1
|
Xiang G, Liu T, Li L, Lin G, Liu K, Wang F. Efficient genome engineering in Mycolicibacterium neoaurum using Cas9 from Streptococcus thermophilus. Biotechnol Lett 2024; 46:1319-1332. [PMID: 39083115 DOI: 10.1007/s10529-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 11/10/2024]
Abstract
Non-pathogenic mycobacteria, including Mycolicibacterium neoaurum, can directly utilize phytosterols for large-scale industrial production of steroid medicine intermediates due to their natural steroid metabolism pathway. The targeted genetic modification of M. neoaurum is conducive to the selection of high-yield engineering bacteria with high-value-added product, such as Pregnadien-20-carboxylic acid (PDC), which is an important precursor for synthesizing some corticosteroids. Based on heterologous type II CRISPR/sth1Cas9 system, a simple strategy was developed to genetic engineer M. neoaurum genome. Here, a customizable plasmid tool pMSC9 was constructed from pMV261 with integration of sth1Cas9 protein and corresponding sgRNA scaffold. Subsequently, the pMSC9 was inserted with spacer sequences corresponding to different targeted genes, generating editing plasmids, and then transformed into M. neoaurum. As a result, the targeted genes were introduced with DNA double stand breaks (DSBs) by CRISPR/sth1Cas9 system and then repaired by innate non-homologous end-joining (NHEJ) mechanism. Finally, editing plasmids were cured from correctly edited M. neoaurum mutants by means of no resistance cultivation, and the resulting mutant deleting the one target gene was used as the host to which another target gene could be deleted via the same process. This study demonstrated that the CRISPR/sth1Cas9 tool allowed M. neoaurum strains to be rapidly edited. And the editing mode of CRISPR/sth1Cas9 system indicated that this tool was an important supplement to the gene editing toolbox of M. neoaurum.
Collapse
Affiliation(s)
- Gedan Xiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lekai Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Guihong Lin
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Ke X, Cui JH, Ren QJ, Zheng T, Wang XX, Liu ZQ, Zheng YG. Rerouting phytosterol degradation pathway for directed androst-1,4-diene-3,17-dione microbial bioconversion. Appl Microbiol Biotechnol 2024; 108:186. [PMID: 38300290 PMCID: PMC10834601 DOI: 10.1007/s00253-023-12847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024]
Abstract
Steroid-based drugs are now mainly produced by the microbial transformation of phytosterol, and a two-step bioprocess is adopted to reach high space-time yields, but byproducts are frequently observed during the bioprocessing. In this study, the catabolic switch between the C19- and C22-steroidal subpathways was investigated in resting cells of Mycobacterium neoaurum NRRL B-3805, and a dose-dependent transcriptional response toward the induction of phytosterol with increased concentrations was found in the putative node enzymes including ChoM2, KstD1, OpccR, Sal, and Hsd4A. Aldolase Sal presented a dominant role in the C22 steroidal side-chain cleavage, and the byproduct was eliminated after sequential deletion of opccR and sal. Meanwhile, the molar yield of androst-1,4-diene-3,17-dione (ADD) was increased from 59.4 to 71.3%. With the regard of insufficient activity of rate-limiting enzymes may also cause byproduct accumulation, a chromosomal integration platform for target gene overexpression was established supported by a strong promoter L2 combined with site-specific recombination in the engineered cell. Rate-limiting steps of ADD bioconversion were further characterized and overcome. Overexpression of the kstD1 gene further strengthened the bioconversion from AD to ADD. After subsequential optimization of the bioconversion system, the directed biotransformation route was developed and allowed up to 82.0% molar yield with a space-time yield of 4.22 g·L-1·day-1. The catabolic diversion elements and the genetic overexpression tools as confirmed and developed in present study offer new ideas of M. neoaurum cell factory development for directed biotransformation for C19- and C22-steroidal drug intermediates from phytosterol. KEY POINTS: • Resting cells exhibited a catabolic switch between the C19- and C22-steroidal subpathways. • The C22-steroidal byproduct was eliminated after sequential deletion of opccR and sal. • Rate-limiting steps were overcome by promoter engineering and chromosomal integration.
