1
|
Chávez-Luzanía RA, Ortega-Urquieta ME, Aguilera-Ibarra J, Morales-Sandoval PH, Hernández-Coss JA, González-Vázquez LA, Jara-Morales VB, Arredondo-Márquez SH, Olea-Félix MJ, de los Santos-Villalobos S. Transdisciplinary approaches for the study of cyanobacteria and cyanotoxins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100289. [PMID: 39469049 PMCID: PMC11513502 DOI: 10.1016/j.crmicr.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Cyanobacteria, ancient aerobic and photoautotrophic prokaryotes, thrive in diverse ecosystems due to their extensive morphological and physiological adaptations. They play crucial roles in aquatic ecosystems as primary producers and resource providers but also pose significant ecological and health risks through blooms that produce harmful toxins, called cyanotoxins. The taxonomic affiliation of cyanobacteria has evolved from morphology-based methods to genomic analysis, which offers detailed structural and physiological insights that are essential for accurate taxonomic affiliation and monitoring. However, challenges posed by uncultured species have been extrapolated to the detection and quantification of cyanotoxins. Current advances in molecular biology and informatics improve the precision of monitoring and allow the analysis of groups of genes related to toxin production, providing crucial information for environmental biosafety and public health. Unfortunately, public genomic databases heavily underrepresent cyanobacteria, which limits the understanding of their diversity and metabolic capabilities. Despite the increasing availability of cyanobacterial genome sequences, research is still largely focused on a few model strains, narrowing the scope of genetic and metabolic studies. The challenges posed by cyanobacterial blooms and cyanotoxins necessitate improved molecular, cultivation, and polyphasic techniques for comprehensive classification and quantification, highlighting the need for advanced genomic approaches to better understand and manage cyanobacteria and toxins. This review explores the application of transdisciplinary approaches for the study of cyanobacteria and cyanotoxins focused on diversity analysis, population quantification, and cyanotoxin monitoring, emphasizing their genomic resources and their potential in the genomic mining of toxin-related genes.
Collapse
Affiliation(s)
- Roel Alejandro Chávez-Luzanía
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - María Edith Ortega-Urquieta
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Jaquelyn Aguilera-Ibarra
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Pamela Helué Morales-Sandoval
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - José Antonio Hernández-Coss
- Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera internacional, México 15, C.P.81223, Los Mochis, Sinaloa, Mexico
| | - Luis Alberto González-Vázquez
- Universidad Autónoma de Sinaloa, Blvd. Miguel Tamayo Espinosa de los Monteros, C.P. 80050, Col. Desarrollo Urbano Tres Ríos, Culiacán, Sinaloa, Mexico
| | - Vielka Berenice Jara-Morales
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio Hiram Arredondo-Márquez
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Marie Jennifer Olea-Félix
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio de los Santos-Villalobos
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| |
Collapse
|
2
|
Brasell KA, Pochon X, Howarth J, Pearman JK, Zaiko A, Thompson L, Vandergoes MJ, Simon KS, Wood SA. Shifts in DNA yield and biological community composition in stored sediment: implications for paleogenomic studies. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.78128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lake sediments hold a wealth of information from past environments that is highly valuable for paleolimnological reconstructions. These studies increasingly apply modern molecular tools targeting sedimentary DNA (sedDNA). However, sediment core sampling can be logistically difficult, making immediate subsampling for sedDNA challenging. Sediment cores are often refrigerated (4 °C) for weeks or months before subsampling. We investigated the impact of storage time on changes in DNA (purified or as cell lysate) concentrations and shifts in biological communities following storage of lake surface sediment at 4 °C for up to 24 weeks. Sediment samples (~ 0.22 g, in triplicate per time point) were spiked with purified DNA (100 or 200 ng) or lysate from a brackish water cyanobacterium that produces the cyanotoxin nodularin or non-spiked. Samples were analysed every 1–4 weeks over a 24-week period. Droplet digital PCR showed no significant decrease in the target gene (nodularin synthetase – subunit F; ndaF) over the 24-week period for samples spiked with purified DNA, while copy number decreased by more than half in cell lysate-spiked samples. There was significant change over time in bacteria and eukaryotic community composition assessed using metabarcoding. Amongst bacteria, the cyanobacterial signal became negligible after 5 weeks while Proteobacteria increased. In the eukaryotic community, Cercozoa became dominant after 6 weeks. These data demonstrate that DNA yields and community composition data shift significantly when sediments are stored chilled for more than 5 weeks. This highlights the need for rapid subsampling and appropriate storage of sediment core samples for paleogenomic studies.
Collapse
|
3
|
Wood SM, Kremp A, Savela H, Akter S, Vartti VP, Saarni S, Suikkanen S. Cyanobacterial Akinete Distribution, Viability, and Cyanotoxin Records in Sediment Archives From the Northern Baltic Sea. Front Microbiol 2021; 12:681881. [PMID: 34211448 PMCID: PMC8241101 DOI: 10.3389/fmicb.2021.681881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria of the order Nostocales, including Baltic Sea bloom-forming taxa Nodularia spumigena, Aphanizomenon flosaquae, and Dolichospermum spp., produce resting stages, known as akinetes, under unfavorable conditions. These akinetes can persist in the sediment and germinate if favorable conditions return, simultaneously representing past blooms and possibly contributing to future bloom formation. The present study characterized cyanobacterial akinete survival, germination, and potential cyanotoxin production in brackish water sediment archives from coastal and open Gulf of Finland in order to understand recent bloom expansion, akinete persistence, and cyanobacteria life cycles in the northern Baltic Sea. Results showed that cyanobacterial akinetes can persist in and germinate from Northern Baltic Sea sediment up to >40 and >400 years old, at coastal and open-sea locations, respectively. Akinete abundance and viability decreased with age and depth of vertical sediment layers. The detection of potential microcystin and nodularin production from akinetes was minimal and restricted to the surface sediment layers. Phylogenetic analysis of culturable cyanobacteria from the coastal sediment core indicated that most strains likely belonged to the benthic genus Anabaena. Potentially planktonic species of Dolichospermum could only be revived from the near-surface layers of the sediment, corresponding to an estimated age of 1–3 years. Results of germination experiments supported the notion that akinetes do not play an equally significant role in the life cycles of all bloom-forming cyanobacteria in the Baltic Sea. Overall, there was minimal congruence between akinete abundance, cyanotoxin concentration, and the presence of cyanotoxin biosynthetic genes in either sediment core. Further research is recommended to accurately detect and quantify akinetes and cyanotoxin genes from brackish water sediment samples in order to further describe species-specific benthic archives of cyanobacteria.
Collapse
Affiliation(s)
- Steffaney M Wood
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Anke Kremp
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Henna Savela
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Sultana Akter
- Biotechnology, Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Saija Saarni
- Department of Geography and Geology, University of Turku, Turku, Finland
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| |
Collapse
|
4
|
Yarimizu K, Sildever S, Hamamoto Y, Tazawa S, Oikawa H, Yamaguchi H, Basti L, Mardones JI, Paredes-Mella J, Nagai S. Development of an absolute quantification method for ribosomal RNA gene copy numbers per eukaryotic single cell by digital PCR. HARMFUL ALGAE 2021; 103:102008. [PMID: 33980448 DOI: 10.1016/j.hal.2021.102008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Recent increase of Harmful Algal Blooms (HAB) causes world-wide ecological, economical, and health issues, and more attention is paid to frequent coastal monitoring for the early detection of HAB species to prevent or reduce such impacts. Use of molecular tools in addition to traditional microscopy-based observation has become one of the promising methodologies for coastal monitoring. However, as ribosomal RNA (rRNA) genes are commonly targeted in molecular studies, variability in the rRNA gene copy number within and between species must be considered to provide quantitative information in quantitative PCR (qPCR), digital PCR (dPCR), and metabarcoding analyses. Currently, this information is only available for a limited number of species. The present study utilized a dPCR technology to quantify copy numbers of rRNA genes per single cell in 16 phytoplankton species, the majority of which are toxin-producers, using a newly developed universal primer set accompanied by a labeled probe with a fluorophore and a double-quencher. In silico PCR using the newly developed primers allowed the detection of taxa from 8 supergroups, demonstrating universality and broad coverage of the primer set. Chelex buffer was found to be suitable for DNA extraction to obtain DNA fragments with suitable size to avoid underestimation of the copy numbers. The study successfully demonstrated the first comparison of absolute quantification of 18S rRNA copy numbers per cell from 16 phytoplankton species by the dPCR technology.
