1
|
Weaver SJ, Ortega DR, Sazinsky MH, Dalia TN, Dalia AB, Jensen GJ. CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae. Nat Commun 2020; 11:5080. [PMID: 33033258 PMCID: PMC7545093 DOI: 10.1038/s41467-020-18866-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Natural transformation is the process by which bacteria take up genetic material from their environment and integrate it into their genome by homologous recombination. It represents one mode of horizontal gene transfer and contributes to the spread of traits like antibiotic resistance. In Vibrio cholerae, a type IVa pilus (T4aP) is thought to facilitate natural transformation by extending from the cell surface, binding to exogenous DNA, and retracting to thread this DNA through the outer membrane secretin, PilQ. Here, we use a functional tagged allele of VcPilQ purified from native V. cholerae cells to determine the cryoEM structure of the VcPilQ secretin in amphipol to ~2.7 Å. We use bioinformatics to examine the domain architecture and gene neighborhood of T4aP secretins in Proteobacteria in comparison with VcPilQ. This structure highlights differences in the architecture of the T4aP secretin from the type II and type III secretion system secretins. Based on our cryoEM structure, we design a series of mutants to reversibly regulate VcPilQ gate dynamics. These experiments support the idea of VcPilQ as a potential druggable target and provide insight into the channel that DNA likely traverses to promote the spread of antibiotic resistance via horizontal gene transfer by natural transformation.
Collapse
Affiliation(s)
- Sara J Weaver
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA.,Howard Hughes Medical Institute, David Geffen School of Medicine, Departments of Biological Chemistry and Physiology, University of California Los Angeles, 615 Charles E Young Drive South, Los Angeles, CA, 90095, USA
| | - Davi R Ortega
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | - Matthew H Sazinsky
- Department of Chemistry, Pomona College, 333N. College Way, Claremont, CA, 91711, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, 107S. Indiana Avenue, Bloomington, IN, 47405, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, 107S. Indiana Avenue, Bloomington, IN, 47405, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Drebes Dörr NC, Blokesch M. Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains. Environ Microbiol 2020; 22:4485-4504. [PMID: 32885535 PMCID: PMC7702109 DOI: 10.1111/1462-2920.15224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae isolates responsible for cholera pandemics represent only a small portion of the diverse strains belonging to this species. Indeed, most V. cholerae are encountered in aquatic environments. To better understand the emergence of pandemic lineages, it is crucial to discern what differentiates pandemic strains from their environmental relatives. Here, we studied the interaction of environmental V. cholerae with eukaryotic predators or competing bacteria and tested the contributions of the haemolysin and the type VI secretion system (T6SS) to those interactions. Both of these molecular weapons are constitutively active in environmental isolates but subject to tight regulation in the pandemic clade. We showed that several environmental isolates resist amoebal grazing and that this anti‐grazing defense relies on the strains' T6SS and its actincross‐linking domain (ACD)‐containing tip protein. Strains lacking the ACD were unable to defend themselves against grazing amoebae but maintained high levels of T6SS‐dependent interbacterial killing. We explored the latter phenotype through whole‐genome sequencing of 14 isolates, which unveiled a wide array of novel T6SS effector and (orphan) immunity proteins. By combining these in silico predictions with experimental validations, we showed that highly similar but non‐identical immunity proteins were insufficient to provide cross‐immunity among those wild strains.
Collapse
Affiliation(s)
- Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
3
|
Stutzmann S, Blokesch M. Comparison of chitin-induced natural transformation in pandemic Vibrio cholerae O1 El Tor strains. Environ Microbiol 2020; 22:4149-4166. [PMID: 32860313 PMCID: PMC7693049 DOI: 10.1111/1462-2920.15214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
The human pathogen Vibrio cholerae serves as a model organism for many important processes ranging from pathogenesis to natural transformation, which has been extensively studied in this bacterium. Previous work has deciphered important regulatory circuits involved in natural competence induction as well as mechanistic details related to its DNA acquisition and uptake potential. However, since competence was first reported for V. cholerae in 2005, many researchers have struggled with reproducibility in certain strains. In this study, we therefore compare prominent seventh pandemic V. cholerae isolates, namely strains A1552, N16961, C6706, C6709, E7946, P27459, and the close relative MO10, for their natural transformability and decipher underlying defects that mask the high degree of competence conservation. Through a combination of experimental approaches and comparative genomics based on new whole-genome sequences and de novo assemblies, we identify several strain-specific defects, mostly in genes that encode key players in quorum sensing. Moreover, we provide evidence that most of these deficiencies might have recently occurred through laboratory domestication events or through the acquisition of mobile genetic elements. Lastly, we highlight that differing experimental approaches between research groups might explain more of the variations than strain-specific alterations.
