1
|
Shindou J, Hayashi W, Kayama S, Yu L, Zuo H, Sugawara Y, Sugai M. First detection of VEB-1 extended-spectrum β-lactamase-producing Escherichia coli clinical isolate in Japan. Microbiol Spectr 2024; 12:e0052324. [PMID: 39287461 PMCID: PMC11537020 DOI: 10.1128/spectrum.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The extended-spectrum β-lactamase (ESBL) gene, blaVEB-1, was identified for the first time in an Escherichia coli clinical isolate, JARB-RN-0061, from blood cultures in a Japanese general hospital in 2021. The isolate exhibited high resistance to broad-spectrum cephalosporins, including ceftazidime (MIC >128 mg/L) and cefepime (MIC = 16 mg/L). blaVEB-1 was identified during whole-genome sequencing and characterization of the isolate. JARB-RN-0061 belonged to the B2-O2:K1:H7-ST95-fimH41 lineage and was classified as presumptive extraintestinal pathogenic E. coli (ExPEC) and uropathogenic E. coli (UPEC). Moreover, the strain harbored multiple virulence genes on the chromosome. The Col156/IncFIB(AP001918)/IncFII(29)-type plasmid (114,216 bp), with clbB and tcpC genes involved in bacteremia, was unique to the fimH41 subclone. The blaVEB-1 gene was located on a non-typeable and non-conjugative plasmid, pJARB-RN-0061_VEB-1 (17,093 bp). It was embedded in the class 1 integron In1883-like, with multidrug resistance gene cassettes for aacA4, aadB, cmlA5, qnrVC4, and dfrA14. Notably, comparative analysis of the complete sequence of plasmid pJARB-RN-0061_VEB-1 revealed that it was highly homologous to the blaVEB-1-harboring plasmid, pMS2H7VEB-1 (100% coverage and 99.99% identity), except for the Tn3 family transposon (4,931 bp) and the plasmid pRHBSTW-00138_5 (97% coverage and 100% identity) harbored by Klebsiella quasipneumoniae subsp. similipneumoniae strains from hospital sewage in Japan and wastewater influent in the United Kingdom, respectively. The emergence of a human pathogenic E. coli clinical isolate with the blaVEB-1-carrying plasmid in the B2-ST95 worldwide pandemic lineage, characterized by the virulence potential of ExPEC or UPEC but a low prevalence of antimicrobial resistance, would raise public health concerns. IMPORTANCE ESBLs are plasmid-mediated enzymes that confer resistance to clinically significant antimicrobial agents, such as broad-spectrum cephalosporins. Recently, the rapid spread of CTX-M-type ESBL-producing E. coli has become a global issue, including in Japan, where ESBL production in human pathogenic E. coli, such as the ExPEC and UPEC lineages, which typically harbor several virulence genes, is a severe public health concern. To date, VEB (Vietnamese extended-spectrum β-lactamase) producers have been found only in hospital wastewater and rivers in Japan. Thus, we describe the first detection of a very rare human-derived blaVEB-1 gene in the E. coli B2-ST95 pandemic clonal lineage that is highly associated with ExPEC and UPEC in a Japanese clinical setting. Furthermore, we characterized the genomic features of plasmids harboring the class 1 integron-borne blaVEB-1. Our findings highlight the significance of closely monitoring ESBL-producing E. coli isolates to prevent the potential dissemination of this resistance determinant in Japan.
Collapse
Affiliation(s)
- Junko Shindou
- Department of Laboratory Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Guo W, Zhou M, Li F, Neves ALA, Ma T, Bi S, Wang W, Long R, Guan LL. Seasonal stability of the rumen microbiome contributes to the adaptation patterns to extreme environmental conditions in grazing yak and cattle. BMC Biol 2024; 22:240. [PMID: 39443951 PMCID: PMC11515522 DOI: 10.1186/s12915-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The rumen microbiome plays an essential role in maintaining ruminants' growth and performance even under extreme environmental conditions, however, which factors influence rumen microbiome stability when ruminants are reared in such habitats throughout the year is unclear. Hence, the rumen microbiome of yak (less domesticated) and cattle (domesticated) reared on the Qinghai-Tibetan Plateau through the year were assessed to evaluate temporal changes in their composition, function, and stability. RESULTS Rumen fermentation characteristics and pH significantly shifted across seasons in both cattle and yak, but the patterns differed between the two ruminant species. Ruminal enzyme activity varied with season, and production of xylanase and cellulase was greater in yak compared to cattle in both fall and winter. The rumen bacterial community varied with season in both yak and cattle, with higher alpha diversity and similarity (beta diversity) in yak than cattle. The diversity indices of eukaryotic community did not change with season in both ruminant species, but higher similarity was observed in yak. In addition, the similarity of rumen microbiome functional community was higher in yak than cattle across seasons. Moreover, yak rumen microbiome encoded more genes (GH2 and GH3) related to cellulose and hemicellulose degradation compared to cattle, and a new enzyme family (GH160) gene involved in oligosaccharides was uniquely detected in yak rumen. The season affected microbiome attenuation and buffering values (stability), with higher buffering value in yak rumen microbiome than cattle. Positive correlations between antimicrobial resistance gene (dfrF) and CAZyme family (GH113) and microbiome stability were identified in yak, but such relationship was negatively correlated in cattle. CONCLUSIONS The findings of the potential of cellulose degradation, the relationship between rumen microbial stability and the abundance of functional genes varied differently across seasons and between yak and cattle provide insight into the mechanisms that may underpin their divergent adaptation patterns to the harsh climate of the Qinghai-Tibetan Plateau. These results lay a solid foundation for developing strategies to maintain and improve rumen microbiome stability and dig out the potential candidates for manufacturing lignocellulolytic enzymes in the yak rumen to enhance ruminants' performance under extreme environmental conditions.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - André Luis Alves Neves
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, 1870, Denmark
| | - Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sisi Bi
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiwei Wang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Wang C, Wang X, Hao J, Kong H, Zhao L, Li M, Zou M, Liu G. Serotype Distribution and Antimicrobial Resistance of Salmonella Isolates from Poultry Sources in China. Antibiotics (Basel) 2024; 13:959. [PMID: 39452225 PMCID: PMC11503990 DOI: 10.3390/antibiotics13100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Salmonella is an important zoonotic pathogen, of which poultry products are important reservoirs. This study analyzed the prevalence, antimicrobial resistance, and characterization of Salmonella from broiler and laying hen sources in China. METHODS A total of 138 (12.27%) strains of Salmonella were isolated from 1125 samples from broiler slaughterhouses (20.66%, 44/213), broiler farms (18.21%, 55/302), and laying hen farms (6.39%, 39/610). Multiplex PCR was used to identify the serotypes. Antibiotic susceptibility testing to a set of 21 antibiotics was performed and all strains were screened by PCR for 24 selected antimicrobial resistance genes (ARGs). In addition, 24 strains of Salmonella were screened out by whole-genome sequencing together with 65 released Salmonella genomes to evaluate phylogenetic characteristics, multilocus sequence typing (MLST), and plasmid carriage percentages. RESULTS A total of 11 different serotypes were identified, with the dominance of S. Enteritidis (43/138, 31.16%), S. Newport (30/138, 21.74%), and S. Indiana (19/138, 13.77%). The results showed that S. Enteritidis (34.34%, 34/99) and S. Newport (51.28%, 20/39) were the dominant serotypes of isolates from broilers and laying hens, respectively. The 138 isolates showed the highest resistance to sulfisoxazole (SXZ, 100%), nalidixic acid (NAL, 54.35%), tetracycline (TET, 47.83%), streptomycin (STR, 39.86%), ampicillin (AMP, 39.13%), and chloramphenicol (CHL, 30.43%), while all the strains were sensitive to both tigacycline (TIG) and colistin (COL). A total of 45.65% (63/138) of the isolates were multidrug-resistant (MDR) strains, and most of them (61/63, 96.83%) were from broiler sources. The results of PCR assays revealed that 63.77% of the isolates were carrying the quinolone resistance gene qnrD, followed by gyrB (58.70%) and the trimethoprim resistance gene dfrA12 (52.17%). Moreover, a total of thirty-four ARGs, eighty-nine virulence genes, and eight plasmid replicons were detected in the twenty-four screened Salmonella strains, among which S. Indiana was detected to carry the most ARGs and the fewest plasmid replicons and virulence genes compared to the other serotypes. CONCLUSIONS This study revealed a high percentage of multidrug-resistant Salmonella from poultry sources, stressing the importance of continuous monitoring of Salmonella serotypes and antimicrobial resistance in the poultry chain, and emergency strategies should be implemented to address this problem.
Collapse
Affiliation(s)
- Chu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Xianwen Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Juyuan Hao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - He Kong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Liyuan Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Mingzhen Li
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan 250100, China;
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| |
Collapse
|
4
|
Anueyiagu KN, Agu CG, Umar U, Lopes BS. Antimicrobial Resistance in Diverse Escherichia coli Pathotypes from Nigeria. Antibiotics (Basel) 2024; 13:922. [PMID: 39452189 PMCID: PMC11504273 DOI: 10.3390/antibiotics13100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Escherichia coli is a gram-negative commensal bacterium living in human and animal intestines. Its pathogenic strains lead to high morbidity and mortality, which can adversely affect people by causing urinary tract infections, food poisoning, septic shock, or meningitis. Humans can contract E. coli by eating contaminated food-such as raw or undercooked raw milk, meat products, and fresh produce sold in open markets-as well as by coming into contact with contaminated settings like wastewater, municipal water, soil, and faeces. Some pathogenic strains identified in Nigeria, include Enterohemorrhagic (Verotoxigenic), Enterotoxigenic, Enteropathogenic, Enteroinvasive, and Enteroaggregative E. coli. This causes acute watery or bloody diarrhoea, stomach cramps, and vomiting. Apart from the virulence profile of E. coli, antibiotic resistance mechanisms such as the presence of blaCTX-M found in humans, animals, and environmental isolates are of great importance and require surveillance and monitoring for emerging threats in resource-limited countries. This review is aimed at understanding the underlying mechanisms of evolution and antibiotic resistance in E. coli in Nigeria and highlights the use of improving One Health approaches to combat the problem of emerging infectious diseases.
Collapse
Affiliation(s)
- Kenneth Nnamdi Anueyiagu
- Department of Public Health Technology, Federal College of Animal Health and Production Technology, Vom 200273, Nigeria;
| | | | - Uzal Umar
- Department of Medical Microbiology and Parasitology, University of Jos, Jos 930105, Nigeria;
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
5
|
Leopold M, Kabicher A, Pap IJ, Ströbele B, Zarfel G, Farnleitner AH, Kirschner AKT. A comparative study on antibiotic resistant Escherichia coli isolates from Austrian patients and wastewater-influenced Danube River water and biofilms. Int J Hyg Environ Health 2024; 258:114361. [PMID: 38552533 DOI: 10.1016/j.ijheh.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Antimicrobial resistance (AMR) poses a major threat to human health worldwide. AMR can be introduced into natural aquatic ecosystems, for example, from clinical facilities via wastewater emissions. Understanding AMR patterns in environmental populations of bacterial pathogens is important to elucidate propagation routes and develop mitigation strategies. In this study, AMR patterns of Escherichia coli isolates from urinary tract infections and colonised urinary catheters of inpatients and outpatients were compared to isolates from the Danube River within the same catchment in Austria to potentially link environmental with clinical resistance patterns. Susceptibility to 20 antibiotics was tested for 697 patient, 489 water and 440 biofilm isolates. The resistance ratios in patient isolates were significantly higher than in the environmental isolates and higher resistance ratios were found in biofilm in comparison to water isolates. The role of the biofilm as potential sink of resistances was reflected by two extended-spectrum beta-lactamase (ESBL) producing isolates in the biofilm while none were found in water, and by higher amoxicillin/clavulanic acid resistance ratios in biofilm compared to patient isolates. Although, resistances to last-line antibiotics such as carbapenems and tigecycline were found in the patient and in the environmental isolates, they still occurred at low frequency.