Collapse
Affiliation(s)
- Kyoko Yarimizu
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan; Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, 1-3-2 22 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
| | - Sirje Sildever
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan; Department of Marine Systems, Tallinn University of Technology, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - Yoko Hamamoto
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Satoshi Tazawa
- AXIOHELIX Co. Ltd, 12-17 Kandaizumicho, Chiyoda-ku, Tokyo 101-0024, Japan
| | - Hiroshi Oikawa
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Haruo Yamaguchi
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Leila Basti
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan
| | - Jorge I Mardones
- Instituto de Fomento Pesquero, Centro de Estudios de Algas Nocivas (IFOP-CREAN), Padre Harter 574, Puerto Montt 5501679, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Javier Paredes-Mella
- Instituto de Fomento Pesquero, Centro de Estudios de Algas Nocivas (IFOP-CREAN), Padre Harter 574, Puerto Montt 5501679, Chile
| | - Satoshi Nagai
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan.
| |
Collapse
|
5
|
Khaw YS, Khong NMH, Shaharuddin NA, Yusoff FM. A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers. J Microbiol Methods 2020; 172:105890. [PMID: 32179080 DOI: 10.1016/j.mimet.2020.105890] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/22/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Any forms of valorization of microorganisms would require accurate identity recognition to ensure repeatability, reproducibility and quality assurance. This study aimed to evaluate the effectiveness of different primers for identifying cultured eukaryotic microalgae using a simple 18S rDNA approach. A total of 34 isolated microalgae and one culture collection were utilized in the search for an effective molecular identification method for microalgae. Ammonium formate was applied to marine microalgae prior to DNA extraction. The microalgal DNA was extracted using a commercial kit and subjected directly to PCR amplification using four different published 18S rDNA primers. The DNA sequences were analysed using Basic Local Alignment Search Tool (BLAST) and phylogenetic trees to determine the microalgae identity. The identity was further validated with conventional morphological taxonomic identification, and the relationship of microalgal morphology and genetic materials was also determined. The microalgal DNA was successfully amplified, including marine species without prior cleaning. In addition, the ss5 + ss3 primer pair was found to be an ideal primer set among the tested primers for identifying microalgae. Overall, molecular identification showed relative matching with morphological identification (82.86%). This study is important because it serves as a platform to develop a standardized eukaryotic microalgae identification method. In addition, this method could help to ease the eukaryotic microalgae identification process and enrich the current reference databases such as GenBank.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Marine Biotechnology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nicholas Mun Hoe Khong
- Marine Biotechnology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia..
| |
Collapse
|
6
|
Lu J, Struewing I, Wymer L, Tettenhorst DR, Shoemaker J, Allen J. Use of qPCR and RT-qPCR for monitoring variations of microcystin producers and as an early warning system to predict toxin production in an Ohio inland lake. WATER RESEARCH 2020; 170:115262. [PMID: 31785564 PMCID: PMC7075668 DOI: 10.1016/j.watres.2019.115262] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 05/22/2023]
Abstract
Public concern over cyanobacterial blooms has increased due to their higher frequency of occurrence and their potential ecological and health impacts. Detection of microcystin (MC) producers (MCPs) using qPCR and RT-qPCR allows for the rapid identification of blooms by combining specificity and sensitivity with a relatively high throughput capability. Investigation of MCP population composition (correlation, dominance), toxin gene expression, and relationship to MC concentration was conducted using a panel of qPCR assays targeting mcyA, E and G on weekly and daily water samples collected from an Ohio inland reservoir lake. Further, these data were used to develop early warning thresholds for prediction of MC concentrations exceeding the US EPA Health Advisory cutoff value (>0.3 μg L-1) using receiver operating characteristic curves and tobit regression. MCP Microcystis genomic copy number made up approximately 35% of the total Microcystis spp. and was the dominant toxic subpopulation of MCPs. The expressed MCPs were 0.2% of the extant genomic copy numbers, while toxic Microcystis had higher expressed proportion (0.5%) than that of toxic Planktothrix (0.04%). Microcystis toxin genes increased in June and July but decreased in August and September along with similar trends of cell replication. Quantities of both RT-qPCR and qPCR followed the same trend and were highly correlated with MC-ADDA, while RT-qPCR not only reflected the active toxin genes or toxic species, but also indicated the beginning and ending of toxin production. A one-week early warning of MC exceedance over the EPA Health Advisory was based on signaling of qPCR and RT-qPCR using receiver operating characteristic curves. This study illustrates the potential use of qPCR or RT-qPCR as an early warning system of extant and MC producing potentials during a toxic algal bloom, with predictive powers of 50%-60% and 30%-40% (p < 0.001), respectively, and false positive rates of about 70% for both LC-MS/MS or ELISA.
Collapse
Affiliation(s)
- Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Ian Struewing
- Pegasus Technical Services Inc, Cincinnati, OH, 45268, USA
| | - Larry Wymer
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Daniel R Tettenhorst
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Jody Shoemaker
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Joel Allen
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| |
Collapse
|
7
|
Agasild H, Panksep K, Tõnno I, Blank K, Kõiv T, Freiberg R, Laugaste R, Jones RI, Nõges P, Nõges T. Role of potentially toxic cyanobacteria in crustacean zooplankton diet in a eutrophic lake. HARMFUL ALGAE 2019; 89:101688. [PMID: 31672224 DOI: 10.1016/j.hal.2019.101688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The coexistence of potentially toxic bloom-forming cyanobacteria (CY) and generally smaller-sized grazer communities has raised the question of zooplankton (ZP) ability to control harmful cyanobacterial blooms and highlighted the need for species-specific research on ZP-CY trophic interactions in naturally occurring communities. A combination of HPLC, molecular and stable isotope analyses was used to assess in situ the importance of CY as a food source for dominant crustacean ZP species and to quantify the grazing on potentially toxic strains of Microcystis during bloom formation in large eutrophic Lake Peipsi (Estonia). Aphanizomenon, Dolichospermum, Gloeotrichia and Microcystis dominated bloom-forming CY, while Microcystis was the major genus producing cyanotoxins all over the lake. Grazing studies showed that CY, and especially colonial CY, formed a significant, and also preferred component of algae ingested by the cladocerans Bosmina spp. and Daphnia spp. while this was not the case for the more selective calanoid copepod Eudiaptomus gracilis. Molecular analyses confirmed the presence of CY, including Microcystis, in ZP guts. Further analyses using qPCR targeting cyanobacterial genus-specific mcyE synthase genes indicated that potentially toxic strains of Microcystis can be ingested directly or indirectly by all the dominant crustacean grazers. However, stable isotope analyses indicated that little, if any, assimilation from ingested bloom-forming CY occurred. The study suggests that CY, and particularly Microcystis with both potentially toxic and non-toxic strains, can be widely ingested by cladoceran grazers during a bloom event with implications for control of CY abundance and for transfer of CY toxins through the food web.