Collapse
Affiliation(s)
- Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health InstituteSchool of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health InstituteSchool of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| |
Collapse
|
4
|
Matthey N, Stutzmann S, Stoudmann C, Guex N, Iseli C, Blokesch M. Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae. eLife 2019; 8:e48212. [PMID: 31478834 PMCID: PMC6783263 DOI: 10.7554/elife.48212] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023] Open
Abstract
Natural competence for transformation is a primary mode of horizontal gene transfer. Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. However, the prevalence of non-degraded DNA with sufficient coding capacity is not well understood. In this context, we previously showed that naturally competent Vibrio cholerae use their type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors. Here, we explored the conditions of the DNA released through T6SS-mediated killing versus passive cell lysis and the extent of the transfers that occur due to these conditions. We show that competent V. cholerae acquire DNA fragments with a length exceeding 150 kbp in a T6SS-dependent manner. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters the exchange of genetic material with sufficient coding capacity to significantly accelerate bacterial evolution.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Nicolas Guex
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| |
Collapse
|
5
|
Blokesch M. In and out-contribution of natural transformation to the shuffling of large genomic regions. Curr Opin Microbiol 2017; 38:22-29. [PMID: 28458094 DOI: 10.1016/j.mib.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023]
Abstract
Naturally competent bacteria can pull free DNA from their surroundings. This incoming DNA can serve various purposes, ranging from acting as a source of nutrients or DNA stretches for repair to the acquisition of novel genetic information. The latter process defines the natural competence for transformation as a mode of horizontal gene transfer (HGT) and led to its discovery almost a century ago. However, although it is widely accepted that natural competence can contribute to the spread of genetic material among prokaryotes, the question remains whether this mode of HGT can foster the transfer of larger DNA regions or only transfers shorter fragments, given that extracellular DNA is often heavily fragmented. Here, I outline examples of competence-mediated movement of large genomic segments. Moreover, I discuss a recent proposition that transformation is used to cure bacteria of selfish mobile genetic elements. Such a transformation-mediated genome maintenance mechanism could indeed be an important and underappreciated function of natural competence.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes. mSphere 2016; 1:mSphere00098-16. [PMID: 27303743 PMCID: PMC4888887 DOI: 10.1128/msphere.00098-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
Phenotypic diversity between laboratory-domesticated bacterial strains is a common problem and often results in the failed reproduction of published data. However, researchers rarely compare such strains to elucidate the underlying mutation(s). In this study, we tested one of the best-studied V. cholerae isolates, O1 El Tor strain C6706 (a patient isolate from Peru), with respect to two main phenotypes: natural competence for transformation and type VI secretion. We recently demonstrated that the two phenotypes are coregulated and specifically induced upon the growth of pandemic V. cholerae O1 El Tor strains on chitinous surfaces. We provide evidence that of seven C6706 strains collected from different laboratories, four were impaired in the tested phenotypes due to a mutation in a QS gene. Collectively, our data indicate that the circulation of such a mutated wild-type strain of C6706 might have had important consequences for QS-related data. Vibrio cholerae, the causative agent of cholera, is a model organism for studying virulence regulation, biofilm formation, horizontal gene transfer, and the cell-to-cell communication known as quorum sensing (QS). As in any research field, discrepancies between data from diverse laboratories are sometimes observed for V. cholerae. Such discrepancies are often caused by the use of diverse patient or environmental isolates. In this study, we investigated the inability of a few laboratories to reproduce high levels of natural transformation, a mode of horizontal gene transfer that is specifically induced on chitinous surfaces. This irreproducibility was mostly related to one specific isolate of V. cholerae: the O1 El Tor C6706 strain. C6706 was previously described as QS proficient, an important prerequisite for the induction of natural competence for transformation. To elucidate the underlying problem, we collected seven isolates of the same C6706 strain from different research laboratories in North America and Europe and compared their phenotypes. Importantly, we observed a split response with respect to QS-related gene expression, including chitin-induced natural competence and type VI secretion (T6S). While approximately half of the strains behaved as reported for several other O1 El Tor pandemic isolates that are commonly studied in the laboratory, the other half were significantly impaired in QS-related expression patterns. This impairment was caused by a mutation in a QS-related gene (luxO). We conclude that the circulation of such QS-impaired wild-type strains is responsible for masking several important phenotypes of V. cholerae, including natural competence for transformation and T6S. IMPORTANCE Phenotypic diversity between laboratory-domesticated bacterial strains is a common problem and often results in the failed reproduction of published data. However, researchers rarely compare such strains to elucidate the underlying mutation(s). In this study, we tested one of the best-studied V. cholerae isolates, O1 El Tor strain C6706 (a patient isolate from Peru), with respect to two main phenotypes: natural competence for transformation and type VI secretion. We recently demonstrated that the two phenotypes are coregulated and specifically induced upon the growth of pandemic V. cholerae O1 El Tor strains on chitinous surfaces. We provide evidence that of seven C6706 strains collected from different laboratories, four were impaired in the tested phenotypes due to a mutation in a QS gene. Collectively, our data indicate that the circulation of such a mutated wild-type strain of C6706 might have had important consequences for QS-related data.
Collapse
|
7
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
8
|
Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One 2015; 10:e0142657. [PMID: 26599487 PMCID: PMC4658092 DOI: 10.1371/journal.pone.0142657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and Taiwan were investigated using PCR-based assays targeting putative virulence-related genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified 52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (> 50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among the genotypes were observed, the association between genotype and strain source (environmental or clinical) was not significant, indicating that genotypic characteristics alone are not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of 44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corresponding to the two known lineages of V. vulnificus were observed; lineage A had six STs that were exclusively environmental, whereas lineage B had STs from both environmental and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lineages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilibrium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests) detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnificus might be comprised of recently sub-divided lineages. These results suggested that the two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.
Collapse
|
9
|
Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 2015; 30:1-7. [PMID: 26615332 DOI: 10.1016/j.mib.2015.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The human pathogen Vibrio cholerae is an autochthonous inhabitant of aquatic environments where it often interacts with zooplankton and their chitinous molts. Chitin induces natural competence for transformation in V. cholerae, a key mode of horizontal gene transfer (HGT). Recent comparative genomic analyses were indicative of extensive HGT in this species. However, we can still expand our understanding of the complex regulatory network that drives competence in V. cholerae. Here, we present recent advances, including the elucidation of bipartite competence regulation mediated by QstR, the inclusion of the type VI secretion system in the competence regulon of pandemic O1 El Tor strains, and the identification of TfoS as a transcriptional regulator that links chitin to competence induction in V. cholerae.
Collapse
Affiliation(s)
- Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Markov EY, Kulikalova ES, Urbanovich LY, Vishnyakov VS, Balakhonov SV. Chitin and Products of Its Hydrolysis in Vibrio cholerae Ecology. BIOCHEMISTRY (MOSCOW) 2015; 80:1109-16. [PMID: 26555464 DOI: 10.1134/s0006297915090023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of chitin and its hydrolysis products generated by Vibrio cholerae chitinases in mechanisms of its adaptation in water environments, metabolism, preservation, acquisition of pathogenic potential, and its epidemiological value are reviewed. Chitin utilization by V. cholerae as a source of energy, carbon, and nitrogen is described. Chitin association promotes biofilm formation on natural chitinous surfaces, increasing V. cholerae resistance to adverse factors in ecological niches: the human body and water environments with its inhabitants. Hydrolytic enzymes regulated by the corresponding genes result in complete chitin biodegradation by a chitinolytic catabolic cascade. Consequences of V. cholerae cell and chitin interaction at different hierarchical levels include metabolic and physiological cell reactions such as chemotaxis, cell division, biofilm formation, induction of genetic competence, and commensalic and symbiotic mutual relations with higher organisms, nutrient cycle, pathogenicity for humans, and water organisms that is an example of successful interrelation of bacteria and substratum in the ecology of the microorganism.