Collapse
Affiliation(s)
- Melanie Leopold
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Vienna, Austria
| | - Angelika Kabicher
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Vienna, Austria
| | - Ildiko-Julia Pap
- Clinical Institute for Hygiene and Microbiology, University Clinic St. Pölten, Austria
| | - Barbara Ströbele
- Clinical Institute for Hygiene and Microbiology, University Clinic St. Pölten, Austria
| | - Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Austria
| | - Andreas H Farnleitner
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Austria.
| |
Collapse
|
6
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
7
|
Sivan G, Sukumaran DP, Ezhuthanikkunnel AP, Ammanamveetil Abdulla MH. Prevalence of Extended-Spectrum Beta-Lactamase Resistance and CTX-M-Group 1 Gene in Escherichia coli from the Water and Sediment of Urbanized Mangrove Ecosystems of Kerala. Microb Drug Resist 2023; 29:582-588. [PMID: 37883192 DOI: 10.1089/mdr.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
The study aimed to determine the prevalence of extended-spectrum β-lactamase resistance and CTX-M-group 1 gene in Escherichia coli from the water and sediment of three urbanized mangrove ecosystems of Kerala. A total of 119 E. coli isolates were screened for antibiotic susceptibility to 16 antibiotics. According to the phylogenetic analysis of E. coli isolates, nonpathogenic group A and pathogenic group D (29.4% and 23.5%) were the predominant phylotypes found in water samples. The most frequent phylotypes found in sediment samples were nonpathogenic groups A and B1 (27.9% and 26.4%). The highest incidence of antibiotic resistance in E. coli was against cefotaxime and colistin (100%). A significant difference in the prevalence of CTX-M-group 1 gene was observed among E. coli isolates in water samples (p < 0.05). The results indicate a high prevalence of β-lactamase harboring E. coli in the mangrove ecosystems that can hamper mangrove-dependent aquaculture practices and human health.
Collapse
Affiliation(s)
- Gopika Sivan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Divya P Sukumaran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Akhil Prakash Ezhuthanikkunnel
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Mohamed Hatha Ammanamveetil Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| |
Collapse
|
8
|
Ortega-Balleza JL, Guerrero A, Castro-Escarpulli G, Martínez-Vázquez AV, Cruz-Hernández MA, de Luna-Santillana EDJ, Acosta-Cruz E, Rodríguez-Sánchez IP, Rivera G, Bocanegra-García V. Genomic Analysis of Multidrug-Resistant Escherichia coli Strains Isolated in Tamaulipas, Mexico. Trop Med Infect Dis 2023; 8:458. [PMID: 37888586 PMCID: PMC10610597 DOI: 10.3390/tropicalmed8100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
The global spread of antimicrobial resistance genes (ARGs) is a major public health concern. Mobile genetic elements (MGEs) are the main drivers of this spread by horizontal gene transfer (HGT). Escherichia coli is widespread in various environments and serves as an indicator for monitoring antimicrobial resistance (AMR). Therefore, the objective of this work was to evaluate the whole genome of multidrug-resistant E. coli strains isolated from human clinical, animal, and environmental sources. Four E. coli strains previously isolated from human urine (n = 2), retail meat (n = 1), and water from the Rio Grande River (n = 1) collected in northern Tamaulipas, Mexico, were analyzed. E. coli strains were evaluated for antimicrobial susceptibility, followed by whole genome sequencing and bioinformatic analysis. Several ARGs were detected, including blaCTX-M-15, blaOXA-1, blaTEM-1B, blaCMY-2, qnrB, catB3, sul2, and sul3. Additionally, plasmid replicons (IncFIA, IncFIB, IncFII, IncY, IncR, and Col) and intact prophages were also found. Insertion sequences (ISs) were structurally linked with resistance and virulence genes. Finally, these findings indicate that E. coli strains have a large repertoire of resistance determinants, highlighting a high pathogenic potential and the need to monitor them.
Collapse
Affiliation(s)
- Jessica L. Ortega-Balleza
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Abraham Guerrero
- CONACyT Program, Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Mexico;
| | - Graciela Castro-Escarpulli
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico 07738, Mexico;
| | - Ana Verónica Martínez-Vázquez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - María Antonia Cruz-Hernández
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Erick de Jesús de Luna-Santillana
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Erika Acosta-Cruz
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo Coahuila 25280, Mexico;
| | - Irám Pablo Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n cruz con Ave. Manuel L. Barragán, San Nicolás de los Garza 66455, Mexico;
| | - Gildardo Rivera
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Virgilio Bocanegra-García
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| |
Collapse
|
9
|
Chen JS, Hsu BM, Ko WC, Wang JL. Comparison of antibiotic-resistant Escherichia coli and extra-intestinal pathogenic E. coli from main river basins under different levels of the sewer system development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115372. [PMID: 37619401 DOI: 10.1016/j.ecoenv.2023.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/30/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Antimicrobial-resistant Escherichia coli in the aquatic environments is considered a strong indicator of sewage or animal waste contamination and antibiotic pollution. Sewer construction and wastewater treatment plant (WWTP) infrastructure may serve as concentrated point sources of contamination of antibiotic-resistant bacteria and antibiotic resistance genes. In this study, we focused on the distribution of antimicrobial-resistant E. coli in two rivers with large drainage areas and different urbanisation levels. E. coli from Kaoping River with drainage mainly from livestock farming had higher resistance to antibiotics (e.g. penicillins, tetracyclines, phenicols, aminoglycosides, and sulpha drugs) and presented more positive detection of antibiotic-resistance genes (e.g. ampC, blaTEM, tetA, and cmlA1) than that from Tamsui River. In Kaoping River with a lower percentage of sewer construction nearby (0-30%) in contrast to a higher percentage of sewer construction (55-92%) in Tamsui River, antimicrobial-resistant E. coli distribution was related to livestock farming waste. In Tamsui River, antimicrobial resistant E. coli isolates were found more frequently in the downstream drainage area of WWTPs with secondary water treatment than that of WWTPs with tertiary water treatment. The Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR showed that the fingerprinting group was significantly related to the sampling site (p < 0.01) and sampling date (p < 0.05). By utilising ERIC-PCR in conjunction with antibiotic susceptibility and antibiotic-resistance gene detection, the relationship among different strains of E. coli could be elucidated. Furthermore, we identified the presence of six extra-intestinal pathogenic E. coli isolates and antibiotic-resistant E. coli isolates near drinking water sources, posing a potential risk to public health through community transmission. In conclusion, this study identified environmental factors related to antibiotic-resistant bacteria and antibiotic-resistance gene contamination in rivers during urban development. The results facilitate the understanding of specific management of different waste streams across different urban areas. Periodic surveillance of the effects of WWTPs and livestock waste containing antibiotic-resistant bacteria and antibiotic-resistance genes on river contamination is necessary.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Ling Wang
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
10
|
Byarugaba DK, Wokorach G, Alafi S, Erima B, Najjuka F, Mworozi EA, Kibuuka H, Wabwire-Mangen F. Whole Genome Sequencing Reveals High Genetic Diversity, Diverse Repertoire of Virulence-Associated Genes and Limited Antibiotic Resistance Genes among Commensal Escherichia coli from Food Animals in Uganda. Microorganisms 2023; 11:1868. [PMID: 37630428 PMCID: PMC10457813 DOI: 10.3390/microorganisms11081868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Commensal Escherichia coli with broad repertoire of virulence and antimicrobial resistance (AMR) genes pose serious public health risks as reservoirs of AMR and virulence. This study undertook whole genome characterization of commensal E. coli from food-producing animals in Uganda to investigate their genome variability (resistome and virulome). We established that the E. coli had high genomic diversity with 38 sequence types, 24 FimH types, and 33 O-antigen serotypes randomly distributed within three phylogroups (A, B1, and E). A greater proportion (≥93.65%) of the E. coli were resistant to amoxicillin/clavulanate and ampicillin antibiotics. The isolates were AmpC beta-lactamase producers dominated by blaEC-15 (71.88%) and tet(A) (20.31%) antimicrobial resistant genes besides a diverse armory of virulence-associated genes in the class of exotoxin, adhesins, iron uptake, and serine protease autotransporters which varied by host species. Cattle were found to be the major source of E. coli carrying Shiga toxin genes, whereas swine was the main source of E. coli carrying colicin-like Usp toxin gene. The study underscores the importance of livestock as the carrier of E. coli with antimicrobial resistance and a large repertoire of virulence traits with a potential of causing disease in animals and humans by acquiring more genetic traits.
Collapse
Affiliation(s)
- Denis K. Byarugaba
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Godfrey Wokorach
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- Gulu University Multifunctional Research Laboratories, Gulu P.O. Box 166, Uganda
| | - Stephen Alafi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Florence Najjuka
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Edison A. Mworozi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Fred Wabwire-Mangen
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| |
Collapse
|
11
|
Gomi R, Haramoto E, Wada H, Sugie Y, Ma CY, Raya S, Malla B, Nishimura F, Tanaka H, Ihara M. Development of two microbial source tracking markers for detection of wastewater-associated Escherichia coli isolates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160952. [PMID: 36549531 DOI: 10.1016/j.scitotenv.2022.160952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Escherichia coli has been used as an indicator of fecal pollution in environmental waters. However, its presence in environmental waters does not provide information on the source of water pollution. Identifying the source of water pollution is paramount to be able to effectively reduce contamination. The present study aimed to identify E. coli microbial source tracking (MST) markers that can be used to identify domestic wastewater contamination in environmental waters. We first analyzed wastewater E. coli genomes sequenced by us (n = 50) and RefSeq animal E. coli genomes of fecal origin (n = 82), and identified 144 candidate wastewater-associated marker genes. The sensitivity and specificity of the candidate marker genes were then assessed by screening the genes in 335 RefSeq wastewater E. coli genomes and 3318 RefSeq animal E. coli genomes. We finally identified two MST markers, namely W_nqrC and W_clsA_2, which could be used for detection of wastewater-associated E. coli isolates. These two markers showed higher performance than the previously developed human wastewater-associated E. coli markers H8 and H12. When used in combination, W_nqrC and W_clsA_2 showed specificity of 98.9 % and sensitivity of 25.7 %. PCR assays to detect W_nqrC and W_clsA_2 were also developed and validated. The developed PCR assays are potentially useful for detecting E. coli isolates of wastewater origin in environmental waters, though users should keep in mind that the sensitivity of these markers is not high. Further studies are needed to assess the applicability of the developed markers to a culture-independent approach.
Collapse
Affiliation(s)
- Ryota Gomi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8540 Kyoto, Japan.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511 Yamanashi, Japan
| | - Hiroyuki Wada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Shiga, Japan
| | - Yoshinori Sugie
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Shiga, Japan
| | - Chih-Yu Ma
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Shiga, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, Kofu, 400-8511 Yamanashi, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511 Yamanashi, Japan
| | - Fumitake Nishimura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Shiga, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Shiga, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Shiga, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan.
| |
Collapse
|
12
|
Mussio P, Martínez I, Luzardo S, Navarro A, Leotta G, Varela G. Phenotypic and genotypic characterization of Shiga toxin-producing Escherichia coli strains recovered from bovine carcasses in Uruguay. Front Microbiol 2023; 14:1130170. [PMID: 36950166 PMCID: PMC10025531 DOI: 10.3389/fmicb.2023.1130170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that cause food-borne diseases in humans. Cattle and derived foodstuffs play a known role as reservoir and vehicles, respectively. In Uruguay, information about the characteristics of circulating STEC in meat productive chain is scarce. The aim was to characterize STEC strains recovered from 800 bovine carcasses of different slaughterhouses. Methods To characterize STEC strains we use classical microbiological procedures, Whole Genome Sequencing (WGS) and FAO/WHO risk criteria. Results We analyzed 39 STEC isolated from 20 establishments. They belonged to 21 different O-groups and 13 different H-types. Only one O157:H7 strain was characterized and the serotypes O130:H11(6), O174:H28(5), and O22:H8(5) prevailed. One strain showed resistance in vitro to tetracycline and genes for doxycycline, sulfonamide, streptomycin and fosfomycin resistance were detected. Thirty-three strains (84.6%) carried the subtypes Stx2a, Stx2c, or Stx2d. The gene eae was detected only in two strains (O157:H7, O182:H25). The most prevalent virulence genes found were lpfA (n = 38), ompA (n = 39), ompT (n = 39), iss (n = 38), and terC (n = 39). Within the set of STEC analyzed, the majority (81.5%) belonged to FAO/WHO's risk classification levels 4 and 5 (lower risk). Besides, we detected STEC serotypes O22:H8, O113:H21, O130:H11, and O174:H21 belonged to level risk 2 associate with diarrhea, hemorrhagic colitis or Hemolytic-Uremic Syndrome (HUS). The only O157:H7 strain analyzed belonged to ST11. Thirty-eight isolates belonged to the Clermont type B1, while the O157:H7 was classified as E. Discussion The analyzed STEC showed high genomic diversity and harbor several genetic determinants associated with virulence, underlining the important role of WGS for a complete typing. In this set we did not detect non-O157 STEC previously isolated from local HUS cases. However, when interpreting this findings, the low number of isolates analyzed and some methodological limitations must be taken into account. Obtained data suggest that cattle constitute a local reservoir of non-O157 serotypes associated with severe diseases. Other studies are needed to assess the role of the local meat chain in the spread of STEC, especially those associated with severe diseases in humans.