Collapse
Affiliation(s)
- Helen Agasild
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Kristel Panksep
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Ilmar Tõnno
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Kätlin Blank
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Toomas Kõiv
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - René Freiberg
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Reet Laugaste
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Roger I Jones
- Department of Biological & Environmental Science, University of Jyväskylä, PL35, FI-40014, Finland.
| | - Peeter Nõges
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Tiina Nõges
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| |
Collapse
|
8
|
The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome. The other three potentially advantageous isolates (Micrococcus sp. AzoEndo14, Agrobacterium sp. AzoEpi25 and Bacillus sp. AzoEndo3) displayed 5 parameters: IAA (excluding Bacillus sp. AzoEndo3), cellulase, protease, siderophores (excluding Micrococcus sp. AzoEndo14), as well as mineralization and solubilization of P (excluding Agrobacterium sp. AzoEpi25).
Collapse
|
9
|
Nowruzi B, Blanco S, Nejadsattari T. Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of lake Shoormast (Mazandaran province, Iran). ACTA ACUST UNITED AC 2018. [DOI: 10.15407/alg28.04.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kust A, Urajová P, Hrouzek P, Vu DL, Čapková K, Štenclová L, Řeháková K, Kozlíková-Zapomělová E, Lepšová-Skácelová O, Lukešová A, Mareš J. A new microcystin producing Nostoc strain discovered in broad toxicological screening of non-planktic Nostocaceae (cyanobacteria). Toxicon 2018; 150:66-73. [DOI: 10.1016/j.toxicon.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|
11
|
Teikari JE, Fewer DP, Shrestha R, Hou S, Leikoski N, Mäkelä M, Simojoki A, Hess WR, Sivonen K. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane. THE ISME JOURNAL 2018; 12:1619-1630. [PMID: 29445131 PMCID: PMC5955973 DOI: 10.1038/s41396-018-0056-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/10/2022]
Abstract
Nodularia spumigena is a nitrogen-fixing cyanobacterium that forms toxic blooms in the Baltic Sea each summer and the availability of phosphorous is an important factor limiting the formation of these blooms. Bioinformatic analysis identified a phosphonate degrading (phn) gene cluster in the genome of N. spumigena suggesting that this bacterium may use phosphonates as a phosphorus source. Our results show that strains of N. spumigena could grow in medium containing methylphosphonic acid (MPn) as the sole source of phosphorous and released methane when growing in medium containing MPn. We analyzed the total transcriptomes of N. spumigena UHCC 0039 grown using MPn and compared them with cultures growing in Pi-replete medium. The phnJ, phosphonate lyase gene, was upregulated when MPn was the sole source of phosphorus, suggesting that the expression of this gene could be used to indicate the presence of bioavailable phosphonates. Otherwise, growth on MPn resulted in only a minor reconstruction of the transcriptome and enabled good growth. However, N. spumigena strains were not able to utilize any of the anthropogenic phosphonates tested. The phosphonate utilizing pathway may offer N. spumigena a competitive advantage in the Pi-limited cyanobacterial blooms of the Baltic Sea.
Collapse
Affiliation(s)
- Jonna E Teikari
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Rashmi Shrestha
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Shengwei Hou
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, Freiburg, D-79104, Germany
| | - Niina Leikoski
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Minna Mäkelä
- Department of Agricultural Sciences, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Asko Simojoki
- Department of Agricultural Sciences, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, Freiburg, D-79104, Germany
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland.
| |
Collapse
|
12
|
Macário IPE, Castro BB, Nunes MIS, Pizarro C, Coelho C, Gonçalves F, de Figueiredo DR. Stepwise strategy for monitoring toxic cyanobacterial blooms in lentic water bodies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:620. [PMID: 29124450 DOI: 10.1007/s10661-017-6292-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Climate change has been causing the increase in frequency, severity, and duration of harmful algal blooms, which makes the establishment of water management strategies indispensable. For cyanobacteria, several methods are currently used in monitoring programs. However, these methods are time-consuming and require specialists, and results are usually not provided within an adequate timeframe for taking timely mitigation actions. This work proposes a strategy for a faster, easier, and more cost-effective monitoring of cyanobacterial blooms, using a stepwise approach based on fluorometric determination of phycocyanin at an early stage. Complementary parameters (chlorophyll a, enumeration of dominant cyanobacterial species and cyanotoxin potential and quantification) are determined when necessary, thus progressively allocating human and financial resources within the monitoring program. This strategy was applied and validated using nine lentic eutrophic freshwater bodies prone to the occurrence of cyanobacterial blooms. Samples were sequentially evaluated, and the study ended up with two samples that showed high health risks. However, according to WHO guidelines, eight of the nine samples would be classified as having "moderate risk of adverse health effects" and could lead to preventive measures that would have an important regional economic impact. Therefore, the present approach proved to be a promising alternative to increase the effectiveness and accuracy of the risk assessment process in water bodies where cyanobacterial blooms occur.
Collapse
Affiliation(s)
- Inês P E Macário
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria I S Nunes
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cristina Pizarro
- Water and Soil Unit, Environmental Health Department, National Health Institute Dr. Ricardo Jorge (INSA), 4000-055, Porto, Portugal
| | - Carla Coelho
- Water and Soil Unit, Environmental Health Department, National Health Institute Dr. Ricardo Jorge (INSA), 4000-055, Porto, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela R de Figueiredo
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
13
|
A qPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in Drinking Water Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050547. [PMID: 28531121 PMCID: PMC5451997 DOI: 10.3390/ijerph14050547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Abstract
Harmful cyanobacteria have been an important concern for drinking water quality for quite some time, as they may produce cyanotoxins and odorants. Microcystis and Cylindrospermopsis are two common harmful cyanobacterial genera detected in freshwater lakes and reservoirs, with microcystins (MCs) and cylindrospermopsin (CYN) as their important metabolites, respectively. In this study, two sets of duplex qPCR systems were developed, one for quantifying potentially-toxigenic Microcystis and Microcystis, and the other one for cylindrospermopsin-producing cyanobacteria and Cylindrospermopsis. The duplex qPCR systems were developed and validated in the laboratory by using 338 samples collected from 29 reservoirs in Taiwan and her offshore islands. Results show that cell numbers of Microcystis and Cylindorspermopsis enumerated with microscopy, and MCs and CYN concentrations measured with the enzyme-linked immuno-sorbent assay method, correlated well with their corresponding gene copies determined with the qPCR systems (range of coefficients of determination R2 = 0.392−0.740). The developed qPCR approach may serve as a useful tool for the water industry to diagnose the presence of harmful cyanobacteria and the potential presence of cyanotoxins in source waters.
Collapse
|
14
|
Mora-Cura YN, Meléndez-Rentería NP, Delgado-García M, Contreras-Esquivel JC, Morlett-Chávez JA, Aguilar CN, Rodríguez-Herrera R. Fermentation of Dietetic Fiber from Green Bean and Prickly Pear Shell by Pure and Mixture Culture of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum 450B. Curr Microbiol 2017; 74:691-701. [PMID: 28332163 DOI: 10.1007/s00284-017-1228-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023]
Abstract
The aim of this study was to evaluate the fermentation of dietary fiber from green bean (Phaseolus vulgaris) and prickly pear shell (Opuntia ficus-indica) by Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum 450B growing as mono-culture and co-culture, the fermentation products, and proteins expressed during this process. The analysis of the fermentation profile showed a major growth of bacteria in the culture media of each dietary fiber supplemented with glucose, and particularly B. bifidum 450B at 48 h showed the highest growth. In the case of the co-culture, the growth was lower indicating the possible negative interaction between L. acidophilus LA-5 and B. bifidum 450B and may be due to the less amount of carbohydrates and the high content of non-soluble fiber that affected the nutrients availability for the bacterial strains. The pH changes indicated the presence of short-chain fatty acids (SCFAs), being acetate (46-100%) the main SCFA. Changes in the proteome concerned proteins that are involved in carbohydrate and other carbohydrate pathways. The characterization of the bacteria according to the growth, metabolites, and proteins expressed allows understanding the response to the change of environmental conditions and could be useful to understand L. acidophilus LA-5 and B. bifidum 450B strains' adaptation to specific applications.