Collapse
Affiliation(s)
- E Yu Markov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, Irkutsk, 664002, Russia.
| | | | | | | | | |
Collapse
|
11
|
Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015; 347:63-7. [PMID: 25554784 DOI: 10.1126/science.1260064] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural competence for transformation is a common mode of horizontal gene transfer and contributes to bacterial evolution. Transformation occurs through the uptake of external DNA and its integration into the genome. Here we show that the type VI secretion system (T6SS), which serves as a predatory killing device, is part of the competence regulon in the naturally transformable pathogen Vibrio cholerae. The T6SS-encoding gene cluster is under the positive control of the competence regulators TfoX and QstR and is induced by growth on chitinous surfaces. Live-cell imaging revealed that deliberate killing of nonimmune cells via competence-mediated induction of T6SS releases DNA and makes it accessible for horizontal gene transfer in V. cholerae.
Collapse
Affiliation(s)
- Sandrine Borgeaud
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tiziana Scrignari
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. J Bacteriol 2015; 197:1065-74. [PMID: 25561715 DOI: 10.1128/jb.02347-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacterial strain variation exists in natural populations of bacteria and can be generated experimentally through directed or random mutation. The advent of rapid and cost-efficient whole-genome sequencing has facilitated strain-level genotyping. Even with modern tools, however, it often remains a challenge to map specific traits to individual genetic loci, especially for traits that cannot be selected under culture conditions (e.g., colonization level or pathogenicity). Using a combination of classical and modern approaches, we analyzed strain-level variation in Vibrio fischeri and identified the basis by which some strains lack the ability to utilize glycerol as a carbon source. We proceeded to reconstruct the lineage of the commonly used V. fischeri laboratory strains. Compared to the wild-type ES114 strain, we identify in ES114-L a 9.9-kb deletion with endpoints in tadB2 and glpF; restoration of the missing portion of glpF restores the wild-type phenotype. The widely used strains ESR1, JRM100, and JRM200 contain the same deletion, and ES114-L is likely a previously unrecognized intermediate strain in the construction of many ES114 derivatives. ES114-L does not exhibit a defect in competitive squid colonization but ESR1 does, demonstrating that glycerol utilization is not required for early squid colonization. Our genetic mapping approach capitalizes on the recently discovered chitin-based transformation pathway, which is conserved in the Vibrionaceae; therefore, the specific approach used is likely to be useful for mapping genetic traits in other Vibrio species.
Collapse
|
13
|
Blokesch M. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae. Mob Genet Elements 2014; 2:224-227. [PMID: 23446800 PMCID: PMC3575429 DOI: 10.4161/mge.22284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a fundamental gap in our understanding of how horizontal gene transfer contributes to the enormous range of genetic variations that are observed among bacteria. The objective of our study was to better understand how the acquisition of genetic material by natural transformation is regulated within a population of Vibrio cholerae cells. V. cholerae is an aquatic bacterium and a facultative human pathogen. It acquires natural competence for transformation in response to changing environmental signals, such as the presence of chitinous surfaces, the absence of monomeric sugars and quorum sensing-linked autoinducers. The latter play a distinctive role in V. cholerae as they fine-tune a switch from the degradation of extracellular DNA toward the uptake of intact DNA strands in competence-induced cells. The link between quorum sensing and natural competence for transformation will be discussed. Furthermore, we speculate on the overrepresentation of transformation-negative strains of V. cholerae in patient-derived culture collections, which might be the result of a biased sampling strategy as virulence and natural transformation are contrarily regulated by the quorum sensing network.
Collapse
Affiliation(s)
- Melanie Blokesch
- Global Health Institute; School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne, Switzerland
| |
Collapse
|
14
|
Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M, Watanabe H, Izumiya H. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 2013; 91:326-47. [PMID: 24236404 DOI: 10.1111/mmi.12462] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 11/27/2022]
Abstract
In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Sun Y, Bernardy EE, Hammer BK, Miyashiro T. Competence and natural transformation in vibrios. Mol Microbiol 2013; 89:583-95. [PMID: 23803158 DOI: 10.1111/mmi.12307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| | - Eryn E Bernardy
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Brian K Hammer
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| |
Collapse
|
16
|
Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 2012; 37:336-63. [PMID: 22928673 DOI: 10.1111/j.1574-6976.2012.00353.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window.
Collapse
Affiliation(s)
- Patrick Seitz
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
17
|
Leskinen SD, Kearns EA, Jones WL, Miller RS, Bevitas CR, Kingsley MT, Brigmon RL, Lim DV. Automated dead-end ultrafiltration of large volume water samples to enable detection of low-level targets and reduce sample variability. J Appl Microbiol 2012; 113:351-60. [PMID: 22607480 DOI: 10.1111/j.1365-2672.2012.05345.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/30/2012] [Accepted: 05/15/2012] [Indexed: 12/14/2022]
Abstract
AIMS A Portable Multi-use Automated Concentration System (PMACS) concentrates micro-organisms from large volumes of water through automated dead-end ultrafiltration and backflushing. The ability to detect microbial targets from ground, surface and cooling tower waters collected using standard methods was compared with samples from the PMACS in this study. METHODS AND RESULTS PMACS (100 l) and standard grab samples (100-500 ml) were collected from sites in Florida and South Carolina, USA. Samples were analysed for the presence of faecal indicator bacteria (FIB; ground and surface water) or Legionella pneumophila (Lp; cooling tower water). FIB were enumerated by growth on selective media following membrane filtration or in IDEXX defined substrate media. Lp cells were detected by direct fluorescence immunoassay using FITC-labelled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. FIB were found in PMACS samples from ground and surface waters when their concentrations were below detection limits in grab samples. The concentrations of Lp in cooling tower samples collected over 5 months were more consistent in PMACS samples than grab samples. CONCLUSIONS These data demonstrate that PMACS concentration is advantageous for water monitoring. FIB were detected in PMACS samples when their concentrations were below the detection limits of the standard methods used. PMACS processing provided more representative samples of cooling tower waters reducing sample variability during long-term monitoring. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlights the utility of PMACS processing for enhanced monitoring of water for low-level microbial targets and for reducing sample variability in long-term monitoring programmes.