Collapse
Affiliation(s)
- Paula Mussio
- Departamento de Microbiología, Laboratorio Tecnológico del Uruguay, Montevideo, Uruguay
- *Correspondence: Paula Mussio,
| | | | - Santiago Luzardo
- Instituto Nacional de Investigación Agropecuaria, INIA, Tacuarembó, Uruguay
| | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Leotta
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA-CONICET, Buenos Aires, Argentina
| | - Gustavo Varela
- Departamento de Bacteriología y Virología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Gustavo Varela,
| |
Collapse
|
13
|
Bastidas-Caldes C, Romero-Alvarez D, Valdez-Vélez V, Morales RD, Montalvo-Hernández A, Gomes-Dias C, Calvopiña M. Extended-Spectrum Beta-Lactamases Producing Escherichia coli in South America: A Systematic Review with a One Health Perspective. Infect Drug Resist 2022; 15:5759-5779. [PMID: 36204394 PMCID: PMC9531622 DOI: 10.2147/idr.s371845] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
- Doctoral Program in Public and Animal Health, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
- Correspondence: Carlos Bastidas-Caldes, One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, 170124, Ecuador, Tel +593 983 174949, Email
| | - Daniel Romero-Alvarez
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | - Victor Valdez-Vélez
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Roberto D Morales
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Andrés Montalvo-Hernández
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Cicero Gomes-Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Manuel Calvopiña
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
14
|
Occurrence and genetic characteristics of multidrug-resistant Escherichia coli isolates co-harboring antimicrobial resistance genes and metal tolerance genes in aquatic ecosystems. Int J Hyg Environ Health 2022; 244:114003. [PMID: 35779436 DOI: 10.1016/j.ijheh.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Multidrug-resistant (MDR) Escherichia coli isolates (n = 50) were recovered from aquatic ecosystems, which presented high counts of E. coli and metal values within the recommended range. These isolates showed different multidrug resistance profiles, highlighting the resistance to extended-spectrum cephalosporins, polymyxins, and fluoroquinolones. Several antimicrobial resistance genes (ARGs) were found, spotlighting the presence of at least one β-lactamase-encoding gene in each E. coli isolate. Substitutions in the quinolone resistance-determining regions and the two-component systems involving PhoP/PhoQ and PmrA/PmrB were also found. The metal tolerance gene rcnA (nickel and cobalt efflux pump) was the most prevalent. In this regard, 94% of E. coli isolates presented the co-occurrence of at least one ARG and metal tolerance gene. Furthermore, virulence genes and genetic diversity were found among MDR E. coli isolates. The emergence of potentially pathogenic isolates exhibiting multidrug resistance and metal tolerance emerged as a global health problem at the human-animal-environment interface.
Collapse
|
15
|
Gaeta NC, de Carvalho DU, Fontana H, Sano E, Moura Q, Fuga B, Munoz PM, Gregory L, Lincopan N. Genomic features of a multidrug-resistant and mercury-tolerant environmental Escherichia coli recovered after a mining dam disaster in South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153590. [PMID: 35122850 PMCID: PMC8994849 DOI: 10.1016/j.scitotenv.2022.153590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Mining dam disasters contribute to the contamination of aquatic environments, impacting associated ecosystems and wildlife. A multidrug-resistant Escherichia coli strain (B2C) was isolated from a river water sample in Brazil after the Mariana mining dam disaster. The genome was sequenced using the Illumina MiSeq platform, and de novo assembled using Unicycler. Resistome, virulome, and plasmidome were predicted using bioinformatics tools. Data analysis revealed that E. coli B2C belonged to sequence type ST219 and phylogroup E. Strikingly, a broad resistome (antibiotics, hazardous heavy metals, and biocides) was predicted, including the presence of the clinically relevant blaCTX-M-2 extended-spectrum β-lactamase (ESBL) gene, qacE∆1 efflux pump gene, and the mer (mercury resistance) operon. SNP-based analysis revealed that environmental E. coli B2C was clustered along to ESBL-negative E. coli strains of ST219 isolated between 1980 and 2021 from livestock in the United States of America. Acquisition of clinically relevant genes by ST219 seems to be a recent genetic event related to anthropogenic activities, where polluted water environments may contribute to its dissemination at the human-animal-environment interface. In addition, the presence of genes conferring resistance to heavy metals could be related to environmental pollution from mining activities. Antimicrobial resistance genes could be essential biomarkers of environmental exposure to human and mining pollution.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Daniel U de Carvalho
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Selvaraj GK, Wang H, Zhang Y, Tian Z, Chai W, Lu H. Class 1 In-Tn5393c array contributed to antibiotic resistance of non-pathogenic Pseudoxanthomonas mexicana isolated from a wastewater bioreactor treating streptomycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153537. [PMID: 35101502 DOI: 10.1016/j.scitotenv.2022.153537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The emergence of antibiotic resistance in retort to environmental pollutants during wastewater treatment still remains elusive. Here, we first to investigate the emergence of antibiotic resistance in an environmental non-pathogenic bacterium, Pseudoxanthomonas mexicana isolated from a lab-scale bioreactor treating wastewater containing streptomycin. The molecular mechanism of antibiotic resistance development was evaluated in its genomic, transcriptional, and proteomic levels. The streptomycin resistant (SR) strain showed strong resistance to streptomycin (MIC > 600 μg/mL) as well to sulfamethoxazole, ampicillin, and kanamycin (≥250 μg/mL). A 13.4 kb class-1-integron array consisting of a new arrangement of gene cassette (IS6100-sul1-aadA2-catB3-aacA1-2-aadB-int1-IS256-int) linked with Tn5393c transposon was identified in the SR strain, which has only been reported in clinical pathogens so far. iTRAQ-LC-MS/MS proteomics revealed 22 up-regulated proteins in the SR strain growing under 100 mg L-1 streptomycin, involving antibiotic resistance, toxin production, stress response, and ribosomal protein synthesis. At the mRNA level, elevated expressions of ARGs (strA, strB, and aadB) and 30S-ribosomal protein genes (rpsA and rpsU) were observed in the SR strain. The results highlighted the genomic plasticity and multifaceted regulatory mechanism employed by P. mexicana in adaptation to high-level streptomycin during biological wastewater treatment.
Collapse
Affiliation(s)
- Ganesh-Kumar Selvaraj
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India
| | - Hanqing Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbo Chai
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Whole-Genome Sequencing and Virulome Analysis of Escherichia coli Isolated from New Zealand Environments of Contrasting Observed Land Use. Appl Environ Microbiol 2022; 88:e0027722. [PMID: 35442082 PMCID: PMC9088250 DOI: 10.1128/aem.00277-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.
Collapse
|
18
|
High Genetic Diversity and Antimicrobial Resistance in Escherichia coli Highlight Arapaima gigas (Pisces: Arapaimidae) as a Reservoir of Quinolone-Resistant Strains in Brazilian Amazon Rivers. Microorganisms 2022; 10:microorganisms10040808. [PMID: 35456858 PMCID: PMC9030826 DOI: 10.3390/microorganisms10040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing prevalence of multi-drug resistant (MDR) Escherichia coli in distinct ecological niches, comprising water sources and food-producing animals, such as fish species, has been widely reported. In the present study, quinolone-resistant E. coli isolates from Arapirama gigas, a major fish species in the Brazilian Amazon rivers and fish farms, were characterized regarding their antimicrobial susceptibility, virulence, and genetic diversity. A total of forty (40) specimens of A. gigas, including 20 farmed and 20 wild fish, were included. Thirty-four quinolone-resistant E. coli isolates were phenotypically tested by broth microdilution, while resistance and virulence genes were detected by PCR. Molecular epidemiology and genetic relatedness were analyzed by MLST and PFGE typing. The majority of isolates were classified as MDR and detected harboring blaCTX-M, qnrA and qnrB genes. Enterotoxigenic E. coli pathotype (ETEC) isolates were presented in low prevalence among farmed animals. MLST and PFGE genotyping revealed a wide genetic background, including the detection of internationally spread clones. The obtained data point out A. gigas as a reservoir in Brazilian Amazon aquatic ecosystems and warns of the interference of AMR strains in wildlife and environmental matrices.
Collapse
|
19
|
Sanz MB, De Belder D, de Mendieta JM, Faccone D, Poklepovich T, Lucero C, Rapoport M, Campos J, Tuduri E, Saavedra MO, Van der Ploeg C, Rogé A, Pasteran F, Corso A, Rosato AE, Gomez SA. Carbapenemase-Producing Extraintestinal Pathogenic Escherichia coli From Argentina: Clonal Diversity and Predominance of Hyperepidemic Clones CC10 and CC131. Front Microbiol 2022; 13:830209. [PMID: 35369469 PMCID: PMC8971848 DOI: 10.3389/fmicb.2022.830209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) causes infections outside the intestine. Particular ExPEC clones, such as clonal complex (CC)/sequence type (ST)131, have been known to sequentially accumulate antimicrobial resistance that starts with chromosomal mutations against fluoroquinolones, followed with the acquisition of blaCTX–M–15 and, more recently, carbapenemases. Here we aimed to investigate the distribution of global epidemic clones of carbapenemase-producing ExPEC from Argentina in representative clinical isolates recovered between July 2008 and March 2017. Carbapenemase-producing ExPEC (n = 160) were referred to the Argentinean reference laboratory. Of these, 71 were selected for genome sequencing. Phenotypic and microbiological studies confirmed the presence of carbapenemases confirmed as KPC-2 (n = 52), NDM-1 (n = 16), IMP-8 (n = 2), and VIM-1 (n = 1) producers. The isolates had been recovered mainly from urine, blood, and abdominal fluids among others, and some were from screening samples. After analyzing the virulence gene content, 76% of the isolates were considered ExPEC, although non-ExPEC isolates were also obtained from extraintestinal sites. Pan-genome phylogeny and clonal analysis showed great clonal diversity, although the first phylogroup in abundance was phylogroup A, harboring CC10 isolates, followed by phylogroup B2 with CC/ST131, mostly H30Rx, the subclone co-producing CTX-M-15. Phylogroups D, B1, C, F, and E were also detected with fewer strains. CC10 and CC/ST131 were found throughout the country. In addition, CC10 nucleated most metalloenzymes, such as NDM-1. Other relevant international clones were identified, such as CC/ST38, CC155, CC14/ST1193, and CC23. Two isolates co-produced KPC-2 and OXA-163 or OXA-439, a point mutation variant of OXA-163, and three isolates co-produced MCR-1 among other resistance genes. To conclude, in this work, we described the molecular epidemiology of carbapenemase-producing ExPEC in Argentina. Further studies are necessary to determine the plasmid families disseminating carbapenemases in ExPEC in this region.
Collapse
Affiliation(s)
- María Belén Sanz
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Denise De Belder
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J M de Mendieta
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tomás Poklepovich
- Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Celeste Lucero
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Melina Rapoport
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Josefina Campos
- Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Ezequiel Tuduri
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Mathew O Saavedra
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Claudia Van der Ploeg
- Servicio de Antígenos y Antisueros, INPB-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio de Antígenos y Antisueros, INPB-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Fernando Pasteran
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Adriana E Rosato
- Department of Pathology and Molecular Microbiology Diagnostics-Research, Riverside University Health System, Moreno Valley, CA, United States.,School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Sonia A Gomez
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Elankumaran P, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Close genetic linkage between human and companion animal extraintestinal pathogenic Escherichia coli ST127. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100106. [PMID: 35128493 PMCID: PMC8803956 DOI: 10.1016/j.crmicr.2022.100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli ST127, a recently emerged global pathogen noted for high virulence gene carriage, is a leading cause of urinary tract and blood stream infections. ST127 is frequently isolated from humans and companion animals; however, it is unclear if they are distinct or related populations of ST127. We performed a phylogenomic analysis of 299 E. coli ST127 of diverse epidemiological origin to characterize their population structure, genetic determinants of virulence, antimicrobial resistance, and repertoire of mobile genetic elements with a focus on plasmids. The core gene phylogeny was divided into 13 clusters, the largest of which (BAP4) contained the majority of human and companion animal origin isolates. This dominant cluster displayed genetic differences to the remainder of the phylogeny, most notably alternative gene alleles encoding important virulence factors including lipid A, flagella, and K capsule. Furthermore, numerous close genetic linkages (<30 SNPs) between human and companion animal isolates were observed within the cluster. Carriage of antimicrobial resistance genes in the collection was limited, but virulence gene carriage was extensive. We found evidence of pUTI89-like virulence plasmid carriage in over a third of isolates, localised to four of the major phylogenetic clusters. Our study supports global scale repetitive transfer of E. coli ST127 lineages between humans and companion animals, particularly within the dominant BAP4 cluster.