Collapse
Affiliation(s)
- Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Hao Cui
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi-Jie Ren
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Tong Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Zhao A, Li Y, Wu L, Wang Z, Lv Y, Xiong W, Alam MA, Liu G, Xu J. Immobilization of rough morphotype Mycolicibacterium neoaurum R for androstadienedione production. Biotechnol Lett 2024; 46:55-68. [PMID: 38064040 DOI: 10.1007/s10529-023-03448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/20/2023] [Accepted: 11/04/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVES Enhance the androstadienedione (Androst-1,4-diene-3,17-dione, ADD) production of rough morphotype Mycolicibacterium neoaurum R by repeated-batch fermentation of immobilized cells. RESULTS M. neoaurum R was a rough colony morphotype variant, obtained from the routine plating of smooth M. neoaurum strain CICC 21097. M. neoaurum R showed rougher cell surface and aggregated in broth. The ADD production of M. neoaurum R was notably lower than that of M. neoaurum CICC 21097 during the free cell fermentation, but the yield gap could be erased after proper cell immobilization. Subsequently, repeated-batch fermentation of immobilized M. neoaurum R was performed to shorten the production cycle and enhance the bio-production efficiency of ADD. Through the optimization of the immobilization carriers and the co-solvents for phytosterols, the ADD productivity of M. neoaurum R immobilized by semi-expanded perlite reached 0.075 g/L/h during the repeated-batch fermentation for 40 days. CONCLUSIONS The ADD production of the rough-type M. neoaurum R was notably enhanced by the immobilization onto semi-expanded perlite. Moreover, the ADD batch yields of M. neoaurum R immobilized by semi-expanded perlite were maintained at high levels during the repeated-batch fermentation.
Collapse
Affiliation(s)
- Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yamei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lixia Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mohammad Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100081, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Liu X, He B, Zhang J, Yuan C, Han S, Du G, Shi J, Sun J, Zhang B. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Appl Microbiol Biotechnol 2023; 107:7635-7646. [PMID: 37831185 DOI: 10.1007/s00253-023-12812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Androst-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) are important drug intermediates that can be biosynthesized from phytosterols. However, the C9 hydroxylation of steroids via 3-ketosteroid 9α-hydroxylase (KSH) limits AD and 4-HBC accumulation. Five active KshAs, the oxidation component of KSH, were identified in Mycobacterium fortuitum ATCC 35855 for the first time. The deletion of kshAs indicated that the five KshA genes were jointly responsible for C9 hydroxylation during phytosterol biotransformation. MFKDΔkshA, the five KshAs deficient strain, blocked C9 hydroxylation and produced 5.37 g/L AD and 0.55 g/L 4-HBC. The dual function reductase Opccr knockout and 17β-hydroxysteroid dehydrogenase Hsd4A enhancement reduced 4-HBC content from 8.75 to 1.72% and increased AD content from 84.13 to 91.34%, with 8.24 g/L AD being accumulated from 15 g/L phytosterol. In contrast, hsd4A and thioesterase fadA5 knockout resulted in the accumulation of 5.36 g/L 4-HBC from 10 g/L phytosterol. We constructed efficient AD (MFKDΔkshAΔopccr_hsd4A) and 4-HBC (MFKDΔkshAΔhsd4AΔfadA5) producers and provided insights for further metabolic engineering of the M. fortuitum ATCC 35855 strain for steroid productions. KEY POINTS: • Five active KshAs were first identified in M. fortuitum ATCC 35855. • Deactivation of all five KshAs blocks the steroid C9 hydroxylation reaction. • AD or 4-HBC production was improved by Hsd4A, FadA5, and Opccr modification.