Collapse
Affiliation(s)
- Y N Mora-Cura
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - N P Meléndez-Rentería
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - M Delgado-García
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico.,Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| | - J C Contreras-Esquivel
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - J A Morlett-Chávez
- Laboratorio de Diagnóstico Molecular y Clínico, Facultad de ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - C N Aguilar
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - R Rodríguez-Herrera
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico.
| |
Collapse
|
15
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
16
|
De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics 2016; 16:946-62. [PMID: 27001126 DOI: 10.1002/pmic.201500117] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Häggqvist K, Toruńska-Sitarz A, Błaszczyk A, Mazur-Marzec H, Meriluoto J. Morphologic, Phylogenetic and Chemical Characterization of a Brackish Colonial Picocyanobacterium (Coelosphaeriaceae) with Bioactive Properties. Toxins (Basel) 2016; 8:108. [PMID: 27077885 PMCID: PMC4848634 DOI: 10.3390/toxins8040108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022] Open
Abstract
Despite their cosmopolitan distribution, knowledge on cyanobacteria in the family Coelosphaeriaceae is limited. In this study, a single species culture of a coelosphaeran cyanobacterium isolated from a brackish rock pool in the Baltic Sea was established. The strain was characterized by morphological features, partial 16S rRNA sequence and nonribosomal oligopeptide profile. The bioactivity of fractionated extracts against several serine proteases, as well as protein-serine/threonine phosphatases was studied. Phylogenetic analyses of the strain suggested a close relationship with Snowella litoralis, but its morphology resembled Woronichinia compacta. The controversial morphologic and phylogenetic results demonstrated remaining uncertainties regarding species division in this cyanobacteria family. Chemical analyses of the strain indicated production of nonribosomal oligopeptides. In fractionated extracts, masses and ion fragmentation spectra of seven possible anabaenopeptins were identified. Additionally, fragmentation spectra of cyanopeptolin-like peptides were collected in several of the fractions. The nonribosomal oligopeptide profile adds another potential identification criterion in future inter- and intraspecies comparisons of coelosphaeran cyanobacteria. The fractionated extracts showed significant activity against carboxypeptidase A and trypsin. Inhibition of these important metabolic enzymes might have impacts at the ecosystem level in aquatic habitats with high cyanobacteria densities.
Collapse
Affiliation(s)
- Kerstin Häggqvist
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, Åbo 20520, Finland.
| | - Anna Toruńska-Sitarz
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Agata Błaszczyk
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, Åbo 20520, Finland.
| |
Collapse
|
18
|
High Specificity of a Quantitative PCR Assay Targeting a Saxitoxin Gene for Monitoring Toxic Algae Associated with Paralytic Shellfish Toxins in the Yellow Sea. Appl Environ Microbiol 2015; 81:6973-81. [PMID: 26231652 DOI: 10.1128/aem.00417-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/19/2015] [Indexed: 01/15/2023] Open
Abstract
The identification of core genes involved in the biosynthesis of saxitoxin (STX) offers a great opportunity to detect toxic algae associated with paralytic shellfish toxins (PST). In the Yellow Sea (YS) in China, both toxic and nontoxic Alexandrium species are present, which makes it a difficult issue to specifically monitor PST-producing toxic algae. In this study, a quantitative PCR (qPCR) assay targeting sxtA4, a domain in the sxt gene cluster that encodes a unique enzyme involved in STX biosynthesis, was applied to analyze samples collected from the YS in spring of 2012. The abundance of two toxic species within the Alexandrium tamarense species complex, i.e., A. fundyense and A. pacificum, was also determined with TaqMan-based qPCR assays, and PSTs in net-concentrated phytoplankton samples were analyzed with high-performance liquid chromatography coupled with a fluorescence detector. It was found that the distribution of the sxtA4 gene in the YS was consistent with the toxic algae and PSTs, and the quantitation results of sxtA4 correlated well with the abundance of the two toxic species (r=0.857). These results suggested that the two toxic species were major PST producers during the sampling season and that sxtA-based qPCR is a promising method to detect toxic algae associated with PSTs in the YS. The correlation between PST levels and sxtA-based qPCR results, however, was less significant (r=0.552), implying that sxtA-based qPCR is not accurate enough to reflect the toxicity of PST-producing toxic algae. The combination of an sxtA-based qPCR assay and chemical means might be a promising method for monitoring toxic algal blooms.
Collapse
|
19
|
Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis. Appl Environ Microbiol 2015; 81:5203-11. [PMID: 26025892 DOI: 10.1128/aem.00931-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.
Collapse
|
20
|
McGregor GB, Sendall BC. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. JOURNAL OF PHYCOLOGY 2015; 51:109-119. [PMID: 26986262 DOI: 10.1111/jpy.12256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/15/2014] [Indexed: 06/05/2023]
Abstract
Three populations of the freshwater filamentous cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck have been putatively identified from north-eastern Australia and found to produce the potent cyanotoxin cylindrospermopsin (CYN) and its analog deoxy-cylindrospermopsin (deoxy-CYN). We investigated the phylogeny and toxicology of strains and mats isolated from two of these populations using a combination of molecular and morphological techniques. Morphologically the strains corresponded to the type description, however, the frequency of false-branching was low, and variable over time. Strains and mat samples from both sites were positive for the cyrF and cyrJ genes associated with CYN biosynthesis. Phylogenetic analysis of these genes from Australian L. wollei sequences and comparable cyanobacterial sequences revealed that the genes in L. wollei were more closely related to homologous genes in Oscillatoria sp. PCC 6506 than to homologs in Nostocalean CYN-producers. These data suggest a common evolutionary origin of CYN biosynthesis in L. wollei and Oscillatoria. In both the 16S rRNA and nifH phylogenies, the Australian L. wollei strains formed well-supported clades with United States L. wollei (= Plectonema wollei) strains. Pair-wise sequence similarities within the 16S rRNA clade containing all eleven L. wollei strains were high, ranging from 97% to 100%. This group was distantly related (<92% nucleotide similarity) to other taxa within the group previously considered under the genus Lyngbya sensu lato (C. Agardh ex Gomont). Collectively, these results suggest that this toxigenic group is evolutionarily distinct and sufficiently distant as to be considered a separate genus, which we have described as Microseira gen. nov. and hence transfer to it the type M. wollei comb. nov.
Collapse
Affiliation(s)
- Glenn B McGregor
- Queensland Department of Science, Information Technology, Innovation and the Arts, GPO Box 5078, Brisbane, Qld, 4102, Australia
| | - Barbara C Sendall
- Department of Health, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| |
Collapse
|
21
|
Grabowska M, Kobos J, Toruńska-Sitarz A, Mazur-Marzec H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch Microbiol 2014; 196:697-707. [PMID: 24972671 PMCID: PMC4168019 DOI: 10.1007/s00203-014-1008-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 10/31/2022]
Abstract
Planktothtrix agardhii (Oscillatoriales) is a filamentous cyanobacterium, which frequently forms blooms in shallow, polymictic and eutrophicated waters. This species is also a rich source of unique linear and cyclic peptides. In the current study, the profile of the peptides in samples from the P. agardhii-dominated Siemianówka Dam Reservoir (SDR) (northeast Poland) was analyzed for four subsequent years (2009-2012). The LC-MS/MS analyses revealed the presence of 33 peptides. Twelve of the most abundant ones, including five microcystins, five anabaenopeptins, one aeruginosin and one planktocyclin, were present in all field samples collected during the study. The detection of different peptides in two P. agardhii isolates indicated that the SDR population was composed of several chemotypes, characterized by different peptide patterns. The total concentration of microcystins (MCs) positively correlated with the biomass of P. agardhii. Between subsequent years, the changes in the ratio of the total MCs concentration to the biomass of P. agardhii were noticed, but they were less than threefold. This is the first study on the production of different classes of non-ribosomal peptides by freshwater cyanobacteria in Poland.