Collapse
Affiliation(s)
- S D Leskinen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620-7115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The role of bacteriophages as natural vectors for some of the most potent bacterial toxins is well recognized and includes classical type I membrane-acting superantigens, type II pore-forming lysins, and type III exotoxins, such as diphtheria and botulinum toxins. Among Gram-negative pathogens, a novel class of bacterial virulence factors called effector proteins (EPs) are phage encoded among pathovars of Escherichia coli, Shigella spp., and Salmonella enterica. This chapter gives an overview of the different types of virulence factors encoded within phage genomes based on their role in bacterial pathogenesis. It also discusses phage-pathogenicity island interactions uncovered from studies of phage-encoded EPs. A detailed examination of the filamentous phage CTXφ that encodes cholera toxin is given as the sole example to date of a single-stranded DNA phage that encodes a bacterial toxin.
Collapse
|
19
|
Hazen TH, Pan L, Gu JD, Sobecky PA. The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 2011; 74:485-99. [PMID: 20662928 DOI: 10.1111/j.1574-6941.2010.00937.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An increase in the frequency of seafood-borne gastroenteritis in humans and Vibrio-related disease of fish and invertebrates has generated interest in the ecology of disease-causing Vibrios and the mechanisms driving their evolution. Genome sequencing studies have indicated a substantial contribution of horizontal gene transfer (HGT) to the evolution of Vibrios. Of particular interest is the contribution of HGT to the evolution of Vibrios pathogens and the adaptation of disease-causing Vibrios for survival in diverse environments. In this review, we discuss the diversity and distribution of mobile genetic elements (MGEs) isolated from Vibrios and the contribution of these elements to the expansion of the ecological and pathogenic niches of the host strain. Much of the research on Vibrio MGEs has focused on understanding phages and plasmids and we will primarily discuss the evolution of these elements and also briefly highlight the other diverse elements characterized from Vibrios, which includes genomic islands and conjugative elements.
Collapse
Affiliation(s)
- Tracy H Hazen
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | |
Collapse
|
20
|
Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 2011; 193:1953-65. [PMID: 21317321 DOI: 10.1128/jb.01340-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)₂ is needed to activate the transcription and translation of V. cholerae tfoX (tfoX(VC)) to induce natural competence. In this study, we screened a multicopy library of V. cholerae DNA fragments necessary for translational regulation of tfoX(VC). A clone carrying the VC2078-VC2079 intergenic region, designated tfoR, increased the expression of a tfoX(VC)::lacZ translational fusion constructed in Escherichia coli. Using a tfoX(VC)::lacZ reporter system in V. cholerae, we confirmed that tfoR positively regulated tfoX(VC) expression at the translational level. Deletion of tfoR abolished competence for exogenous DNA even when (GlcNAc)₂ was provided. The introduction of a plasmid clone carrying the tfoR(+) gene into the tfoR deletion mutant complemented the competence deficiency. We also found that the tfoR gene encodes a 102-nucleotide small RNA (sRNA), which was transcriptionally activated in the presence of (GlcNAc)₂. Finally, we showed that this sRNA activated translation from tfoX(VC) mRNA in a highly purified in vitro translation system. Taking these results together, we propose that in the presence of (GlcNAc)₂, TfoR sRNA is expressed to activate the translation of tfoX(VC), which leads to the induction of natural competence.
Collapse
|
21
|
Recombination shapes the structure of an environmental Vibrio cholerae population. Appl Environ Microbiol 2010; 77:537-44. [PMID: 21075874 DOI: 10.1128/aem.02062-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae consists of pathogenic strains that cause sporadic gastrointestinal illness or epidemic cholera disease and nonpathogenic strains that grow and persist in coastal aquatic ecosystems. Previous studies of disease-causing strains have shown V. cholerae to be a primarily clonal bacterial species, but isolates analyzed have been strongly biased toward pathogenic genotypes, while representing only a small sample of the vast diversity in environmental strains. In this study, we characterized homologous recombination and structure among 152 environmental V. cholerae isolates and 13 other putative Vibrio isolates from coastal waters and sediments in central California, as well as four clinical V. cholerae isolates, using multilocus sequence analysis of seven housekeeping genes. Recombinant regions were identified by at least three detection methods in 72% of our V. cholerae isolates. Despite frequent recombination, significant linkage disequilibrium was still detected among the V. cholerae sequence types. Incongruent but nonrandom associations were observed for maximum likelihood topologies from the individual loci. Overall, our estimated recombination rate in V. cholerae of 6.5 times the mutation rate is similar to those of other sexual bacteria and appears frequently enough to restrict selection from purging much of the neutral intraspecies diversity. These data suggest that frequent recombination among V. cholerae may hinder the identification of ecotypes in this bacterioplankton population.
Collapse
|
22
|
Evidence for the horizontal transfer of an unusual capsular polysaccharide biosynthesis locus in marine bacteria. Infect Immun 2010; 78:5214-22. [PMID: 20921143 DOI: 10.1128/iai.00653-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The most intensely studied of the Vibrio vulnificus virulence factors is the capsular polysaccharide (CPS). All virulent strains produce copious amounts of CPS. Acapsular strains are avirulent. The structure of the CPS from the clinical isolate ATCC 27562 is unusual. It is serine modified and contains, surprisingly, N-acetylmuramic acid. We identified the complete 25-kb CPS biosynthesis locus from ATCC 27562. It contained 21 open reading frames and was allelic to O-antigen biosynthesis loci. Two of the genes, murA(CPS) and murB(CPS), were paralogs of the murA(PG) and murB(PG) genes of the peptidoglycan biosynthesis pathway; only a single copy of these genes is present in the strain CMCP6 and YJ016 genomes. Although MurA(CPS) and MurB(CPS) were functional when expressed in Escherichia coli, lesions in either gene had no effect on CPS production, virulence, or growth in V. vulnificus; disruption of 8 other genes within the locus resulted in an acapsular phenotype and attenuated virulence. Thus, murA(CPS) and murB(CPS) were functional but redundant. Comparative genomic analysis revealed that while completely different CPS biosynthesis loci were found in the same chromosomal region in other V. vulnificus strains, most of the CPS locus of ATCC 27562 was conserved in another marine bacterium, Shewanella putrefaciens strain 200. However, the average GC content of the CPS locus was significantly lower than the average GC content of either genome. Furthermore, several of the encoded proteins appeared to be of Gram-positive and archaebacterial origin. These data indicate that the horizontal transfer of intact and partial CPS loci drives CPS diversity in marine bacteria.
