.]. Rev Argent Microbiol 2016; 48:347-357. [PMID: 28341024 DOI: 10.1016/j.ram.2016.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/09/2016] [Accepted: 05/10/2016] [Indexed: 01/21/2023] Open
Abstract
Fungus Macrophomina phaseolina (Tassi) Goid. is the causative agent of charcoal rot disease which causes significant yield losses in major crops such as maize, sorghum, soybean and common beans in Mexico. This fungus is a facultative parasite which shows broad ability to adapt itself to stressed environments where water deficits and/or high temperature stresses commonly occur. These environmental conditions are common for most cultivable lands throughout Mexico. Here we describe some basic facts related to the etiology and epidemiology of the fungus as well as to the importance of responses to stressed environments, particularly to water deficits, based on morphology and growth traits, as well as on physiology, biochemistry and pathogenicity of fungus M. phaseolina. To conclude, we show some perspectives related to future research into the genus, which emphasize the increasing need to improve the knowledge based on the application of both traditional and biotechnological tools in order to elucidate the mechanisms of resistance to environmental stress which can be extrapolated to other useful organisms to man.
Collapse
Affiliation(s)
| | - Tamar S Garza-Romero
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, Tamaulipas, México
| | - Víctor R Moreno-Medina
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, Tamaulipas, México
| | | | | |
Collapse
|
49
|
Hammami H, Baptista P, Martins F, Gomes T, Abdelly C, Mahmoud OMB. Impact of a natural soil salinity gradient on fungal endophytes in wild barley (Hordeum maritimum With.). World J Microbiol Biotechnol 2016; 32:184. [PMID: 27655527 DOI: 10.1007/s11274-016-2142-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Occurrence and distribution pattern of fungal endophytes in different tissues of halophytic plants across saline depressions are poorly studied. We investigated the endophytic fungal communities inhabiting roots, stems and leaves of Hordeum maritimum collected in a soil salinity gradient, i.e. non-saline, slightly saline and saline, using a culture-dependent approach. A total of 20 taxa belonging to Ascomycota phylum were identified by ITS rRNA gene sequence. Pyronema domesticum and Alternaria spp. were the most frequently isolated. Roots host higher diversity and were more frequently colonized by endophytes than aboveground organs. Endophytic composition of all organs surveyed differed according to salinity gradient. Contrary to expectations, the colonization rate of roots increased with soil salinity, indicating that under salt stress the endophyte-plant association is promoted. All the isolates exhibited in vitro saline tolerance, especially those belonging to genera Xylaria, Chalastospora, Alternaria and Pyronema. Fungal tolerance to NaCl under in vitro conditions appears to be more dependent on the isolates than on the sites of their isolation, suggesting that under natural conditions other factors, beyond soil salinity, should be taken into account. These findings highlight the importance of fungal endophytes in the protection and/or adaptation of both interacting species (plant-fungus) to salt stress under natural conditions.
Collapse
Affiliation(s)
- Haifa Hammami
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, B. P. 901, 2050, Hammam-Lif, Tunisia
| | - Paula Baptista
- REQUIMTE-LAQV, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Fátima Martins
- REQUIMTE-LAQV, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Teresa Gomes
- REQUIMTE-LAQV, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, B. P. 901, 2050, Hammam-Lif, Tunisia
| | - Ouissal Metoui-Ben Mahmoud
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, B. P. 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
50
|
Konte T, Terpitz U, Plemenitaš A. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae. Front Microbiol 2016; 7:901. [PMID: 27379041 PMCID: PMC4904012 DOI: 10.3389/fmicb.2016.00901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.
Collapse
Affiliation(s)
- Tilen Konte
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg Würzburg, Germany
| | - Ana Plemenitaš
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|