Collapse
Affiliation(s)
- Magdalena Grabowska
- Department of Hydrobiology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
| | - Justyna Kobos
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Toruńska-Sitarz
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Hanna Mazur-Marzec
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
22
|
Tsao HW, Michinaka A, Yen HK, Giglio S, Hobson P, Monis P, Lin TF. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR. WATER RESEARCH 2014; 49:416-425. [PMID: 24176608 DOI: 10.1016/j.watres.2013.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/06/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
Geosmin is one of the most commonly detected off-flavor chemicals present in reservoirs and drinking water systems. Quantitative real-time PCR (qPCR) is useful for quantifying geosmin-producers by focusing on the gene encoding geosmin synthase, which is responsible for geosmin synthesis. In this study, several primers and probes were designed and evaluated to detect the geosmin synthase gene in cyanobacteria. The specificity of primer and probe sets was tested using 21 strains of laboratory cultured cyanobacteria isolated from surface waters in Australia (18) and Taiwan (2), including 6 strains with geosmin producing ability. The results showed that the primers designed in this study could successfully detect all geosmin producing strains tested. The selected primers were used in a qPCR assay, and the calibration curves were linear from 5 × 10(1) to 5 × 10(5) copies mL(-1), with a high correlation coefficient (R(2) = 0.999). This method was then applied to analyze samples taken from Myponga Reservoir, South Australia, during a cyanobacterial bloom event. The results showed good correlations between qPCR techniques and traditional methods, including cell counts determined by microscopy and geosmin concentration measured using gas chromatography (GC) coupled with a mass selective detector (MSD). Results demonstrate that qPCR could be used for tracking geosmin-producing cyanobacteria in drinking water reservoirs. The qPCR assay may provide water utilities with the ability to properly characterize a taste and odor episode and choose appropriate management and treatment options.
Collapse
Affiliation(s)
- Hsiang-Wei Tsao
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Atsuko Michinaka
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Hung-Kai Yen
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Department of Biological Science and Technology, Meiho University, Pingtung 91202, Taiwan, ROC
| | - Steven Giglio
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, South Australia 5000, Australia
| | - Peter Hobson
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, South Australia 5000, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, South Australia 5000, Australia
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
23
|
Penna A, Galluzzi L. The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6851-62. [PMID: 23247526 PMCID: PMC3782655 DOI: 10.1007/s11356-012-1377-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/29/2012] [Indexed: 05/15/2023]
Abstract
In the last decade, various molecular methods (e.g., fluorescent hybridization assay, sandwich hybridization assay, automatized biosensor detection, real-time PCR assay) have been developed and implemented for accurate and specific identification and estimation of marine toxic microalgal species. This review focuses on the recent quantitative real-time PCR (qrt-PCR) technology developed for the control and monitoring of the most important taxonomic phytoplankton groups producing biotoxins with relevant negative impact on human health, the marine environment, and related economic activities. The high specificity and sensitivity of the qrt-PCR methods determined by the adequate choice of the genomic target gene, nucleic acid purification protocol, quantification through the standard curve, and type of chemical detection method make them highly efficient and therefore applicable to harmful algal bloom phenomena. Recent development of qrt-PCR-based assays using the target gene of toxins, such as saxitoxin compounds, has allowed more precise quantification of toxigenic species (i.e., Alexandrium catenella) abundance. These studies focus only on toxin-producing species in the marine environment. Therefore, qrt-PCR technology seems to offer the advantages of understanding the ecology of harmful algal bloom species and facilitating the management of their outbreaks.
Collapse
Affiliation(s)
- Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, Pesaro, Italy,
| | | |
Collapse
|
24
|
Baker L, Sendall BC, Gasser RB, Menjivar T, Neilan BA, Jex AR. Rapid, multiplex-tandem PCR assay for automated detection and differentiation of toxigenic cyanobacterial blooms. Mol Cell Probes 2013; 27:208-14. [PMID: 23850895 DOI: 10.1016/j.mcp.2013.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Cyanobacterial blooms are a major water quality issue and potential public health risk in freshwater, marine and estuarine ecosystems globally, because of their potential to produce cyanotoxins. To date, a significant challenge in the effective management of cyanobacterial has been an inability of classical microscopy-based approaches to consistently and reliably detect and differentiate toxic from non-toxic blooms. The potential of cyanobacteria to produce toxins has been linked to the presence of specific biosynthetic gene clusters. Here, we describe the application of a robotic PCR-based assay for the semi-automated and simultaneous detection of toxin biosynthesis genes of each of the toxin classes characterized to date for cyanobacteria [i.e., microcystins (MCYs), nodularins (NODs), cylindrospermopsins (CYNs) and paralytic shellfish toxins (PSTs)/saxitoxins (SXTs)]. We demonstrated high sensitivity and specificity for each assay using well-characterized, cultured isolates, and establish its utility as a quantitative PCR using DNA, clone and cell-based dilution series. In addition, we used 206 field-collected samples and 100 known negative controls to compare the performance of each assay with conventional PCR and direct toxin detection. We report a diagnostic specificity of 100% and a sensitivity of ≥97.7% for each assay.
Collapse
Affiliation(s)
- Louise Baker
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Su M, Gaget V, Giglio S, Burch M, An W, Yang M. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems. WATER RESEARCH 2013; 47:3444-3454. [PMID: 23622984 DOI: 10.1016/j.watres.2013.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Geosmin has often been associated with off-flavor problems in drinking water with Anabaena sp. as the major producer. Rapid on-site detection of geosmin-producers as well as geosmin is important for a timely management response to potential off-flavor events. In this study, quantitative polymerase chain reaction (qPCR) methods were developed to detect the levels of Anabaena sp. and geosmin, respectively, by designing two PCR primer sets to quantify the rpoC1 gene (ARG) and geosmin synthase one (GSG) in Anabaena sp. in freshwater systems. The ARG density determined by qPCR assay is highly related to microscopic cell count (r(2) = 0.726, p < 0.001), and the limit of detection (LOD) and limit of quantification (LOQ) of the qPCR method were 0.02 pg and 0.2 pg of DNA, respectively. At the same time, the relationship between geosmin concentrations measured by gas chromatography-mass spectrometry (GC-MS) and GSG copies was also established (r(2) = 0.742, p < 0.001) with similar LOD and LOQ values. Using the two qPCR protocols, we succeeded in measuring different levels of ARG and GSG copies in different freshwater systems with high incidence environmental substrata and diverse ecological conditions, showing that the methods developed could be applied for environmental monitoring. Moreover, comparing to the microscopic count and GC-MS analytical methods, the qPCR methods can reduce the time-to-results from several days to a few hours and require considerably less traditional algal identification and taxonomic expertise.
Collapse
Affiliation(s)
- Ming Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian, Beijing 100085, China.
| | | | | | | | | | | |
Collapse
|
26
|
Quantification of toxigenic Microcystis spp. in freshwaters by quantitative real-time PCR based on the microcystin synthetase A gene. J Microbiol 2013; 51:18-24. [PMID: 23456707 DOI: 10.1007/s12275-013-2354-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Abstract
A method to estimate the abundance of toxigenic Microcystis in environmental samples by using quantitative real-time PCR was developed and optimized. The basis of this method is the amplification of a highly conserved region of the mcyA gene within the microcystin synthetase gene cluster. Using this method, the average copy number of mcyA gene per cell in toxigenic Microcystis strains was estimated. The molecular markers and method developed in this study can be used to monitor toxigenic strains of Microcystis in Korean freshwaters, in which harmful cyanobacterial blooms are routinely found.