Collapse
|
23
|
|
24
|
Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins. BMC Genomics 2010; 11:369. [PMID: 20537180 PMCID: PMC2890568 DOI: 10.1186/1471-2164-11-369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/10/2010] [Indexed: 11/17/2022] Open
Abstract
Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments.
Collapse
|
25
|
Marvig RL, Blokesch M. Natural transformation of Vibrio cholerae as a tool--optimizing the procedure. BMC Microbiol 2010; 10:155. [PMID: 20509862 PMCID: PMC2890613 DOI: 10.1186/1471-2180-10-155] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 05/28/2010] [Indexed: 11/17/2022] Open
Abstract
Background Vibrio cholerae gains natural competence upon growth on chitin. This allows the organism to take up free DNA from the environment and to incorporate it into its genome by homologous recombination. Results Making use of this developmental program in order to use it as a tool to genetically manipulate V. cholerae and potentially also others Vibrio species was envisaged. Therefore, we re-investigated the experimental design for natural transformation of V. cholerae and tested different donor DNA fragments with respect to their source (genomic versus PCR-derived), quantity, and homologous flanking regions. Furthermore, we simplified the procedure in terms of the chitin source used as inducer of natural competence and the composition of the growth medium. Conclusions The current study allows us to recommend a standard protocol to genetically manipulate V. cholerae using commercially available sources of chitin and minimal medium, respectively, as well as PCR-derived donor DNA as transforming material.
Collapse
Affiliation(s)
- Rasmus L Marvig
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
26
|
Chattopadhyay S, Paranjpye RN, Dykhuizen DE, Sokurenko EV, Strom MS. Comparative evolutionary analysis of the major structural subunit of Vibrio vulnificus type IV pili. Mol Biol Evol 2009; 26:2185-96. [PMID: 19556347 DOI: 10.1093/molbev/msp124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type IV pili contribute to virulence in Vibrio vulnificus, the bacterium responsible for the majority of fatal seafood-related infections. Here, we performed within- and between-species evolutionary analysis of the gene that encodes the major structural subunit of the pilus, pilA, by comparing it with pilD and gyrB, the genes encoding the type IV prepilin peptidase and beta subunit of DNA gyrase, respectively. Although the diversity in pilD and gyrB is similar to each other and likely to have accumulated after speciation of V. vulnificus, pilA is several times more diverse at both nonsynonymous and synonymous levels. Also, in contrast to pilD and gyrB, there are virtually unrestricted and highly localized horizontal movements of pilA alleles between the major phylogenetic groups of V. vulnificus. The frequent movement of pilA involves homologous recombination of the entire gene with no evidence for intragenic recombination between the alleles. We propose that pilA allelic diversity and horizontal movement is maintained in the population by both diversifying and frequency-dependent selection most likely to escape shellfish innate immunity defense or lytic phages. Other possibilities leading to such selection dynamics of V. vulnificus pilA could involve adaptation to diverse host populations or within-host compartments, or natural DNA uptake and transformation. We show that the history of nucleotide diversification in pilA predates V. vulnificus speciation and this diversification started at or before the time of the last common ancestor for V. vulnificus, Vibrio parahaemolyticus, and Vibrio cholerae. At the same time, it appears that within the various pilA groups of V. vulnificus, there is no positive selection for structural mutations and consequently no evidence for source-sink selection. In contrast, pilD has accumulated a number of apparently adaptive mutations in the regions encoding the membrane-spanning portions of the prepilin peptidase, possibly affecting fimbrial expression and/or function, and is being subjected to source-sink selection dynamics.
Collapse
|
27
|
Molecular diversification in the quorum-sensing system of Vibrio cholerae: Role of natural selection in the emergence of pandemic strains. Appl Environ Microbiol 2009; 75:3808-12. [PMID: 19346342 DOI: 10.1128/aem.02496-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two haplotypes of the Vibrio cholerae quorum-sensing system regulator hapR are described: hapR1, common among nonpandemic, non-O1, non-O139 strains, and hapR2, associated with pandemic O1 and O139 and epidemic O37 V. cholerae strains. The hapR2 has evolved under strong natural selection, implying that its fixation was influenced by conditions that led to cholera pandemics.
Collapse
|
28
|
Biogeographic patterns in genomic diversity among a large collection of Vibrio cholerae isolates. Appl Environ Microbiol 2009; 75:1658-66. [PMID: 19139224 DOI: 10.1128/aem.01304-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae strains are capable of inhabiting multiple niches in the aquatic environment and in some cases cause disease in humans. However, the ecology and biodiversity of these bacteria in environmental settings remains poorly understood. We used the genomic fingerprinting technique enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) to profile 835 environmental isolates from waters and sediments obtained at nine sites along the central California coast. We identified 115 ERIC-PCR genotypes from 998 fingerprints, with a reproducibility of 98.5% and a discriminatory power of 0.971. When the temporal dynamics at a subset of sampling sites were explored, several genotypes provided evidence for cosmopolitan or geographically restricted distributions, and other genotypes displayed nonrandom patterns of cooccurrence. Partial Mantel tests confirmed that genotypic similarity of isolates across all sampling events was correlated with environmental similarity (0.04 < or = r < or = 0.05), temporal proximity (r = 0.09), and geographic distance (r = 0.09). A neutral community model for all sampling events explained 61% of the variation in genotype abundance. Cooccurrence indices (C-score, C-board, and Combo) were significantly different than expected by chance, suggesting that the V. cholerae population may have a competitive structure, especially at the regional scale. Even though stochastic processes are undoubtedly important in generating biogeographic patterns in diversity, deterministic factors appear to play a significant, albeit small, role in shaping the V. cholerae population structure in this system.