Collapse
Affiliation(s)
- Paarthiphan Elankumaran
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Cameron J. Reid
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P. Djordjevic
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
21
|
Gomi R, Yamamoto M, Tanaka M, Matsumura Y. Chromosomal integration of blaCTX-M genes in diverse Escherichia coli isolates recovered from river water in Japan. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100144. [PMID: 35909619 PMCID: PMC9325909 DOI: 10.1016/j.crmicr.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ryota Gomi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8540, Kyoto, Japan
- Corresponding author
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Michio Tanaka
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| |
Collapse
|
22
|
Bhattacharyya D, Banerjee J, Habib M, Thapa G, Samanta I, Nanda PK, Dutt T, Sarkar K, Bandyopadhyay S. Elucidating the resistance repertoire, biofilm production, and phylogenetic characteristics of multidrug-resistant Escherichia coli isolated from community ponds: A study from West Bengal, India. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1678. [PMID: 34907618 DOI: 10.1002/wer.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
This study details about the phenotypic and molecular characteristics of multidrug-resistant (MDR) Escherichia coli in the fresh community pond water (n = 257) collected from three districts of West Bengal, India. In total, 57 isolates were MDR of which 38 emerged as extended spectrum and 7 as AmpC-type β-lactamase producers in phenotypic assay. Among β-lactamase genes, blaCTXM-1was predominant (87.71%) followed by blaAmpC (77.2%) and blaTEM-1 (22.8%). Six MDR strains carried metallo-β-lactamase (MBL, blaNDM-1) gene. Tissue culture plate assay confirmed strong biofilm (SP) production in four MDR and one non-MDR isolates. In PCR-based replicon typing (PBRT), multiple plasmids of diverse replicon types (Frep, FIB, I1, FIA, K/B, HI1, and Y) were identified. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based phylogenetic analysis revealed a high degree of genetic divergence among the MDR isolates. Multiplex PCR-based phylogrouping categorized 11 isolates as virulent (B2/D/F), which carried blaCTXM-1 gene and three had blaNDM-1 gene. Relative transcriptional activity of AcrAB efflux pump was significantly elevated among the SP and MBL producers. The presence of MDR E. coli isolates, particularly those resistant to carbapenem, in pond water used for daily domestic and household work, is a cause of concern as these pathogens may sneak into human food chain causing life-threatening infections. PRACTITIONER POINTS: Multidrug-resistant biofilm producing E. coli isolated from community pond water. A few of them were carbapenem-resistant and belonged to virulent (B2/D) types. Expression of AcrAB efflux pumps was found significantly elevated among biofilm producers and carbapenem-resistant population.
Collapse
Affiliation(s)
- Debaraj Bhattacharyya
- ICAR-Indian Veterinary Research Institute, Kolkata, India
- Department of Microbiology, University of Kalyani, Kalyani, India
| | | | - Md Habib
- ICAR-Indian Veterinary Research Institute, Kolkata, India
| | | | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Kolkata, India
| | | | - Triveni Dutt
- Division of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani, India
| | | |
Collapse
|
23
|
Virulence determinants and antimicrobial resistance of E. coli isolated from bovine clinical mastitis in some selected dairy farms of Bangladesh. Saudi J Biol Sci 2021; 28:6317-6323. [PMID: 34759751 PMCID: PMC8568714 DOI: 10.1016/j.sjbs.2021.06.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
E. coli is one of the major significant pathogens causing mastitis, the most complex and costly diseases in the dairy industry worldwide. Present study was undertaken to isolate, detect the virulence factors, phylogroup, antimicrobial susceptibility and antimicrobial resistance genes in E. coli from cows with clinical mastitis. A total of 68 milk samples comprising 53 from clinical mastitis and 15 from apparently healthy cattle were collected from four different established dairy farms in Bangladesh. E. coli was isolated from the milk samples and identified by PCR targeting malB gene and sequencing of 16S rRNA gene. E. coli isolates were screened by PCR for the detection of major virulence genes (stx, eae and cdt) of diarrheagenic E. coli followed by phylogenetic grouping. Antimicrobial susceptibility of the E. coli isolates was determined by disk diffusion test and E. coli showing resistance was further screened for the presence of antimicrobial resistance genes. E. coli was isolated from 35.8% of the mastitis milk samples but none from the apparently healthy cattle milk. All the E. coli isolates were negative for stx, eae and cdt genes and belonged to the phylogenetic groups A and B1 which comprising of commensal E. coli. Antibiotic sensitivity testing revealed 84.2% (16/19) of the isolates as multidrug resistant. Highest resistance was observed against amoxicillin (94.5%) followed by ampicillin (89.5%) and tetracycline (89.5%). E. coli were found resistant against all the classes of antimicrobials used at the farm level. Tetracycline resistance gene (tetA) was detected in 100% of the tetracycline resistant E. coli and blaTEM-1 was present in 38.9% of the E. coli isolates. Findings of this study indicate a potential threat of developing antimicrobial resistance in commensal E. coli and their association with clinical mastitis. Occurrence of multidrug resistant E. coli might be responsible for the failure of antibiotic therapies in clinical mastitis as well as pose potential threat of transmitting and development of antibiotic resistance in human.
Collapse
|
24
|
Liu H, Meng L, Dong L, Zhang Y, Wang J, Zheng N. Prevalence, Antimicrobial Susceptibility, and Molecular Characterization of Escherichia coli Isolated From Raw Milk in Dairy Herds in Northern China. Front Microbiol 2021; 12:730656. [PMID: 34630355 PMCID: PMC8500479 DOI: 10.3389/fmicb.2021.730656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a common bacterium in the intestines of animals, and it is also the major important cause of toxic mastitis, which is an acute or peracute disease that causes a higher incidence of death and culling of cattle. The purpose of this study was to investigate E. coli strains isolated from the raw milk of dairy cattle in Northern China, and the antibacterial susceptibility of these strains and essential virulence genes. From May to September 2015, 195 raw milk samples were collected from 195 dairy farms located in Northern China. Among the samples, 67 (34.4%) samples were positive for E. coli. About 67 E. coli strains were isolated from these 67 samples. The prevalence of Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and enteroinvasive E. coli (EIEC) were 9, 6, 4.5, and 1.5%, respectively. Among the virulence genes detected, stx1 was the most prevalent (6/67, 9%) gene, followed by eae (3/67, 4.5%), and estB (2/67, 3%). Moreover, the strains exhibited different resistance levels to ampicillin (46.3%), amoxicillin-clavulanic acid (16.4%), trimethoprim-sulfamethoxazole (13.4%), tetracycline (13.4%), cefoxitin (11.9%), chloramphenicol (7.5%), kanamycin (7.5%), streptomycin (6.0%), tobramycin (4.5%), azithromycin (4.5%), and ciprofloxacin (1.5%). All of the E. coli isolates were susceptible to gentamicin. The prevalence of β-lactamase-encoding genes was 34.3% in 67 E. coli isolates and 45% in 40 β-lactam-resistance E. coli isolates. The overall prevalence of bla SHV, bla TEM, bla CMY, and bla CTX-M genes were 1.5, 20.9, 10.4, and 1.5%, respectively. Nine non-pathogenic E. coli isolates also carried β-lactamase resistance genes, which may transfer to other pathogenic E. coli and pose a threat to the farm's mastitis management projects. Our results showed that most of E. coli were multidrug resistant and possessed multiple virulence genes, which may have a huge potential hazard with public health, and antibiotic resistance of E. coli was prevalent in dairy herds in Northern China, and ampicillin should be used cautiously for mastitis caused by E. coli in Northern China.
Collapse
Affiliation(s)
- Huimin Liu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Dong
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poult Sci 2021; 100:101370. [PMID: 34332223 PMCID: PMC8339308 DOI: 10.1016/j.psj.2021.101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
The extended-spectrum cephalosporin resistant E. coli from food animals transferring to community settings of humans causes a serious threat to public health. Unlike phylogroup B2 E. coli strains, the clinical significance of isolates in phylogroup F is not well revealed. Here, we report on a collection (n = 563) of phylogroup F E. coli isolates recovered from chicken colibacillosis tissues and retail raw chicken meat samples in Eastern China. There was an overlapped distribution of MLST types between chicken colibacillosis-origin and meat-source phylogroup F E. coli, including dominant STs (ST648, ST405, ST457, ST393, ST1158, etc). This study further investigated the presence of extended-spectrum β-lactamase (ESBL/pAmpC) producers in these chicken-source phylogroup F E. coli strains. The prevalence of extended-spectrum cephalosporin resistant strains in phylogroup F E. coli from chicken colibacillosis and raw meat separately accounted for 66.1 and 71.2%. The resistance genotypes and plasmid replicon types of chicken-source phylogroup F E. coli isolates were characterized by multiplex PCR. Our results revealed β-lactamase CTX-M, OXA, CMY and TEM genes were widespread in chicken-source phylogroup F E. coli, and blaCTX-M was the most predominant ESBL gene. Moreover, there was a high prevalence of non-lactamase resistance genes in these β-lactam-resistant isolates. The replicons IncB/O/K/Z, IncI1, IncN, IncFIC, IncQ1, IncX4, IncY, and p0111, associated with antibiotic-resistant large plasmids, were widespread in chicken-source phylogroup F E. coli. There was no obvious difference for the populations, resistance spectrums, and resistance genotypes between phylogroup F E. coli from chicken colibacillosis tissues and retail meats. This detail assessment of the population and resistance genotype showed chicken-source phylogroup F E. coli might hold zoonotic risk and contribute the spread of multidrug-resistant E. coli to humans.
Collapse
|
26
|
Dungan RS, Bjorneberg DL. Antimicrobial Resistance in Escherichia coli and Enterococcal Isolates From Irrigation Return Flows in a High-Desert Watershed. Front Microbiol 2021; 12:660697. [PMID: 34054760 PMCID: PMC8149595 DOI: 10.3389/fmicb.2021.660697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Irrigation return flows (IRFs) collect surface runoff and subsurface drainage, causing them to have elevated contaminant and bacterial levels, and making them a potential source of pollutants. The purpose of this study was to determine antimicrobial susceptibility among Escherichia coli and enterococcal isolates that were collected from IRFs in a south-central Idaho watershed. Environmental isolates can be a potentially important source of antimicrobial resistance (AMR) and IRFs may be one way resistance genes are transported out of agroecosystems. Water samples were collected from nine IRFs and one background site (canal water from Snake River) on a biweekly basis during 2018. Escherichia coli and enterococci were enumerated via a most probable number (MPN) technique, then subsamples were plated on selective media to obtain isolates. Isolates of E. coli (187) or enterococci (185) were tested for antimicrobial susceptibility using Sensititre broth microdilution plates. For E. coli, 13% (25/187) of isolates were resistant to tetracycline, with fewer numbers being resistant to 13 other antimicrobials, with none resistant to gentamicin. While 75% (141/187) of the E. coli isolates were pan-susceptible, 12 multidrug resistance (MDR) patterns with 17 isolates exhibiting resistance to up to seven drug classes (10 antimicrobials). For the enterococcal species, only 9% (16/185) of isolates were pan-susceptible and the single highest resistance was to lincomycin (138/185; 75%) followed by nitrofurantoin (56/185; 30%) and quinupristin/dalfopristin (34/185; 18%). In addition, 13 enterococcal isolates belonging to Enterococcus faecalis, Enterococcus faecium, Enterococcus casseliflavus, and Enterococcus thailandicus, were determined to be MDR to up to six different antimicrobial drug classes. None of the enterococcal isolates were resistant to gentamycin, linezolid, tigecycline, and vancomycin.