Collapse
|
27
|
Campo E, Lezcano MÁ, Agha R, Cirés S, Quesada A, El-Shehawy R. First TaqMan Assay to Identify and Quantify the Cylindrospermopsin-Producing Cyanobacterium <i>Aphanizomenon ovalisporum</i> in Water. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.35058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
First report of a toxic Nodularia spumigena (Nostocales/ Cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2396-411. [PMID: 22851951 PMCID: PMC3407912 DOI: 10.3390/ijerph9072396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 11/17/2022]
Abstract
Cyanobacterial blooms represent one of the most conspicuous and widespread waterborne microbial hazards to human and ecosystem health. Investigation of a cyanobacterial bloom in a shallow brackish water recreational cable ski lake in south-eastern Queensland, Australia revealed the dominance of the toxigenic species Nodularia spumigena. The bloom spanned three months, during which time cell concentrations exceeded human guideline thresholds for recreational risk, and concentrations of the hepatotoxic cyanotoxin nodularin exceeded 200 µg L(-1). Cyanotoxin origin and identification was confirmed by amplification of the ndaF-specific PCR product and sequencing of the 16S rRNA gene. From the limited data available leading up to, and throughout the bloom, it was not possible to establish the set of causative factors responsible for its occurrence. However a combination of factors including salinity, hydraulic retention time and nutrient status associated with an extended period of drought are likely to have contributed. This was the first known occurrence of this species in bloom proportions from sub-tropical Australia and as such represents a hitherto uncharacterized risk to human and ecosystem health. It highlights the need for adaptive monitoring regimes to ensure a comprehensive understanding of the potentially toxic cyanobacteria likely to inhabit any given region. Such monitoring needs to recognize that cyanobacteria have a significant capacity for range expansion that has been facilitated by recent changes in global climate.
Collapse
|
29
|
Churro C, Pereira P, Vasconcelos V, Valério E. Species-specific real-time PCR cell number quantification of the bloom-forming cyanobacterium Planktothrix agardhii. Arch Microbiol 2012; 194:749-57. [PMID: 22484452 DOI: 10.1007/s00203-012-0809-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/28/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
A species-specific method to detect and quantify Planktothrix agardhii was developed by combining the SYBR Green I real-time polymerase chain reaction technique with a simplified DNA extraction procedure for standard curve preparation. Newly designed PCR primers were used to amplify a specific fragment within the rpoC1 gene. Since this gene exists in single copy in the genome, it allows the direct achievement of cell concentrations. The cell concentration determined by real-time PCR showed a linear correlation with the cell concentration determined from direct microscopic counts. The detection limit for cell quantification of the method was 8 cells μL(-1), corresponding to 32 cells per reaction. Furthermore, the real-time qPCR method described in this study allowed a successful quantification of P. agardhii from environmental water samples, showing that this protocol is an accurate and economic tool for a rapid absolute quantification of the potentially toxic cyanobacterium P. agardhii.
Collapse
Affiliation(s)
- Catarina Churro
- Laboratório de Biologia e Ecotoxicologia, Departamento de Saúde Ambiental, Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal
| | | | | | | |
Collapse
|
30
|
|
31
|
Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 2011; 77:7271-8. [PMID: 21873484 DOI: 10.1128/aem.06022-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mass occurrences are common in fresh and brackish waters. They pose a threat to water users due to toxins frequently produced by the cyanobacterial species present. Anatoxin-a and homoanatoxin-a are neurotoxins synthesized by various cyanobacteria, e.g., Anabaena, Oscillatoria, and Aphanizomenon. The biosynthesis of these toxins and the genes involved in anatoxin production were recently described for Oscillatoria sp. strain PCC 6506 (A. Méjean et al., J. Am. Chem. Soc. 131:7512-7513, 2009). In this study, we identified the anatoxin synthetase gene cluster (anaA to anaG and orf1; 29 kb) in Anabaena sp. strain 37. The gene (81.6% to 89.2%) and amino acid (78.8% to 86.9%) sequences were highly similar to those of Oscillatoria sp. PCC 6506, while the organization of the genes differed. Molecular detection methods for potential anatoxin-a and homoanatoxin-a producers of the genera Anabaena, Aphanizomenon, and Oscillatoria were developed by designing primers to recognize the anaC gene. Anabaena and Oscillatoria anaC genes were specifically identified in several cyanobacterial strains by PCR. Restriction fragment length polymorphism (RFLP) analysis of the anaC amplicons enabled simultaneous identification of three producer genera: Anabaena, Oscillatoria, and Aphanizomenon. The molecular methods developed in this study revealed the presence of both Anabaena and Oscillatoria as potential anatoxin producers in Finnish fresh waters and the Baltic Sea; they could be applied for surveys of these neurotoxin producers in other aquatic environments.
Collapse
|
32
|
Martins A, Vasconcelos V. Use of qPCR for the study of hepatotoxic cyanobacteria population dynamics. Arch Microbiol 2011; 193:615-27. [PMID: 21735229 DOI: 10.1007/s00203-011-0724-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/05/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
Toxic cyanobacteria blooms are increasingly frequent and object of greater concern due to its ecological and health impacts. One important lack in the toxic cyanobacteria research field is to understand which parameters influence most and how they operate to regulate the overall levels of cyanotoxins in a body of water. MC concentration is believed to be influenced by changes in several seasonal environmental factors that influence the succession of toxic cyanobacteria. In the last years, qPCR (quantitative polymerase chain reaction) has been applied to determine the seasonal and temporal shifts in the proportions of MC-producing and non-MC-producing subpopulations by quantifying both mcy genotypes and total population numbers. We discuss the most prominent and recent studies using qPCR to address hepatotoxic cyanobacteria population dynamics and evaluate how they helped understanding the factors promoting the growth of toxic strains in situ and the succession of hepatotoxin-producing genera in natural populations.
Collapse
Affiliation(s)
- António Martins
- CIIMAR/CIMAR, Marine and Environmental Research Centre, Porto University, Rua dos Bragas, Portugal
| | | |
Collapse
|
33
|
Lin S, Shen J, Liu Y, Wu X, Liu Q, Li R. Molecular evaluation on the distribution, diversity, and toxicity of Microcystis (Cyanobacteria) species from Lake Ulungur--a mesotrophic brackish desert lake in Xinjiang, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 175:139-150. [PMID: 20517642 DOI: 10.1007/s10661-010-1500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 05/06/2010] [Indexed: 05/29/2023]
Abstract
The distribution and diversity of the waterbloom-forming cyanobacteria, mainly including Microcystis species, were investigated using molecular approaches in Lake Ulungur, an increasingly eutrophic and brackish lake located in Xinjiang, China. Real-time PCR analyses showed the abundance of Microcystis 16S rDNA gene copies in the Ulungur Lake is low, at 7.2×10(4) copies L(-1) average and 4.5×10(5) copies L(-1) at maximum. Two Microcystis species, M. aeruginosa (Kützing) Lemmermann and Microcystis wesenbergii (Komárek) Komárek were, for the first time, reported in this lake. The mcyA gene-specific PCR determination on the isolates of Microcystis showed that the M. aeruginosa strains are all mcyA-containing genotypes, while M. wesenbergii are non-mcyA-containing ones. The microcystin contents of the toxic M. aeruginosa strains were shown to be lower than those of the Microcystis strains isolated from other eutrophic lakes in China. Phylogenetic analyses based on 16S rRNA and rpoC1 genes showed that the Microcystis strains isolated from the Ulungur Lake were not genetically divergent from those isolated in the other freshwaters. Such an investigation would contribute to the knowledge on the bloom-forming cyanobacteria of the increasingly eutrophic and saline lakes in the desert area.