Collapse
|
29
|
Feng L, Reeves PR, Lan R, Ren Y, Gao C, Zhou Z, Ren Y, Cheng J, Wang W, Wang J, Qian W, Li D, Wang L. A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS One 2008; 3:e4053. [PMID: 19115014 PMCID: PMC2605724 DOI: 10.1371/journal.pone.0004053] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/18/2008] [Indexed: 01/30/2023] Open
Abstract
Cholera, caused by Vibrio cholerae, erupted globally from South Asia in 7 pandemics, but there were also local outbreaks between the 6(th) (1899-1923) and 7(th) (1961-present) pandemics. All the above are serotype O1, whereas environmental or invertebrate isolates are antigenically diverse. The pre 7th pandemic isolates mentioned above, and other minor pathogenic clones, are related to the 7(th) pandemic clone, while the 6(th) pandemic clone is in the same lineage but more distantly related, and non-pathogenic isolates show no clonal structure. To understand the origins and relationships of the pandemic clones, we sequenced the genomes of a 1937 prepandemic strain and a 6(th) pandemic isolate, and compared them with the published 7(th) pandemic genome. We distinguished mutational and recombinational events, and allocated these and other events, to specific branches in the evolutionary tree. There were more mutational than recombinational events, but more genes, and 44 times more base pairs, changed by recombination. We used the mutational single-nucleotide polymorphisms and known isolation dates of the prepandemic and 7(th) pandemic isolates to estimate the mutation rate, and found it to be 100 fold higher than usually assumed. We then used this to estimate the divergence date of the 6(th) and 7(th) pandemic clones to be about 1880. While there is a large margin of error, this is far more realistic than the 10,000-50,000 years ago estimated using the usual assumptions. We conclude that the 2 pandemic clones gained pandemic potential independently, and overall there were 29 insertions or deletions of one or more genes. There were also substantial changes in the major integron, attributed to gain of individual cassettes including copying from within, or loss of blocks of cassettes. The approaches used open up new avenues for analysing the origin and history of other important pathogens.
Collapse
Affiliation(s)
- Lu Feng
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Peter R. Reeves
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Yi Ren
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Chunxu Gao
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Zhemin Zhou
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Yan Ren
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Jiansong Cheng
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Wei Wang
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jianmei Wang
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Wubin Qian
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Dan Li
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology Nankai University, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
- * E-mail:
| |
Collapse
|
30
|
Diversity and seasonality of bioluminescent Vibrio cholerae populations in Chesapeake Bay. Appl Environ Microbiol 2008; 75:135-46. [PMID: 19011071 DOI: 10.1128/aem.02894-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Association of luminescence with phenotypic and genotypic traits and with environmental parameters was determined for 278 strains of Vibrio cholerae isolated from the Chesapeake Bay during 1998 to 2000. Three clusters of luminescent strains (A, B, and C) and two nonluminescent clusters (X and Y) were identified among 180 clonal types. V. cholerae O1 strains isolated during pandemics and endemic cholera in the Ganges Delta were related to cluster Y. Heat-stable enterotoxin (encoded by stn) and the membrane protein associated with bile resistance (encoded by ompU) were found to be linked to luminescence in strains of cluster A. Succession from nonluminescent to luminescent populations of V. cholerae occurred during spring to midsummer. Occurrence of cluster A strains in water with neutral pH was contrasted with that of cluster Y strains in water with a pH of >8. Cluster A was found to be associated with a specific calanoid population cooccurring with cyclopoids. Cluster B was related to cluster Y, with its maximal prevalence at pH 8. Occurrence of cluster B strains was more frequent with warmer water temperatures and negatively correlated with maturity of the copepod community. It is concluded that each cluster of luminescent V. cholerae strains occupies a distinct ecological niche. Since the dynamics of these niche-specific subpopulations are associated with zooplankton community composition, the ecology of luminescent V. cholerae is concluded to be related to its interaction with copepods and related crustacean species.
Collapse
|
31
|
Stewart JR, Gast RJ, Fujioka RS, Solo-Gabriele HM, Meschke JS, Amaral-Zettler LA, del Castillo E, Polz MF, Collier TK, Strom MS, Sinigalliano CD, Moeller PDR, Holland AF. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ Health 2008; 7 Suppl 2:S3. [PMID: 19025674 PMCID: PMC2586716 DOI: 10.1186/1476-069x-7-s2-s3] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
Collapse
Affiliation(s)
- Jill R Stewart
- Hollings Marine Laboratory, NOAA National Ocean Service, Charleston, SC 29412, USA
| | - Rebecca J Gast
- Woods Hole Oceanographic Institution, Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543, USA
| | - Roger S Fujioka
- Water Resources Research Center, University of Hawaii, Honolulu, HI 96822, USA
| | - Helena M Solo-Gabriele
- Rosenstiel School for Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA
| | - J Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, USA
| | - Linda A Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543, USA
| | - Erika del Castillo
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543, USA
| | - Martin F Polz
- Civil and Environmental Engineering, MIT, Woods Hole Center for Oceans and Human Health, Cambridge, MA 02139, USA
| | - Tracy K Collier
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - Mark S Strom
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - Christopher D Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, NOAA Office of Oceanic and Atmospheric Research, Miami, FL 33149, USA
- Cooperative Institute of Marine and Atmospheric Studies, University of Miami, Miami, FL 33149, USA
| | - Peter DR Moeller
- Hollings Marine Laboratory, NOAA National Ocean Service, Charleston, SC 29412, USA
| | - A Fredrick Holland
- Hollings Marine Laboratory, NOAA National Ocean Service, Charleston, SC 29412, USA
| |
Collapse
|
32
|