Collapse
Affiliation(s)
- Robert S Dungan
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| | - David L Bjorneberg
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| |
Collapse
|
27
|
Graham JP, Amato H, Mendizabal-Cabrera R, Alvarez D, Ramay B. Waterborne Urinary Tract Infections: Have We Overlooked an Important Source of Exposure? Am J Trop Med Hyg 2021; 105:12-17. [PMID: 33939640 DOI: 10.4269/ajtmh.20-1271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 11/07/2022] Open
Abstract
The presence of intestinal pathogenic Escherichia coli in drinking water is well recognized as a risk for diarrhea. The role of drinking water in extraintestinal infections caused by E. coli-such as urinary tract infections (UTIs)-remains poorly understood. Urinary tract infections are a leading cause of outpatient infections globally, with a lifetime incidence of 50-60% in adult women. We reviewed the scientific literature on the occurrence of uropathogenic E. coli (UPEC) in water supplies to determine whether the waterborne route may be an important, overlooked, source of UPEC. A limited number of studies have assessed whether UPEC isolates are present in drinking water supplies, but no studies have measured whether their presence in water may increase UPEC colonization or the risk of UTIs in humans. Given the prevalence of drinking water supplies contaminated with E. coli across the globe, efforts should be made to characterize UTI-related risks associated with drinking water, as well as other pathways of exposure.
Collapse
Affiliation(s)
- Jay P Graham
- 1Berkeley School of Public Health, University of California Berkeley, Berkeley, California
| | - Heather Amato
- 2Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Danilo Alvarez
- 2Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Brooke Ramay
- 2Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala.,3Paul G. Allen School for Global Animal Health, Washington State University Pullman, Guatemala City, Guatemala
| |
Collapse
|
28
|
Zou M, Ma PP, Liu WS, Liang X, Li XY, Li YZ, Liu BT. Prevalence and Antibiotic Resistance Characteristics of Extraintestinal Pathogenic Escherichia coli among Healthy Chickens from Farms and Live Poultry Markets in China. Animals (Basel) 2021; 11:ani11041112. [PMID: 33924454 PMCID: PMC8070349 DOI: 10.3390/ani11041112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Chicken meat has been proved to be a suspected source of extraintestinal pathogenic Escherichia coli (ExPEC), causing several diseases in humans, and bacteria in healthy chickens can contaminate chicken carcasses at the slaughter; however, reports about the prevalence and molecular characteristics of ExPEC in healthy chickens are still rare. In this study, among 926 E. coli isolates from healthy chickens in China, 22 (2.4%) were qualified as ExPEC and these ExPEC isolates were clonally unrelated. A total of six serogroups were identified in this study, with O78 being the most predominant type, and all the six serogroups had been frequently reported in human ExPEC isolates in many countries. All the 22 ExPEC isolates were multidrug-resistant and most isolates carried both blaCTX-M and fosA3 resistance genes. Notably, plasmid-borne colistin resistance gene mcr-1 was identified in six ExPEC isolates, among which two carried additional carbapenemase gene blaNDM, compromising both the efficacies of the two critically important drugs for humans, carbapenems and colistin. These results highlight that healthy chickens can serve as a potential reservoir for multidrug resistant ExPEC isolates, including mcr-1-containing ExPEC. Abstract Chicken products and chickens with colibacillosis are often reported to be a suspected source of extraintestinal pathogenic Escherichia coli (ExPEC) causing several diseases in humans. Such pathogens in healthy chickens can also contaminate chicken carcasses at the slaughter and then are transmitted to humans via food supply; however, reports about the ExPEC in healthy chickens are still rare. In this study, we determined the prevalence and characteristics of ExPEC isolates in healthy chickens in China. A total of 926 E. coli isolates from seven layer farms (371 isolates), one white-feather broiler farm (78 isolates) and 17 live poultry markets (477 isolates from yellow-feather broilers) in 10 cities in China, were isolated and analyzed for antibiotic resistance phenotypes and genotypes. The molecular detection of ExPEC among these healthy chicken E. coli isolates was performed by PCRs, and the serogroups and antibiotic resistance characteristics of ExPEC were also analyzed. Pulsed-field gel electrophoresis (PFGE) and Multilocus sequence typing (MLST) were used to analyze the genetic relatedness of these ExPEC isolates. We found that the resistance rate for each of the 15 antimicrobials tested among E. coli from white-feather broilers was significantly higher than that from brown-egg layers and that from yellow-feather broilers in live poultry markets (p < 0.05). A total of 22 of the 926 E. coli isolates (2.4%) from healthy chickens were qualified as ExPEC, and the detection rate (7.7%, 6/78) of ExPEC among white-feather broilers was significantly higher than that (1.6%, 6/371) from brown-egg layers and that (2.1%, 10/477) from yellow-feather broilers (p < 0.05). PFGE and MLST analysis indicated that clonal dissemination of these ExPEC isolates was unlikely. Serogroup O78 was the most predominant type among the six serogroups identified in this study, and all the six serogroups had been frequently reported in human ExPEC isolates in many countries. All the 22 ExPEC isolates were multidrug-resistant (MDR) and the resistance rates to ampicillin (100%) and sulfamethoxazole-trimethoprim (100%) were the highest, followed by tetracycline (95.5%) and doxycycline (90.9%). blaCTX-M was found in 15 of the 22 ExPEC isolates including 10 harboring additional fosfomycin resistance gene fosA3. Notably, plasmid-borne colistin resistance gene mcr-1 was identified in six ExPEC isolates in this study. Worryingly, two ExPEC isolates were found to carry both mcr-1 and blaNDM, compromising both the efficacies of carbapenems and colistin. The presence of ExPEC isolates in healthy chickens, especially those carrying mcr-1 and/or blaNDM, is alarming and will pose a threat to the health of consumers. To our knowledge, this is the first report of mcr-1-positive ExPEC isolates harboring blaNDM from healthy chickens.
Collapse
Affiliation(s)
- Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Ping-Ping Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Wen-Shuang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Xu-Yong Li
- College of Agronomy, Liaocheng University, Liaocheng 252000, China;
| | - You-Zhi Li
- Shandong Veterinary Drug Quality Inspection Institute, Jinan 250022, China;
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
- Correspondence: ; Tel.: +86-532-58957734
| |
Collapse
|
29
|
Ahlstrom CA, van Toor ML, Woksepp H, Chandler JC, Reed JA, Reeves AB, Waldenström J, Franklin AB, Douglas DC, Bonnedahl J, Ramey AM. Evidence for continental-scale dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144551. [PMID: 33385653 DOI: 10.1016/j.scitotenv.2020.144551] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic inputs into the environment may serve as sources of antimicrobial resistant bacteria and alter the ecology and population dynamics of synanthropic wild animals by providing supplemental forage. In this study, we used a combination of phenotypic and genomic approaches to characterize antimicrobial resistant indicator bacteria, animal telemetry to describe host movement patterns, and a novel modeling approach to combine information from these diverse data streams to investigate the acquisition and long-distance dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. Our results provide evidence that gulls acquire antimicrobial resistant bacteria from anthropogenic sources, which they may subsequently disperse across and between continents via migratory movements. Furthermore, we introduce a flexible modeling framework to estimate the relative dispersal risk of antimicrobial resistant bacteria in western North America and adjacent areas within East Asia, which may be adapted to provide information on the risk of dissemination of other organisms and pathogens maintained by wildlife through space and time.
Collapse
Affiliation(s)
- Christina A Ahlstrom
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Mariëlle L van Toor
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, Kalmar 392 31, Sweden.
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, Kalmar 391 85, Sweden.
| | - Jeffrey C Chandler
- USDA/APHIS/WS, National Wildlife Research Center, 4101 Laporte Ave, Fort Collins, CO 80521, USA.
| | - John A Reed
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Andrew B Reeves
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, Kalmar 392 31, Sweden.
| | - Alan B Franklin
- USDA/APHIS/WS, National Wildlife Research Center, 4101 Laporte Ave, Fort Collins, CO 80521, USA.
| | - David C Douglas
- Alaska Science Center, U.S. Geological Survey, 250 Egan Drive, Juneau, AK 99801, USA.
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden; Department of Infectious Diseases, Region Kalmar County, Kalmar 391 85, Sweden.
| | - Andrew M Ramey
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| |
Collapse
|
30
|
Franklin AM, Brinkman NE, Jahne MA, Keely SP. Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. J Microbiol Methods 2021; 184:106174. [PMID: 33774111 DOI: 10.1016/j.mimet.2021.106174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance (AMR) in the environment is a growing global health concern, especially the dissemination of AMR into surface waters due to human and agricultural inputs. Within recent years, research has focused on trying to understand the impact of AMR in surface waters on human, agricultural and ecological health (One Health). While surface water quality assessments and surveillance of AMR have historically utilized culture-based methods, culturing bacteria has limitations due to difficulty in isolating environmental bacteria and the need for a priori information about the bacteria for selective isolation. The use of molecular techniques to analyze AMR at the genetic level has helped to overcome the difficulties with culture-based techniques since they do not require advance knowledge of the bacterial population and can analyze uncultivable environmental bacteria. The aim of this review is to provide an overview of common contemporary molecular methods available for analyzing AMR in surface waters, which include high throughput real-time polymerase chain reaction (HT-qPCR), metagenomics, and whole genome sequencing. This review will also feature how these methods may provide information on human and animal health risks. HT-qPCR works at the nanoliter scale, requires only a small amount of DNA, and can analyze numerous gene targets simultaneously, but may lack in analytical sensitivity and the ability to optimize individual assays compared to conventional qPCR. Metagenomics offers more detailed genomic information and taxonomic resolution than PCR by sequencing all the microbial genomes within a sample. Its open format allows for the discovery of new antibiotic resistance genes; however, the quantity of DNA necessary for this technique can be a limiting factor for surface water samples that typically have low numbers of bacteria per sample volume. Whole genome sequencing provides the complete genomic profile of a single environmental isolate and can identify all genetic elements that may confer AMR. However, a main disadvantage of this technique is that it only provides information about one bacterial isolate and is challenging to utilize for community analysis. While these contemporary techniques can quickly provide a vast array of information about AMR in surface waters, one technique does not fully characterize AMR nor its potential risks to human, animal, or ecological health. Rather, a combination of techniques (including both molecular- and culture-based) are necessary to fully understand AMR in surface waters from a One Health perspective.
Collapse
Affiliation(s)
- A M Franklin
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA.
| | - N E Brinkman
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| | - M A Jahne
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| | - S P Keely
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| |
Collapse
|
31
|
Ma Y, Chen J, Fong K, Nadya S, Allen K, Laing C, Ziebell K, Topp E, Carroll LM, Wiedmann M, Delaquis P, Wang S. Antibiotic Resistance in Shiga Toxigenic Escherichia coli Isolates from Surface Waters and Sediments in a Mixed Use Urban Agricultural Landscape. Antibiotics (Basel) 2021; 10:237. [PMID: 33652953 PMCID: PMC7996769 DOI: 10.3390/antibiotics10030237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance (AR) phenotypes and acquired resistance determinants (ARDs) detected by in silico analysis of genome sequences were examined in 55 Shiga toxin-producing Escherichia coli (STEC) isolates representing diverse serotypes recovered from surfaces waters and sediments in a mixed use urban/agricultural landscape in British Columbia, Canada. The isolates displayed decreased susceptibility to florfenicol (65.5%), chloramphenicol (7.3%), tetracycline (52.7%), ampicillin (49.1%), streptomycin (34.5%), kanamycin (20.0%), gentamycin (10.9%), amikacin (1.8%), amoxicillin/clavulanic acid (21.8%), ceftiofur (18.2%), ceftriaxone (3.6%), trimethoprim-sulfamethoxazole (12.7%), and cefoxitin (3.6%). All surface water and sediment isolates were susceptible to ciprofloxacin, nalidixic acid, ertapenem, imipenem and meropenem. Eight isolates (14.6%) were multidrug resistant. ARDs conferring resistance to phenicols (floR), trimethoprim (dfrA), sulfonamides (sul1/2), tetracyclines (tetA/B), and aminoglycosides (aadA and aph) were detected. Additionally, narrow-spectrum β-lactamase blaTEM-1b and extended-spectrum AmpC β-lactamase (cephalosporinase) blaCMY-2 were detected in the genomes, as were replicons from plasmid incompatibility groups IncFII, IncB/O/K/Z, IncQ1, IncX1, IncY and Col156. A comparison with surveillance data revealed that AR phenotypes and ARDs were comparable to those reported in generic E. coli from food animals. Aquatic environments in the region are potential reservoirs for the maintenance and transmission of antibiotic resistant STEC, associated ARDs and their plasmids.