Collapse
Affiliation(s)
- Shen Lin
- Key Laboratory of Aquatic Biodiversity and Conservation Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|
34
|
Kurmayer R, Schober E, Tonk L, Visser PM, Christiansen G. Spatial divergence in the proportions of genes encoding toxic peptide synthesis among populations of the cyanobacterium Planktothrix in European lakes. FEMS Microbiol Lett 2011; 317:127-37. [PMID: 21251055 PMCID: PMC3118798 DOI: 10.1111/j.1574-6968.2011.02222.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It has been frequently reported that seasonal changes in toxin production by cyanobacteria are due to changes in the proportion of toxic/nontoxic genotypes in parallel to increases or decreases in population density during the seasonal cycle of bloom formation. In order to find out whether there is a relationship between the proportion of genes encoding toxic peptide synthesis and population density of Planktothrix spp. we compared the proportion of three gene regions that are indicative of the synthesis of the toxic heptapeptide microcystin (mcyB), and the bioactive peptides aeruginoside (aerB) and anabaenopeptin (apnC) in samples from 23 lakes of five European countries (n=153). The mcyB, aerB, and apnC genes occurred in 99%, 99%, and 97% of the samples, respectively, and on average comprised 60 ± 3%, 22 ± 2%, and 54 ± 4% of the total population, respectively. Although the populations differed widely in abundance (10−3–103 mm3 L−1) no dependence of the proportion of the mcyB, aerB, and apnC genes on the density of the total population was found. In contrast populations differed significantly in their average mcyB, aerB, and apnC gene proportions, with no change between prebloom and bloom conditions. These results emphasize stable population-specific differences in mcyB, aerB, and apnC proportions that are independent from seasonal influences.
Collapse
Affiliation(s)
- Rainer Kurmayer
- Austrian Academy of Sciences, Institute for Limnology, Mondsee, Austria.
| | | | | | | | | |
Collapse
|
35
|
Al-Tebrineh J, Gehringer MM, Akcaalan R, Neilan BA. A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon 2010; 57:546-54. [PMID: 21194539 DOI: 10.1016/j.toxicon.2010.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/26/2010] [Accepted: 12/22/2010] [Indexed: 11/28/2022]
Abstract
Toxin-producing cyanobacteria are a worldwide threat to both human and animal health. The hepatotoxins microcystin and nodularin are the most commonly occurring toxins produced by bloom-forming cyanobacteria. They are cyclic peptides that are synthesized nonribosomally by a multienzyme complexes encoded within the microcystin (mcyS) and nodularin (ndaS) synthetase gene clusters. Early detection of potentially toxic blooms would allow for pre-emptive action to reduce consumer exposure to cyanotoxins. We have developed a quantitative PCR (qPCR) assay based on SYBR-green chemistry for the detection of potentially hepatotoxic cyanobacteria spanning all known microcystin and nodularin producing taxa using primers specifically targeting mcyE and ndaF. The qPCR assay was validated against previously analyzed cyanobacterial bloom samples. Whole cell qPCR using cultured M. aeruginosa PCC7806 and non-toxic M. aeruginosa UTEX2386 had a sensitivity of 1000 cells ml⁻¹. In summary, we have developed a robust and sensitive molecular method for the detection and quantification of hepatotoxigenic cyanobacteria in bloom samples. This technology offers several advantages over traditional and contemporary testing protocols currently used to assess water quality.
Collapse
Affiliation(s)
- J Al-Tebrineh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
36
|
Koskinen K, Hultman J, Paulin L, Auvinen P, Kankaanpää H. Spatially differing bacterial communities in water columns of the northern Baltic Sea. FEMS Microbiol Ecol 2010; 75:99-110. [PMID: 21059177 DOI: 10.1111/j.1574-6941.2010.00987.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Baltic Sea is a large, shallow, and strongly stratified brackish water basin. It suffers from eutrophication, toxic cyanobacterial blooms, and oxygen depletion, all of which pose a threat to local marine communities. In this study, the diversity and community structure of the northern Baltic Sea bacterial communities in the water column were, for the first time, thoroughly studied by 454 sequencing. The spring and autumn bacterial communities were one order of magnitude less diverse than those in recently studied oceanic habitats. Patchiness and strong stratification were clearly detectable; <1% of operational taxonomic units were shared among 11 samples. The community composition was more uniform horizontally (at a fixed depth) between different sites than vertically within one sampling site, implying that the community structure was affected by prevailing physical and hydrochemical conditions. Taxonomic affiliations revealed a total of 23 bacterial classes and 169 genera, while 5% of the sequences remained unclassified. The cyanobacteria accounted for <2% of the sequences, and potentially toxic cyanobacterial genera were essentially absent during the sampling seasons.
Collapse
Affiliation(s)
- Kaisa Koskinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
37
|
Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR. Appl Environ Microbiol 2010; 76:7836-42. [PMID: 20935128 DOI: 10.1128/aem.00174-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saxitoxins (STXs) are carbamate alkaloid neurotoxins produced by marine "red tide" dinoflagellates and several species of freshwater filamentous cyanobacteria, including Anabaena circinalis, Aphanizomenon spp., Lyngbya wollei, and Cylindrospermopsis raciborskii. A specific quantitative PCR (qPCR) method based on SYBR green chemistry was developed to quantify saxitoxin-producing Anabaena circinalis cyanobacteria, which are major bloom-forming freshwater cyanobacteria. The aim of this study was to infer the potential toxigenicity of samples by determining the copy number of a unique and unusual polyketide synthase (PKS) sequence (sxtA) in the STX biosynthesis gene cluster identified in cyanobacteria. Our qPCR approach was applied to water samples collected from different Australian lakes, dams, and rivers. The STX concentration and cyanobacterial cell density of these blooms were also determined by high-pressure liquid chromatography (HPLC) and microscopic cell counting, respectively. STX concentrations correlated positively with STX gene copy numbers, indicating that the latter can be used as a measure of potential toxigenicity in Anabaena circinalis and possibly other cyanobacterial blooms. The qPCR method targeting STX genes can also be employed for both monitoring and ecophysiological studies of toxic Anabaena circinalis blooms and potentially several other STX-producing cyanobacteria.
Collapse
|
38
|
Neurotoxic cyanobacterial toxins. Toxicon 2010; 56:813-28. [DOI: 10.1016/j.toxicon.2009.07.036] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 11/19/2022]
|
39
|
Cupples AM, Xagoraraki I, Rose JB. New Molecular Methods for Detection of Waterborne Pathogens. Environ Microbiol 2010. [DOI: 10.1002/9780470495117.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
40
|
Ostermaier V, Kurmayer R. Application of real-time PCR to estimate toxin production by the cyanobacterium Planktothrix sp. Appl Environ Microbiol 2010; 76:3495-502. [PMID: 20363794 PMCID: PMC2876456 DOI: 10.1128/aem.02771-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/24/2010] [Indexed: 11/20/2022] Open
Abstract
Quantitative real-time PCR methods are increasingly being applied for the enumeration of toxic cyanobacteria in the environment. However, to justify the use of real-time PCR quantification as a monitoring tool, significant correlations between genotype abundance and actual toxin concentrations are required. In the present study, we aimed to explain the concentrations of three structural variants of the hepatotoxin microcystin (MC) produced by the filamentous cyanobacterium Planktothrix sp., [Asp, butyric acid (Dhb)]-microcystin-RR (where RR means two arginines), [Asp, methyl-dehydro-alanine (Mdha)]-microcystin-RR, and [Asp, Dhb]-microcystin-homotyrosine-arginine (HtyR), by the abundance of the microcystin genotypes encoding their synthesis. Three genotypes of microcystin-producing cyanobacteria (denoted the Dhb, Mdha, and Hty genotypes) in 12 lakes of the Alps in Austria, Germany, and Switzerland from 2005 to 2007 were quantified by means of real-time PCR. Their absolute and relative abundances were related to the concentration of the microcystin structural variants in aliquots determined by high-performance liquid chromatography (HPLC). The total microcystin concentrations varied from 0 to 6.2 microg liter(-1) (mean +/- standard error [SE] of 0.6 +/- 0.1 microg liter(-1)) among the samples, in turn resulting in an average microcystin content in Planktothrix of 3.1 +/- 0.7 microg mm(-3) biovolume. Over a wide range of the population density (0.001 to 3.6 mm(3) liter(-1) Planktothrix biovolume), the Dhb genotype and [Asp, Dhb]-MC-RR were most abundant, while the Hty genotype and MC-HtyR were found to be in the lowest proportion only. In general, there was a significant linear relationship between the abundance/proportion of specific microcystin genotypes and the concentration/proportion of the respective microcystin structural variants on a logarithmic scale. We conclude that estimating the abundance of specific microcystin genotypes by quantitative real-time PCR is useful for predicting the concentration of microcystin variants in water.