Simmons SL, DiBartolo G, Denef VJ, Goltsman DSA, Thelen MP, Banfield JF. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol 2008; 6:e177. [PMID: 18651792 PMCID: PMC2475542 DOI: 10.1371/journal.pbio.0060177] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/12/2008] [Indexed: 12/20/2022] Open
Abstract
Deeply sampled community genomic (metagenomic) datasets enable comprehensive analysis of heterogeneity in natural microbial populations. In this study, we used sequence data obtained from the dominant member of a low-diversity natural chemoautotrophic microbial community to determine how coexisting closely related individuals differ from each other in terms of gene sequence and gene content, and to uncover evidence of evolutionary processes that occur over short timescales. DNA sequence obtained from an acid mine drainage biofilm was reconstructed, taking into account the effects of strain variation, to generate a nearly complete genome tiling path for a Leptospirillum group II species closely related to L. ferriphilum (sampling depth ∼20×). The population is dominated by one sequence type, yet we detected evidence for relatively abundant variants (>99.5% sequence identity to the dominant type) at multiple loci, and a few rare variants. Blocks of other Leptospirillum group II types (∼94% sequence identity) have recombined into one or more variants. Variant blocks of both types are more numerous near the origin of replication. Heterogeneity in genetic potential within the population arises from localized variation in gene content, typically focused in integrated plasmid/phage-like regions. Some laterally transferred gene blocks encode physiologically important genes, including quorum-sensing genes of the LuxIR system. Overall, results suggest inter- and intrapopulation genetic exchange involving distinct parental genome types and implicate gain and loss of phage and plasmid genes in recent evolution of this Leptospirillum group II population. Population genetic analyses of single nucleotide polymorphisms indicate variation between closely related strains is not maintained by positive selection, suggesting that these regions do not represent adaptive differences between strains. Thus, the most likely explanation for the observed patterns of polymorphism is divergence of ancestral strains due to geographic isolation, followed by mixing and subsequent recombination. Communities of microbes in nature consist of a large number of distinct individuals. The variation in DNA sequence between these individuals contains a record of the evolutionary processes that have shaped each community. In most environments, however, the high number of distinct species makes obtaining information about the nature of this variation difficult or impossible. We obtained large amounts of sequence data for a natural community in an acid mine drainage system consisting of only a few species. This enabled us to reconstruct the genome of the dominant bacterium (Leptospirillum group II) and obtain detailed information about sequence variation between individuals, including differences in both gene content and gene sequence. Our analysis shows extensive recombination between closely related populations, as well as fewer instances of recombination between more distantly related individuals. Additionally, viruses and plasmids account for high variability in gene content between individuals. We conclude that sequence-level variation in this population is maintained through neutral processes (migration, recombination, and genetic drift) rather than natural selection. This suggests that closely related strains of the Leptospirillum group II population may not be ecologically distinct. Deep sequencing of a low-complexity microbial community revealed extensive recombination as well as polymorphic and gene content variation between individuals of the dominant organism. We show that strains defined by linked polymorphisms are not maintained by positive selection; instead, they are predominantly maintained by the forces of migration and drift.
Collapse
Affiliation(s)
- Sheri L Simmons
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Genevieve DiBartolo
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Vincent J Denef
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniela S. Aliaga Goltsman
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael P Thelen
- Chemistry Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Chokesajjawatee N, Zo YG, Colwell RR. Determination of clonality and relatedness of Vibrio cholerae isolates by genomic fingerprinting, using long-range repetitive element sequence-based PCR. Appl Environ Microbiol 2008; 74:5392-401. [PMID: 18606790 PMCID: PMC2546650 DOI: 10.1128/aem.00151-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/30/2008] [Indexed: 11/20/2022] Open
Abstract
A high-throughput method which is applicable for rapid screening, identification, and delineation of isolates of Vibrio cholerae, sensitive to genome variation, and capable of providing phylogenetic inferences enhances environmental monitoring of this bacterium. We have developed and optimized a method for genomic fingerprinting of V. cholerae based on long-range PCR. The method uses a primer set directed to enterobacterial repetitive intergenic consensus sequences, a high-fidelity DNA polymerase, and analysis via conventional agarose gel electrophoresis. Long ( approximately 10 kb), highly reproducible amplicons were generated from V. cholerae isolates, including those from different geographical locations and historical strains isolated during the period 1931-2000. The amplicons yielded reduced variability in their densitometric band patterns to =10% and clonal distinction at <90% similarity. Rapid band-matching analysis was accomplished for fingerprints with >/=90% similarity, discriminating O serotypes and biotypes (classical versus El Tor) as well as pathogenic and nonpathogenic strains. Compared to genome similarity measured by DNA-DNA hybridization, the results showed good correlation (r = 0.7; P < 0.001), with five times less measurement error and without bias. The method permits both phylogenetic inference and clonal differentiation of individual V. cholerae strains, enables robust, high-throughput analysis, and does not require specialized equipment to perform. With access to a curated public database furnished with appropriate analytical software applications, the method should prove useful in large-scale multilaboratory surveys, especially those designed to detect specific pathogens in the natural environment.
Collapse
Affiliation(s)
- Nipa Chokesajjawatee
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of Maryland College Park, College Park, MD 20742, USA
| | | | | |
Collapse
|
34
|
The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. J Bacteriol 2008; 190:7232-40. [PMID: 18757542 DOI: 10.1128/jb.00959-08] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification.