Collapse
Affiliation(s)
- Yvonne Ma
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Jessica Chen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Karen Fong
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Stephanie Nadya
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Kevin Allen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Chad Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Kim Ziebell
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada;
| | - Ed Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Laura M. Carroll
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (L.M.C.); (M.W.)
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (L.M.C.); (M.W.)
| | - Pascal Delaquis
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada;
| | - Siyun Wang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| |
Collapse
|
32
|
Kutilova I, Medvecky M, Leekitcharoenphon P, Munk P, Masarikova M, Davidova-Gerzova L, Jamborova I, Bortolaia V, Pamp SJ, Dolejska M. Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. ENVIRONMENTAL RESEARCH 2021; 193:110487. [PMID: 33232750 DOI: 10.1016/j.envres.2020.110487] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Wastewaters serve as important hot spots for antimicrobial resistance and monitoring can be used to analyse the abundance and diversity of antimicrobial resistance genes at the level of large bacterial and human populations. In this study, whole genome sequencing of beta-lactamase-producing Escherichia coli and metagenomic analysis of whole-community DNA were used to characterize the occurrence of antimicrobial resistance in hospital, municipal and river waters in the city of Brno (Czech Republic). Cefotaxime-resistant E. coli were mainly extended-spectrum beta-lactamase (ESBL) producers (95.6%, n = 158), of which the majority carried blaCTX-M (98.7%; n = 151) and were detected in all water samples except the outflow from hospital wastewater treatment plant. A wide phylogenetic diversity was observed among the sequenced E. coli (n = 78) based on the detection of 40 sequence types and single nucleotide polymorphisms (average number 34,666 ± 15,710) between strains. The metagenomic analysis revealed a high occurrence of bacterial genera with potentially pathogenic members, including Pseudomonas, Escherichia, Klebsiella, Aeromonas, Enterobacter and Arcobacter (relative abundance >50%) in untreated hospital and municipal wastewaters and predominance of environmental bacteria in treated and river waters. Genes encoding resistance to aminoglycosides, beta-lactams, quinolones and macrolides were frequently detected, however blaCTX-M was not found in this dataset which may be affected by insufficient sequencing depth of the samples. The study pointed out municipal treated wastewater as a possible source of multi-drug resistant E. coli and antimicrobial resistance genes for surface waters. Moreover, the combination of two different approaches provided a more holistic view on antimicrobial resistance in water environments. The culture-based approach facilitated insight into the dynamics of ESBL-producing E. coli and the metagenomics shows abundance and diversity of bacteria and antimicrobial resistance genes vary across water sites.
Collapse
Affiliation(s)
- Iva Kutilova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Matej Medvecky
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Biomedical Center, Faculty of Medicine, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Martina Masarikova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Lenka Davidova-Gerzova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Ivana Jamborova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Valeria Bortolaia
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Sünje J Pamp
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Monika Dolejska
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic; Biomedical Center, Faculty of Medicine, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
33
|
Liu C, Liu Y, Feng C, Wang P, Yu L, Liu D, Sun S, Wang F. Distribution characteristics and potential risks of heavy metals and antimicrobial resistant Escherichia coli in dairy farm wastewater in Tai'an, China. CHEMOSPHERE 2021; 262:127768. [PMID: 32777611 DOI: 10.1016/j.chemosphere.2020.127768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/11/2023]
Abstract
Heavy metals and antimicrobial resistant bacteria in livestock and poultry environments can cause declines in production and significant economic losses, leading to potential environmental and public health issues. In this study, the heavy metal pollution status of livestock breeding water bodies in the Dawen river basin of Shandong Province in China was evaluated, and a total of 10 heavy metals were measured. In addition, antimicrobial susceptibility tests were conducted for Escherichia coli strains isolated from the water samples. The results showed that among all the metals, copper, zinc, and iron were detected at each sampling point, followed by nickel (detection rate of 95.74%), arsenic (detection rate of 89.36%), selenium (detection rate of 68.09%), lead (detection rate of 27.66%), and mercury (detection rate of 12.77%). Cadmium and hexavalent chromium were not detected. The contents of nine heavy metals were below the existing water standard values in China, whereas the iron pollution index in the water body in the study area was large and may pose a potential risk. A total of 17 E. coli isolates showed different resistance to β-lactams, aminoglycosides, tetracyclines, quinolone antibiotics and chloramphenicol, but were mainly resistant to β-lactams and tetracyclines. The detection rate of the tetA resistance gene was relatively high, indicating the overuse of cephalosporins and tetracyclines. The results of the present study might provide evidence of metal pollution and theoretical basis on the treatment of colibacillosis in the livestock industries.
Collapse
Affiliation(s)
- Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Yu Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Peng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
34
|
Riley LW. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol Spectr 2020; 8:10.1128/microbiolspec.ame-0014-2020. [PMID: 33385193 PMCID: PMC10773148 DOI: 10.1128/microbiolspec.ame-0014-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of E. coli that cause diarrhea are often described as intestinal pathogenic E. coli (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic E. coli (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of E. coli or pathovars. While IPEC can be distinguished from commensal E. coli based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal E. coli that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of E. coli based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by E. coli. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
35
|
Mota MI, Vázquez S, Cornejo C, D'Alessandro B, Braga V, Caetano A, Betancor L, Varela G. Does Shiga Toxin-Producing Escherichia coli and Listeria monocytogenes Contribute Significantly to the Burden of Antimicrobial Resistance in Uruguay? Front Vet Sci 2020; 7:583930. [PMID: 33240959 PMCID: PMC7677299 DOI: 10.3389/fvets.2020.583930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes are worldwide recognized zoonotic pathogens. Recent reports have emerged about the circulation of antimicrobial-resistant STEC and L. monocytogenes isolates. To assess the frequency of antimicrobial resistance and related genes in these pathogens, we studied 45 STEC and 50 L. monocytogenes isolates locally recovered from different sources. Antimicrobial susceptibility testing was performed by disk-diffusion method, and the genomic sequences of three selected STEC and from all 50 L. monocytogenes isolates were analyzed for antibiotic resistance genes. Four STEC and three L. monocytogenes isolates were phenotypically resistant to at least one of the antibiotics tested. Resistance genes aph(3″)-Ib, aph(3')-Ia, aph(6)-Id, bla T EM-1B, sul2, mef (A), and tet(A) were found in a human STEC ampicillin-resistant isolate. All L. monocytogenes isolates harbored fosX, lin, mdrL, lde fepA, and norB. Overall resistance in L. monocytogenes and STEC was low or middle. However, the high load of resistance genes found, even in susceptible isolates, suggests that these pathogens could contribute to the burden of antimicrobial resistance.
Collapse
Affiliation(s)
- María Inés Mota
- Departamento de Bacteriología y Virología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Sylvia Vázquez
- Departamento de Bacteriología y Virología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Cornejo
- Departamento de Bacteriología y Virología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Bruno D'Alessandro
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Valeria Braga
- Departamento de Bacteriología y Virología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Ana Caetano
- Departamento de Bacteriología y Virología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Laura Betancor
- Departamento de Bacteriología y Virología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Varela
- Departamento de Bacteriología y Virología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
36
|
Ogura Y, Ueda T, Nukazawa K, Hiroki H, Xie H, Arimizu Y, Hayashi T, Suzuki Y. The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. Sci Rep 2020; 10:17880. [PMID: 33087784 PMCID: PMC7578040 DOI: 10.1038/s41598-020-75065-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution.
Collapse
Affiliation(s)
- Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takuya Ueda
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hayate Hiroki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hui Xie
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
37
|
Zhi S, Stothard P, Banting G, Scott C, Huntley K, Ryu K, Otto S, Ashbolt N, Checkley S, Dong T, Ruecker NJ, Neumann NF. Characterization of water treatment-resistant and multidrug-resistant urinary pathogenic Escherichia coli in treated wastewater. WATER RESEARCH 2020; 182:115827. [PMID: 32580076 DOI: 10.1016/j.watres.2020.115827] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 05/29/2023]
Abstract
A growing body of evidence has demonstrated that extraintestinal pathogenic E. coli (ExPEC), such as the urinary pathogenic E. coli (UPEC), are common constituents of treated wastewater, and therefore represent a potential public health risk. However, no single virulence gene, or set of virulence genes, can be used to conclusively identify this genetically diverse pathotype. As such we sought to identify and characterize the public health relevance of potential UPEC found in treated sewage/wastewater using a comparative genomics approach. Presumptive wastewater UPEC (W-UPEC) were initially identified by virulence gene screening against 5 virulence genes, and for which isolates containing ≥3 virulence genes were whole genome sequenced (n = 24). Single nucleotide polymorphic (SNP) spanning tree analysis demonstrated that many of these wastewater UPEC (WUPEC) were virtually identical at the core genome (0.4 Mbp) when compared to clinical UPEC (C-UPEC) sequences obtained from NCBI, varying by as little as 1 SNP. Remarkably, at the whole genome level, W-UPEC isolates displayed >96% whole genome similarity to C-UPEC counterparts in NCBI, with one strain demonstrating 99.5% genome similarity to a particular C-UPEC strain. The W-UPEC populations were represented by sequence types (ST) known to be clinically important, including ST131, ST95, ST127 and ST640. Many of the W-UPEC carried the exact same complement of virulence genes as their most closely related C-UPEC strains. For example, O25b-ST131 W-UPEC strains possessed the same 80 virulence genes as their most closely related C-UPEC counterparts. Concerningly, W-UPEC strains also carried a plethora of antibiotic resistance genes, and O25b-ST131strains were designated as extended spectrum beta-lactamase (ESBL) producing E. coli by both genome profiling and phenotypic resistance testing. W-UPEC ST131 strains were found in the effluents of a single treatment plant at different times, as well as different wastewater treatment plants, suggesting a differentially ability to survive wastewater treatment. Indeed, in sewage samples treated with chlorine doses sufficient for inducing a ∼99.99% reduction in total E. coli levels, UPEC represented a significant proportion of the chlorine-resistant population. By contrast, no Shiga toxin-producing E. coli were observed in these chlorinated sewage libraries. Our results suggest that clinically-relevant UPEC exist in treated wastewater effluents and that they appear to be specifically adapted to survive wastewater treatment processes.
Collapse
Affiliation(s)
- Shuai Zhi
- School of Medicine, Ningbo University, Ningbo, China
| | - Paul Stothard
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Graham Banting
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Candis Scott
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Kristin Huntley
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Kanghee Ryu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Simon Otto
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas Ashbolt
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvia Checkley
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tao Dong
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Norma J Ruecker
- City of Calgary, Water Quality Services, Calgary, Alberta, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
38
|
Li P, Zhu T, Zhou D, Lu W, Liu H, Sun Z, Ying J, Lu J, Lin X, Li K, Ying J, Bao Q, Xu T. Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Front Cell Infect Microbiol 2020; 10:369. [PMID: 32903722 PMCID: PMC7438884 DOI: 10.3389/fcimb.2020.00369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial resistance to antibiotics has become an important concern for public health. This study was aimed to investigate the characteristics and the distribution of the florfenicol-related resistance genes in bacteria isolated from four farms. A total of 106 florfenicol-resistant Gram-negative bacilli were examined for florfenicol-related resistance genes, and the positive isolates were further characterized. The antimicrobial sensitivity results showed that most of them (100, 94.33%) belonged to multidrug resistance Enterobacteriaceae. About 91.51% of the strains carried floR gene, while 4.72% carried cfr gene. According to the pulsed-field gel electrophoresis results, 34 Escherichia coli were subdivided into 22 profiles, the genetic similarity coefficient of which ranged from 80.3 to 98.0%. The multilocus sequence typing (MLST) results revealed 17 sequence types (STs), with ST10 being the most prevalent. The genome sequencing result showed that the Proteus vulgaris G32 genome consists of a 4.06-Mb chromosome, a 177,911-bp plasmid (pG32-177), and a 51,686-bp plasmid (pG32-51). A floR located in a drug-resistant region on the chromosome of P. vulgaris G32 was with IS91 family transposase, and the other floR gene on the plasmid pG32-177 was with an ISCR2 insertion sequence. The cfr gene was located on the pG32-51 flanked by IS26 element and TnpA26. This study suggested that the mobile genetic elements played an important role in the replication of resistance genes and the horizontal resistance gene transfer.