Collapse
Affiliation(s)
- Veronika Ostermaier
- Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Rainer Kurmayer
- Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee, Austria
| |
Collapse
|
41
|
Rastogi RP, Sinha RP, Singh SP, Häder DP. Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 2010; 37:537-58. [PMID: 20401734 DOI: 10.1007/s10295-010-0718-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 03/26/2010] [Indexed: 12/19/2022]
Abstract
The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth's surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
42
|
Glas MS, Motti CA, Negri AP, Sato Y, Froscio S, Humpage AR, Krock B, Cembella A, Bourne DG. Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef. FEMS Microbiol Ecol 2010; 73:43-54. [PMID: 20455937 DOI: 10.1111/j.1574-6941.2010.00874.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances ( approximately 19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MS(n)) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR.
Collapse
Affiliation(s)
- Martin S Glas
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fewer DP, Jokela J, Rouhiainen L, Wahlsten M, Koskenniemi K, Stal LJ, Sivonen K. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacteriumNodularia spumigena. Mol Microbiol 2009; 73:924-37. [DOI: 10.1111/j.1365-2958.2009.06816.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Golubic S, Abed RMM, Palińska K, Pauillac S, Chinain M, Laurent D. Marine toxic cyanobacteria: diversity, environmental responses and hazards. Toxicon 2009; 56:836-41. [PMID: 19646469 DOI: 10.1016/j.toxicon.2009.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/06/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
Toxic cyanobacterial blooms have been a primary concern predominantly in the plankton of freshwater bodies. Recently, however, the toxicity of benthic cyanobacteria is increasingly attracting attention of the scientific community and environmental agencies. The occurrence of toxic strains in benthic cyanobacteria is intimately linked to our understanding of the diversity and ecological responses of these organisms under field conditions. To that effect, we are engaged in combined morphotypic and genotypic characterization (polyphasic) of benthic natural populations of cyanobacteria in tropical lagoons and coral reefs, with the objective to provide a reliable reference for further comparative work. The methods of identification based on phenotypic properties and those based on molecular tools for genotypic identification are correlated. The approach is based on identifying the occurrences of cyanobacterial benthic blooms, tested for purity and analyzed by application of molecular tools. The questions addressed include the distinction between marine and freshwater taxa, between populations in geographically separate regions as well as between their potential vs. expressed toxicity.
Collapse
Affiliation(s)
- Stjepko Golubic
- Biological Science Center, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kurmayer R, Christiansen G. The Genetic Basis of Toxin Production in Cyanobacteria. ACTA ACUST UNITED AC 2009. [DOI: 10.1608/frj-2.1.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Sánchez-Baracaldo P, Handley BA, Hayes PK. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. MICROBIOLOGY-SGM 2008; 154:3347-3357. [PMID: 18957588 DOI: 10.1099/mic.0.2008/019836-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phylogenetic relationships among picocyanobacteria from the Syn/Pro clade sensu Sánchez-Baracaldo et al. (2005) were determined using small subunit (ssu) rDNA sequences from novel culture isolates together with environmental samples from the Baltic Sea and seven freshwater lakes. The picocyanobacterial community comprised members of previously identified clades and of two previously undescribed clades. The number of well-supported clades suggests that freshwater picocyanobacterial communities encompass much greater diversity than is found in marine systems. To allow the quantification of community structure and temporal succession, clade-specific ssu rDNA TaqMan assays were designed and implemented. These assays were used to assess picocyanobacterial community structure in two lakes over an annual cycle in 2003/4, and in a small number of Baltic Sea samples collected in July 2003. In the lake-water samples, picocyanobacteria were found to be scarce during most of the year, with members of each clade reaching their peak abundance over a relatively short period during the summer (June to September), although representatives of the Cyanobium clade also developed an autumn peak extending towards the end of October. All four freshwater clades were present in the Baltic Sea, but their distribution was patchy over relatively short spatial scales. The use of molecular tools for describing and quantifying community structures reveals previously unexplored complexity in the phytoplankton and will facilitate the development of a more sophisticated understanding of community dynamics at the base of the food chains in lakes.
Collapse
Affiliation(s)
| | - Barbara A Handley
- School of Biological Sciences, Woodland Road, University of Bristol, Bristol BS8 1UG, UK
| | - Paul K Hayes
- School of Biological Sciences, Woodland Road, University of Bristol, Bristol BS8 1UG, UK
| |
Collapse
|
47
|
Fewer DP, Köykkä M, Halinen K, Jokela J, Lyra C, Sivonen K. Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of Finland. Environ Microbiol 2008; 11:855-66. [PMID: 19128321 DOI: 10.1111/j.1462-2920.2008.01806.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The late summer mass occurrences of cyanobacteria in the Baltic Sea are among the largest in the world. These blooms are rarely monotypic and are often composed of a diverse assemblage of cyanobacteria. The toxicity of the blooms is attributed to Nodularia spumigena through the production of the hepatotoxic nodularin. However, the microcystin hepatotoxins have also been reported from the Baltic Sea on a number of occasions. Recent evidence links microcystin production in the Gulf of Finland directly to the genus Anabaena. Here we developed a denaturing gradient gel electrophoresis (DGGE) method based on the mcyE microcystin synthetase gene and ndaF nodularin synthetase gene that allows the culture-independent discrimination of microcystin- and nodularin-producing cyanobacteria directly from environmental samples. We PCR-amplified microcystin and nodularin synthetase genes from environmental samples taken from the Gulf of Finland and separated them on a denaturing gradient gel using optimized conditions. Sequence analyses demonstrate that uncultured microcystin-producing Anabaena strains are genetically more diverse than previously demonstrated from cultured strains. Furthermore, our data show that microcystin-producing Anabaena are widespread in the open Gulf of Finland. Non-parametric statistical analysis suggested that salinity plays an important role in defining the distribution of microcystin-producing Anabaena. Our results indicate that microcystin-producing blooms are a persistent phenomenon in the Gulf of Finland.
Collapse
Affiliation(s)
- David P Fewer
- Department of Applied Chemistry and Microbiology, PO Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
48
|
Jonasson S, Vintila S, Sivonen K, El-Shehawy R. Expression of the nodularin synthetase genes in the Baltic Sea bloom-former cyanobacterium Nodularia spumigena strain AV1. FEMS Microbiol Ecol 2008; 65:31-9. [PMID: 18503549 DOI: 10.1111/j.1574-6941.2008.00499.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cyanobacterial blooms in the Baltic Sea are a common phenomenon and are formed by the heterocystous, filamentous species Nodularia spumigena. The toxicity of these blooms is attributed to the hepatotoxin nodularin, produced by N. spumigena. Little is known regarding the regulatory mechanisms or environmental signaling that control nodularin production. Here we report the characterization of the transcriptional expression pattern of the nodularin synthetase gene cluster (nda) during phosphate depletion, and nitrogen supplementation. Real-time PCR analysis of these genes revealed that while cells continuously expressed the nda cluster, the expression of all nda genes increased when cells were subjected to phosphate depletion, and decreased in the presence of ammonium. In contrast to the shifts in expression, the intracellular and extracellular nodularin concentrations did not vary significantly during the treatments.
Collapse
Affiliation(s)
- Sara Jonasson
- Department of Botany, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
49
|
Klisch M, Häder DP. Mycosporine-like amino acids and marine toxins--the common and the different. Mar Drugs 2008; 6:147-63. [PMID: 18728764 PMCID: PMC2525485 DOI: 10.3390/md20080008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences.
Collapse
Affiliation(s)
- Manfred Klisch
- Department for Biology, Friedrich-Alexander University, Staudtstr. 5, 91058 Erlangen, Germany.
| | | |
Collapse
|
50
|
|