Collapse
|
35
|
Abstract
What factors shape the evolution of invasive populations? Recent theoretical and empirical studies suggest that an evolutionary history of disturbance might be an important factor. This perspective presents hypotheses regarding the impact of disturbance on the evolution of invasive populations, based on a synthesis of the existing literature. Disturbance might select for life-history traits that are favorable for colonizing novel habitats, such as rapid population growth and persistence. Theoretical results suggest that disturbance in the form of fluctuating environments might select for organismal flexibility, or alternatively, the evolution of evolvability. Rapidly fluctuating environments might favor organismal flexibility, such as broad tolerance or plasticity. Alternatively, longer fluctuations or environmental stress might lead to the evolution of evolvability by acting on features of the mutation matrix. Once genetic variance is generated via mutations, temporally fluctuating selection across generations might promote the accumulation and maintenance of genetic variation. Deeper insights into how disturbance in native habitats affects evolutionary and physiological responses of populations would give us greater capacity to predict the populations that are most likely to tolerate or adapt to novel environments during habitat invasions. Moreover, we would gain fundamental insights into the evolutionary origins of invasive populations.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE), Department of Zoology, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
36
|
Sequence characterization and comparative analysis of three plasmids isolated from environmental Vibrio spp. Appl Environ Microbiol 2007; 73:7703-10. [PMID: 17921277 DOI: 10.1128/aem.01577-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The horizontal transfer of genes by mobile genetic elements such as plasmids and phages can accelerate genome diversification of Vibrio spp., affecting their physiology, pathogenicity, and ecological character. In this study, sequence analysis of three plasmids from Vibrio spp. previously isolated from salt marsh sediment revealed the remarkable diversity of these elements. Plasmids p0908 (81.4 kb), p23023 (52.5 kb), and p09022 (31.0 kb) had a predicted 99, 64, and 32 protein-coding sequences and G+C contents of 49.2%, 44.7%, and 42.4%, respectively. A phylogenetic tree based on concatenation of the host 16S rRNA and rpoA nucleotide sequences indicated p23023 and p09022 were isolated from strains most closely related to V. mediterranei and V. campbellii, respectively, while the host of p0908 forms a clade with V. fluvialis and V. furnissii. Many predicted proteins had amino acid identities to proteins of previously characterized phages and plasmids (24 to 94%). Predicted proteins with similarity to chromosomally encoded proteins included RecA, a nucleoid-associated protein (NdpA), a type IV helicase (UvrD), and multiple hypothetical proteins. Plasmid p0908 had striking similarity to enterobacteria phage P1, sharing genetic organization and amino acid identity for 23 predicted proteins. This study provides evidence of genetic exchange between Vibrio plasmids, phages, and chromosomes among diverse Vibrio spp.
Collapse
|
37
|
Blokesch M, Schoolnik GK. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog 2007; 3:e81. [PMID: 17559304 PMCID: PMC1891326 DOI: 10.1371/journal.ppat.0030081] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/19/2007] [Indexed: 11/18/2022] Open
Abstract
The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans. The reservoirs of Vibrio cholerae are aquatic environments, where it attaches to the chitin-containing shells of small crustaceans. Chitin serves as a nutrient for V. cholerae and it induces natural transformation, a process by which it acquires new genes from other microbes in the same habitat. The most compelling consequence of a V. cholerae gene acquisition event occurred in 1992 when a vast cholera epidemic erupted in India and Bangladesh and spread through Asia. Genetic analysis showed that this outbreak was due to the acquisition of a gene cluster that converted the ancestral V. cholerae O1 El Tor serogroup to an entirely new serogroup, designated O139 Bengal. This report shows that acquisition of the O139 gene cluster by an O1 El Tor strain can be mediated by natural transformation and that this can occur within a community of bacteria living on a chitin surface. The O139 derivatives of this transformation event were not killed by bacteriophages that attack O1 strains, explaining in part why O139 strains have replaced O1 strains in some Asian water sources. These results also illustrate how a combination of genetic and ecological factors can lead to the emergence of new pathogenic microbes in environmental reservoirs.
Collapse
Affiliation(s)
- Melanie Blokesch
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gary K Schoolnik
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Cohen ALV, Oliver JD, DePaola A, Feil EJ, Boyd EF. Emergence of a virulent clade of Vibrio vulnificus and correlation with the presence of a 33-kilobase genomic island. Appl Environ Microbiol 2007; 73:5553-65. [PMID: 17616611 PMCID: PMC2042058 DOI: 10.1128/aem.00635-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a ubiquitous inhabitant of the marine coastal environment, and an important pathogen of humans. We characterized a globally distributed sample of environmental isolates from a range of habitats and hosts and compared these with isolates recovered from cases of human infection. Multilocus sequence typing data using six housekeeping genes divided 63 of the 67 isolates into the two main lineages previously noted for this species, and this division was also confirmed using the 16S rRNA and open reading frame VV0401 markers. Lineage I was comprised exclusively of biotype 1 isolates, whereas lineage II contained biotype 1 and all biotype 2 isolates. Four isolates did not cluster within either lineage: two biotype 3 and two biotype 1 isolates. The proportion of isolates recovered from a clinical setting was noted to be higher in lineage I than in lineage II. Lineage I isolates were also associated with a 33-kb genomic island (region XII), one of three regions identified by genome comparisons as unique to the species. Region XII contained an arylsulfatase gene cluster, a sulfate reduction system, two chondroitinase genes, and an oligopeptide ABC transport system, all of which are absent from the majority of lineage II isolates. Arylsulfatases and the sulfate reduction system, along with performing a scavenging role, have been hypothesized to play a role in pathogenic processes in other bacteria. Our data suggest that lineage I may have a higher pathogenic potential and that region XII, along with other regions, may give isolates a selective advantage either in the human host or in the aquatic environment or both.
Collapse
Affiliation(s)
- Ana Luisa V Cohen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
39
|
Keymer DP, Miller MC, Schoolnik GK, Boehm AB. Genomic and phenotypic diversity of coastal Vibrio cholerae strains is linked to environmental factors. Appl Environ Microbiol 2007; 73:3705-14. [PMID: 17449702 PMCID: PMC1932678 DOI: 10.1128/aem.02736-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of Vibrio cholerae diversity have focused primarily on pathogenic isolates of the O1 and O139 serotypes. However, autochthonous environmental isolates of this species routinely display more extensive genetic diversity than the primarily clonal pathogenic strains. In this study, genomic and metabolic profiles of 41 non-O1/O139 environmental isolates from central California coastal waters and four clinical strains are used to characterize the core genome and metabolome of V. cholerae. Comparative genome hybridization using microarrays constructed from the fully sequenced V. cholerae O1 El Tor N16961 genome identified 2,787 core genes that approximated the projected species core genome within 1.6%. Core genes are almost universally present in strains with widely different niches, suggesting that these genes are essential for persistence in diverse aquatic environments. In contrast, the dispensable genes and phenotypic traits identified in this study should provide increased fitness for certain niche environments. Environmental parameters, measured in situ during sample collection, are correlated to the presence of specific dispensable genes and metabolic capabilities, including utilization of mannose, sialic acid, citrate, and chitosan oligosaccharides. These results identify gene content and metabolic pathways that are likely selected for in certain coastal environments and may influence V. cholerae population structure in aquatic environments.
Collapse
Affiliation(s)
- Daniel P Keymer
- Department of Civil Engineering, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | |
Collapse
|