Collapse
Affiliation(s)
- Peizhen Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Tingyuan Zhu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhewei Sun
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Ying
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Jianchao Ying
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| |
Collapse
|
39
|
Detection of Carbapenem-Resistant Genes in Escherichia coli Isolated from Drinking Water in Khartoum, Sudan. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2020; 2020:2571293. [PMID: 32612664 PMCID: PMC7306079 DOI: 10.1155/2020/2571293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Waterborne Escherichia coli are a major reservoir of antimicrobial resistance (AMR). Carbapenem-resistance, especially when mediated by transferable carbapenemase-encoding genes, is spreading worldwide and causing dramatically limiting treatment options. In our country, studies for the detection of carbapenem resistance in drinking water do not exist; therefore, this work was carried out to determine the prevalence of carbapenem-resistant genes “blaKPC, blaIMP, blaNDM, blaSPM, blaVIM, and blaOXA-48” among Escherichia coli isolated from drinking water in Khartoum, Sudan. A total of forty-five E. coli bacteria were isolated from different sources of drinking water. Antimicrobial susceptibility testing was performed using imipenem (10 mg/disc), gentamicin (10 mg/disc), ceftriaxone (30 mg/disc), ciprofloxacin (5 mg/disc), chloramphenicol (30 mg/disc), and tetracycline (30 mg/disc). “Sensitive” or “resistant” patterns of E. coli were judged using antibiotic minimum inhibitory concentration (MIC). Bacterial genomic DNA was extracted by the boiling method, and then multiplex polymerase chain reaction was performed to detect the carbapenemase genes (blaKPC, blaIMP, blaNDM, blaSPM, blaVIM, and blaOXA-48). Multiplex PCR assays confirmed the presence of carbapenemase genes in 28% of all water isolates. OXA-48 gene was the most predominant gene, detected in 15.5% of the isolates. The blaKPC and blaSPM genes were also detected in 4.4% and 8.8% of the isolates, respectively. However, the isolates were negative for blaNDM, blaVIM, and blaIMP genes. The isolates showed a high rate of tetracycline resistance (97.7%), followed by gentamicin (57.7%), ciprofloxacin (46.6%), ceftriaxone (35.5%), and chloramphenicol (31.1%). In conclusion, this study confirmed for the first time the presence of E. coli carried carbapenem-resistant genes in the drinking water of Khartoum state, Sudan. These isolates commonly carried OXA-48 (7/45), followed by SPM (4/45) and KPC (2/45).
Collapse
|
40
|
Meng L, Liu H, Lan T, Dong L, Hu H, Zhao S, Zhang Y, Zheng N, Wang J. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated From Raw Milk Revealed by Whole Genome Sequencing. Front Microbiol 2020; 11:1005. [PMID: 32655503 PMCID: PMC7326020 DOI: 10.3389/fmicb.2020.01005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Psychrotrophic bacteria in raw milk are most well known for their spoilage potential and the economic losses they cause to the dairy industry. Food-related psychrotrophic bacteria are increasingly reported to have antibiotic resistance features. The aim of this study was to evaluate the resistance patterns of Pseudomonas spp. isolated from bulk-tank milk. In total, we investigated the antibiotic susceptibility profiles of 86 Pseudomonas spp. isolates from raw milk. All strains were tested against 15 antimicrobial agents. Pseudomonas isolates were most highly resistant to imipenem (95.3%), followed by trimethoprim-sulfamethoxazole (69.8%), aztreonam (60.5%), chloramphenicol (45.3%), and meropenem (27.9%). Their multiple antibiotic resistance (MAR) index values ranged from 0.0 to 0.8. Whole-genome sequencing revealed the presence of intrinsic resistance determinants, such as BcI, ampC-09, blaCTX-M, oprD, sul1, dfrE, catA1, catB3, catI, floR, and cmlV. Moreover, resistance-nodulation-cell division (RND) and ATP-binding cassette (ABC) antibiotic efflux pumps were also found. This study provides further knowledge of the antibiotic resistance patterns of Pseudomonas spp. in milk, which may advance our understanding of resistance in Pseudomonas and suggests that antibiotic resistance of Pseudomonas spp. in raw milk should be a concern.
Collapse
Affiliation(s)
- Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Liu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tu Lan
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Dong
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan Hu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengguo Zhao
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Ranjith K, SaiAbhilash CR, Sai Prashanthi G, Padakandla SR, Sharma S, Shivaji S. Phylogenetic Grouping of Human Ocular Escherichia coli Based on Whole-Genome Sequence Analysis. Microorganisms 2020; 8:microorganisms8030422. [PMID: 32192112 PMCID: PMC7143957 DOI: 10.3390/microorganisms8030422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli is a predominant bacterium in the intestinal tracts of animals. Phylogenetically, strains have been classified into seven phylogroups, A, B1, B2, C, D, E, and F. Pathogenic strains have been categorized into several pathotypes such as Enteropathogenic (EPEC), Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enteroaggregative (EAEC), Diffusely adherent (DAEC), Uropathogenic (UPEC), Shiga-toxin producing (STEC) or Enterohemorrhagic (EHEC) and Extra-intestinal pathogenic E. coli (ExPEC). E. coli also survives as a commensal on the ocular surface. However, under conditions of trauma and immune-compromised states, E. coli causes conjunctivitis, keratitis, endopthalmitis, dacyrocystitis, etc. The phylogenetic affiliation and the pathotype status of these ocular E. coli strains is not known. For this purpose, the whole-genome sequencing of the 10 ocular E. coli strains was accomplished. Based on whole-genome SNP variation, the ocular E. coli strains were assigned to phylogenetic groups A (two isolates), B2 (seven isolates), and C (one isolate). Furthermore, results indicated that ocular E. coli originated either from feces (enteropathogenic and enterotoxigenic), urine (uropathogenic), or from extra-intestinal sources (extra-intestinal pathogenic). A high concordance was observed between the presence of AMR (Antimicrobial Resistance) genes and antibiotic resistance in the ocular E. coli strains. Furthermore, several virulent genes (fimB to fimI, papB to papX, etc.) and prophages (Enterobacteria phage HK97, Enterobacteria phage P1, Escherichia phage D108 etc.) were unique to ocular E. coli. This is the first report on a whole-genome analysis of ocular E. coli strains.
Collapse
|
42
|
Adelowo OO, Ikhimiukor OO, Knecht C, Vollmers J, Bhatia M, Kaster AK, Müller JA. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance. PLoS One 2020; 15:e0229451. [PMID: 32130234 PMCID: PMC7055906 DOI: 10.1371/journal.pone.0229451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/06/2020] [Indexed: 01/30/2023] Open
Abstract
In many countries, emission of insufficiently treated wastewater into water bodies appears to be an important factor in spreading clinically relevant antimicrobial resistant bacteria. In this study, we looked for the presence of Enterobacteriaceae strains with resistance to 3rd generation cephalosporin antibiotics in four urban wetlands in southwestern Nigeria by isolation, whole genome sequencing and qPCR enumeration of marker genes. Genome analysis of multi-drug resistant and potentially pathogenic Escherichia coli isolates (members of the widely distributed ST10 complex) revealed the presence of the extended spectrum beta-lactamase gene blaCTX-M-15 on self-transmissible IncF plasmids. The gene was also present together with a blaTEM-1B gene on self-transmissible IncH plasmids in multi-drug resistant Enterobacter cloacae isolates. A Citrobacter freundii isolate carried blaTEM-1B on an IncR-type plasmid without discernable conjugation apparatus. All strains were isolated from a wetland for which previous qPCR enumeration of marker genes, in particular the ratio of intI1 to 16S rRNA gene copy numbers, had indicated a strong anthropogenic impact. Consistent with the isolation origin, qPCR analysis in this study showed that the blaCTX-M gene was present at an abundance of 1x10-4 relative to bacterial 16S rRNA gene copy numbers. The results indicate that contamination of these urban aquatic ecosystems with clinically relevant antibiotic resistant bacteria is substantial in some areas. Measures should therefore be put in place to mitigate the propagation of clinically relevant antimicrobial resistance within the Nigerian aquatic ecosystems.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- * E-mail: , (OOA); (JAM)
| | - Odion Osebhahiemen Ikhimiukor
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Otto-von-Guericke-Universität Magdeburg—Institute of Apparatus and Environmental Technology, Magdeburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mudit Bhatia
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Anne-Kirstin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- * E-mail: , (OOA); (JAM)
| |
Collapse
|
43
|
Environmental Presence and Genetic Characteristics of Carbapenemase-Producing Enterobacteriaceae from Hospital Sewage and River Water in the Philippines. Appl Environ Microbiol 2020; 86:AEM.01906-19. [PMID: 31704681 PMCID: PMC6952235 DOI: 10.1128/aem.01906-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) cause severe health care-associated infections, and their increasing prevalence is a serious concern. Recently, natural ecosystems have been recognized as important reservoirs of antibiotic resistance genes. We investigated the prevalence and genetic characteristics of CPE isolated from the environment (hospital sewage and river water) in the Philippines and found several CPE, including Escherichia coli and other species, with different carbapenemases. The most prevalent carbapenemase gene type was NDM, which is endemic in clinical settings. This study revealed that isolates belonging to carbapenemase-producing E. coli CC10 and K. pneumoniae sequence type 147 (ST147), which are often detected in clinical settings, were dominant in the natural environment. Our work here provides a report on the presence and characteristics of CPE in the environment in the Philippines and demonstrates that both hospital sewage and river water are contaminated by CPE strains belonging to clinically important clonal groups. This study aimed to evaluate the prevalence and genetic characteristics of carbapenemase-producing Enterobacteriaceae (CPE) in hospital sewage and river water in the Philippines, which has a typical tropical maritime climate. We collected 83 water samples from 7 hospital sewage and 10 river water sites. CPE were identified using CHROMagar mSuperCARBA, and Gram-negative strains were identified using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) or 16S rRNA gene sequencing. Resistance genes in Enterobacteriaceae strains were identified using PCR and DNA sequencing, and transferability of carbapenemase genes from the CPE was investigated with conjugation experiments. Genotyping was performed using multilocus sequence typing (MLST) for Escherichia coli and Klebsiella pneumoniae. Out of 124 Enterobacteriaceae isolates, we identified 51 strains as CPE and divided these into 7 species, 11 E. coli, 14 Klebsiella spp., 15 Enterobacter spp., and 11 others, including 4 additional species. Conjugation experiments via broth mating and using E. coli J53 revealed that 24 isolates can transfer carbapenemase-encoding plasmids. MLST analysis showed that 6 of 11 E. coli isolates belonged to clonal complex 10 (CC10). Of 11 K. pneumoniae strains, 9 unique sequence types (STs) were identified, including ST147. Five types of carbapenemase genes were identified, with the most prevalent being NDM (n = 39), which is epidemic in clinical settings in the Philippines. E. coli CC10 and K. pneumoniae ST147, which are often detected in clinical settings, were the dominant strains. In summary, our results indicate that hospital sewage and river water are contaminated by CPE strains belonging to clinically important clonal groups. IMPORTANCE Carbapenemase-producing Enterobacteriaceae (CPE) cause severe health care-associated infections, and their increasing prevalence is a serious concern. Recently, natural ecosystems have been recognized as important reservoirs of antibiotic resistance genes. We investigated the prevalence and genetic characteristics of CPE isolated from the environment (hospital sewage and river water) in the Philippines and found several CPE, including Escherichia coli and other species, with different carbapenemases. The most prevalent carbapenemase gene type was NDM, which is endemic in clinical settings. This study revealed that isolates belonging to carbapenemase-producing E. coli CC10 and K. pneumoniae sequence type 147 (ST147), which are often detected in clinical settings, were dominant in the natural environment. Our work here provides a report on the presence and characteristics of CPE in the environment in the Philippines and demonstrates that both hospital sewage and river water are contaminated by CPE strains belonging to clinically important clonal groups.
Collapse
|
44
|
Aworh MK, Kwaga J, Okolocha E, Harden L, Hull D, Hendriksen RS, Thakur S. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. ONE HEALTH OUTLOOK 2020; 2:8. [PMID: 33829130 PMCID: PMC7993457 DOI: 10.1186/s42522-020-00014-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Globally, chicken is known to be a reservoir for the spread of antimicrobial resistance genes to humans. In Nigeria, antimicrobial drugs are readily accessible for use in poultry production, either for preventive or therapeutic purposes. Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) are transmissible to humans because of their zoonotic potentials. People working very closely with chickens either on farms or markets are at greater risk. The aim of this study was to investigate the prevalence and zoonotic transmission of ESBL-EC among poultry-workers, chickens, and poultry environments in Abuja, Nigeria. METHODS We conducted a cross-sectional study among workers, chickens and poultry environment in selected farms/chicken markets in Abuja. Stool, faecal, and environmental samples were collected from apparently healthy workers, chickens, and farm/market environments from December 2018 to April 2019. Data were collected electronically using an open data kit (ODK) installed on a Smartphone. Antimicrobial resistance was determined using broth micro-dilution methods against a panel of 14 antimicrobial agents. We carried out the phenotypic and genotypic characterization of the isolates. Data were analyzed by computing frequencies, proportions and spearman's correlation (ρ). RESULTS Of 429 samples, 26.8% (n = 115) were positive for Escherichia coli (E. coli). Of the 115 E. coli isolates, 32.2% (n = 37) were confirmed ESBL producers by phenotypic characterization. Prevalence of ESBL-EC was highest among both poultry-workers (37.8%; n = 14) and chickens (37.8%; n = 14) followed by the environment (24.3%; n = 9). Both human and chicken isolates showed similar patterns of multidrug resistance to tested antimicrobials with a positive correlation (ρ = 0.91). Among ESBL producers, we observed the dissemination of blaCTX-M (10.8%; n = 4) genes. The coexistence of blaCTX-M-15 and blaTEM-1 genes was observed in 8.1% (n = 3) of the isolates, out of which (66.7%; n = 2) were chicken isolates from the farm, while a single human isolate was from the chicken market. CONCLUSIONS ESBL-EC isolates were prevalent amongst apparently healthy individuals, chickens and the poultry farm/market environment in Abuja. It is important to educate healthcare workers that people in proximity with poultry are a high-risk group for faecal carriage of ESBL-EC, hence pose a higher risk to the general population for the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Mabel Kamweli Aworh
- Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria
- Nigeria Field Epidemiology and Laboratory Training Programme, Abuja, Nigeria
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina USA
| | - Jacob Kwaga
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Emmanuel Okolocha
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina USA
| | - Dawn Hull
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina USA
| | - Rene S. Hendriksen
- WHO, FAO, EU Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, National Food Institute, Kgs. Lyngby, Denmark
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina USA
| |
Collapse
|
45
|
Adesina T, Nwinyi O, De N, Akinnola O, Omonigbehin E. First Detection of Carbapenem-Resistant Escherichia fergusonii Strains Harbouring Beta-Lactamase Genes from Clinical Samples. Pathogens 2019; 8:pathogens8040164. [PMID: 31557915 PMCID: PMC6963453 DOI: 10.3390/pathogens8040164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
Recently discovered extraintestinal Escherichia fergusonii obtained from non-clinical samples has exhibited the potential for acquiring multiple beta-lactamase genes, just like many extraintestinal Escherichia coli strains. Albeit, they are often omitted or classified as E. coli. This study aimed to, therefore, identify carbapenem-resistant extended-spectrum beta-lactamase (ESBL) producing E. fergusonii isolates from clinical samples, determine their evolutionary relatedness using 16S rRNA sequencing analysis and screen for beta-lactamase genes. A total of 135 septic wound samples were obtained from patients on referral at a General Hospital in Lagos, Nigeria. For the phenotypic identification of isolates from culture-positive samples, morphological, and physiological tests were carried out. Identities of the isolates harbouring beta-lactamase genes were assigned to their genus strains using the 16S rRNA sequencing. The Kirby Bauer disc diffusion technique and double-disc synergy test were used to screen isolates for multidrug resistance and ESBL production. Carbapenem-resistant ESBL producing isolates were screened for beta-lactamase genes in a polymerase chain reaction. Three E. fergusonii isolates (CR11, CR35 and CR49) were obtained during this study. E. fergusonii strains were motile, non-lactose and non-sorbitol fermenting but positive for cellobiose and adonitol fermentation. The I6S rRNA assigned the phenotypically identified isolates to E. fergusonii species. All three isolates were multidrug-resistant, carbapenem-resistant and ESBL producers. Isolates CR11 and CR35 harboured cefotaximase (CTX-M) and temoniera (TEM) beta-lactamase genes while CR49 harboured sulfhydryl variable (SHV) beta-lactamase gene. We herein report the detection of multiple beta-lactamase genes in carbapenem-resistant ESBL producing E. fergusonii from clinical samples.
Collapse
Affiliation(s)
- Tomilola Adesina
- Department of Microbiology, College of Science and Technology, Covenant University, 112103 Ota, Nigeria.
| | - Obinna Nwinyi
- Department of Microbiology, College of Science and Technology, Covenant University, 112103 Ota, Nigeria.
| | - Nandita De
- Department of Microbiology, College of Science and Technology, Covenant University, 112103 Ota, Nigeria.
| | - Olayemi Akinnola
- Department of Microbiology, College of Science and Technology, Covenant University, 112103 Ota, Nigeria.
| | - Emmanuel Omonigbehin
- Department of Microbiology, College of Science and Technology, Covenant University, 112103 Ota, Nigeria.
| |
Collapse
|
46
|
Draft Genome Sequence of an Escherichia coli Sequence Type 155 Strain Isolated from Sewage in Kerala, India. Microbiol Resour Announc 2019; 8:8/27/e01707-18. [PMID: 31270207 PMCID: PMC6606921 DOI: 10.1128/mra.01707-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We report the draft genome sequence of Escherichia coli ASBT-1, a representative of E. coli sequence type 155 (ST155), obtained from India. Considering the known wide variety of pathogenic and antibiotic resistance potentials, this strain should be of great interest for detailed comparative genomic analysis.
Collapse
|
47
|
Rapid detection of extra-intestinal pathogenic Escherichia coli multi-locus sequence type 127 using a specific PCR assay. J Med Microbiol 2019; 68:188-196. [DOI: 10.1099/jmm.0.000902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95. mSphere 2019; 4:4/1/e00333-18. [PMID: 30651401 PMCID: PMC6336079 DOI: 10.1128/msphere.00333-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
APEC causes a range of infections in poultry, collectively called colibacillosis, and is the leading cause of mortality and is associated with major economic significance in the poultry industry. A growing number of studies have suggested APEC as an external reservoir of human ExPEC, including UPEC, which is a reservoir. ExPEC belonging to ST95 is considered one of the most important pathogens in both poultry and humans. This study is the first in-depth whole-genome-based comparison of ST95 E. coli which investigates both the core genomes as well as the accessory genomes of avian and human ExPEC. We demonstrated that multiple lineages of ExPEC belonging to ST95 exist, of which the majority may cause infection in humans, while only part of the ST95 cluster seem to be avian pathogenic. These findings further support the idea that urinary tract infections may be a zoonotic infection. Avian-pathogenic Escherichia coli (APEC) is a subgroup of extraintestinal pathogenic E. coli (ExPEC) presumed to be zoonotic and to represent an external reservoir for extraintestinal infections in humans, including uropathogenic E. coli (UPEC) causing urinary tract infections. Comparative genomics has previously been applied to investigate whether APEC and human ExPEC are distinct entities. Even so, whole-genome-based studies are limited, and large-scale comparisons focused on single sequence types (STs) are not available yet. In this study, comparative genomic analysis was performed on 323 APEC and human ExPEC genomes belonging to sequence type 95 (ST95) to investigate whether APEC and human ExPEC are distinct entities. Our study showed that APEC of ST95 did not constitute a unique ExPEC branch and was genetically diverse. A large genetic overlap between APEC and certain human ExPEC was observed, with APEC located on multiple branches together with closely related human ExPEC, including nearly identical APEC and human ExPEC. These results illustrate that certain ExPEC clones may indeed have the potential to cause infection in both poultry and humans. Previously described ExPEC-associated genes were found to be encoded on ColV plasmids. These virulence-associated plasmids seem to be crucial for ExPEC strains to cause avian colibacillosis and are strongly associated with strains of the mixed APEC/human ExPEC clusters. The phylogenetic analysis revealed two distinct branches consisting of exclusively closely related human ExPEC which did not carry the virulence-associated plasmids, emphasizing a lower avian virulence potential of human ExPEC in relation to an avian host. IMPORTANCE APEC causes a range of infections in poultry, collectively called colibacillosis, and is the leading cause of mortality and is associated with major economic significance in the poultry industry. A growing number of studies have suggested APEC as an external reservoir of human ExPEC, including UPEC, which is a reservoir. ExPEC belonging to ST95 is considered one of the most important pathogens in both poultry and humans. This study is the first in-depth whole-genome-based comparison of ST95 E. coli which investigates both the core genomes as well as the accessory genomes of avian and human ExPEC. We demonstrated that multiple lineages of ExPEC belonging to ST95 exist, of which the majority may cause infection in humans, while only part of the ST95 cluster seem to be avian pathogenic. These findings further support the idea that urinary tract infections may be a zoonotic infection.
Collapse
|
49
|
Abstract
Resistance to last-line polymyxins mediated by the plasmid-borne mobile colistin resistance gene (mcr-1) represents a new threat to global human health. Here we present the complete genome sequence of an mcr-1-positive multidrug-resistant Escherichia coli strain (MS8345). We show that MS8345 belongs to serotype O2:K1:H4, has a large 241,164-bp IncHI2 plasmid that carries 15 other antibiotic resistance genes (including the extended-spectrum β-lactamase bla CTX-M-1) and 3 putative multidrug efflux systems, and contains 14 chromosomally encoded antibiotic resistance genes. MS8345 also carries a large ColV-like virulence plasmid that has been associated with E. coli bacteremia. Whole-genome phylogeny revealed that MS8345 clusters within a discrete clade in the sequence type 95 (ST95) lineage, and MS8345 is very closely related to the highly virulent O45:K1:H4 clone associated with neonatal meningitis. Overall, the acquisition of a plasmid carrying resistance to colistin and multiple other antibiotics in this virulent E. coli lineage is concerning and might herald an era where the empirical treatment of ST95 infections becomes increasingly more difficult.IMPORTANCE Escherichia coli ST95 is a globally disseminated clone frequently associated with bloodstream infections and neonatal meningitis. However, the ST95 lineage is defined by low levels of drug resistance amongst clinical isolates, which normally provides for uncomplicated treatment options. Here, we provide the first detailed genomic analysis of an E. coli ST95 isolate that has both high virulence potential and resistance to multiple antibiotics. Using the genome, we predicted its virulence and antibiotic resistance mechanisms, which include resistance to last-line antibiotics mediated by the plasmid-borne mcr-1 gene. Finding an ST95 isolate resistant to nearly all antibiotics that also has a high virulence potential is of major clinical importance and underscores the need to monitor new and emerging trends in antibiotic resistance development in this important global lineage.
Collapse
|
50
|
Taggar G, Rehman MA, Yin X, Lepp D, Ziebell K, Handyside P, Boerlin P, Diarra MS. Antimicrobial-Resistant E. coli from Surface Waters in Southwest Ontario Dairy Farms. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1068-1078. [PMID: 30272802 DOI: 10.2134/jeq2018.04.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Untreated surface waters can be contaminated with a variety of bacteria, including , some of which can be pathogenic for both humans and animals. Therefore, such waters need to be treated before their use in dairy operations to mitigate risks to dairy cow health and milk safety. To understand the molecular ecology of , this study aimed to assess antimicrobial resistance (AMR) in recovered from untreated surface water sources of dairy farms. Untreated surface water samples ( = 240) from 15 dairy farms were collected and processed to isolate . A total of 234 isolates were obtained and further characterized for their serotypes and antimicrobial susceptibility. Of the 234 isolates, 71.4% were pan-susceptible, 23.5% were resistant to one or two antimicrobial classes, and 5.1% were resistant to three or more antimicrobial classes. Whole genome sequence analysis of 11 selected multidrug-resistant isolates revealed AMR genes including and that confer resistance to the critically important extended-spectrum cephalosporins, as well as a variety of plasmids (mainly of the replicon type) and class 1 integrons. Phylogenetic and comparative genome analysis revealed a genetic relationship between some of the sequenced and Shiga toxin-producing O157:H7 (STEC), which warrants further investigation. This study shows that untreated surface water sources contain antimicrobial-resistant which may serve as a reservoir of AMR that could be disseminated through horizontal gene transfer. This is another reason why effective water treatment before usage should be routinely done on dairy farm operations.
Collapse
|