Collapse
Affiliation(s)
- Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beiru He
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Song L, Ke J, Luo ZK, Xiong LB, Dong YG, Wei DZ, Wang FQ. Driving the conversion of phytosterol to 9α-hydroxy-4-androstene-3,17-dione in Mycolicibacterium neoaurum by engineering the supply and regeneration of flavin adenine dinucleotide. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:98. [PMID: 37291661 PMCID: PMC10251532 DOI: 10.1186/s13068-023-02331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND The conversion of phytosterols to steroid synthons by engineered Mycolicibacteria comprises one of the core steps in the commercial production of steroid hormones. This is a complex oxidative catabolic process, and taking the production of androstenones as example, it requires about 10 equivalent flavin adenine dinucleotide (FAD). As the high demand for FAD, the insufficient supply of FAD may be a common issue limiting the conversion process. RESULTS We substantiated, using the production of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) as a model, that increasing intracellular FAD supply could effectively increase the conversion of phytosterols into 9-OHAD. Overexpressing ribB and ribC, two key genes involving in FAD synthesis, could significantly enhance the amount of intracellular FAD by 167.4% and the production of 9-OHAD by 25.6%. Subsequently, styrene monooxygenase NfStyA2B from Nocardia farcinica was employed to promote the cyclic regeneration of FAD by coupling the oxidation of nicotinamide adenine dinucleotide (NADH) to NAD+, and the production of 9-OHAD was further enhanced by 9.4%. However, the viable cell numbers decreased by 20.1%, which was attributed to sharply increased levels of H2O2 because of the regeneration of FAD from FADH2. Thus, we tried to resolve the conflict between FAD regeneration and cell growth by the overexpression of catalase and promotor replacement. Finally, a robust strain NF-P2 was obtained, which could produce 9.02 g/L 9-OHAD after adding 15 g/L phytosterols with productivity of 0.075 g/(L h), which was 66.7% higher than that produced by the original strain. CONCLUSIONS This study highlighted that the cofactor engineering, including the supply and recycling of FAD and NAD+ in Mycolicibacterium, should be adopted as a parallel strategy with pathway engineering to improve the productivity of the industrial strains in the conversion of phytosterols into steroid synthons.
Collapse
Affiliation(s)
- Lu Song
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Zhi-Kun Luo
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Liang-Bin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
| | - Yu-Guo Dong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China.
| |
Collapse
|
7
|
Yuan C, Ma Z, Li Y, Zhang J, Liu X, Han S, Du G, Shi J, Sun J, Zhang B. Production of 21-hydroxy-20-methyl-pregna-1,4-dien-3-one by modifying multiple genes in Mycolicibacterium. Appl Microbiol Biotechnol 2023; 107:1563-1574. [PMID: 36729227 DOI: 10.1007/s00253-023-12399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
C22 steroid drug intermediates are suitable for corticosteroids synthesis, and the production of C22 steroids is unsatisfactory due to the intricate steroid metabolism. Among the C22 steroids, 21-hydroxy-20-methyl-pregna-1,4-dien-3-one (1,4-HP) could be used for Δ1-steroid drug synthesis, such as prednisolone. Nevertheless, the production of 1,4-HP remains unsatisfactory. In this study, an ideal 1,4-HP producing strain was constructed. By the knockout of 3-ketosteroid-9-hydroxylase (KshA) genes and 17β-hydroxysteroid dehydrogenase (Hsd4A) gene, the steroid nucleus degradation and the accumulation of C19 steroids in Mycolicibacterium neoaurum were blocked. The mutant strain could transform phytosterols into 1,4-HP as the main product and 21-hydroxy-20-methyl-pregna-4-ene-3-one as a by-product. Subsequently, the purity of 1,4-HP improved to 95.2% by the enhancement of 3-ketosteroid-Δ1-dehydrogenase (KSTD) activity, and the production of 1,4-HP was improved by overexpressing NADH oxidase (NOX) and catalase (KATE) genes. Consequently, the yield of 1,4-HP achieved 10.5 g/L. The molar yield and the purity of 1,4-HP were optimal so far, and the production of 1,4-HP provides a new intermediate for the pharmaceutical steroid industry. KEY POINTS: • A third 3-ketosteroid-9-hydroxylase was identified in Mycolicibacterium neoaurum. • An 1,4-HP producer was constructed by KshA and Hsd4A deficiency. • The production of 1,4-HP was improved by KSTD, NOX, and KATE overexpression.
Collapse
Affiliation(s)
- Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Ma
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Li
- Department of Biology, Waterville, ME, 04901, USA
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway. Microb Cell Fact 2023; 22:19. [PMID: 36710325 PMCID: PMC9885637 DOI: 10.1186/s12934-022-02008-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
4-Androstene-3,17-dione (4-AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (BA) are the most important and representative C19- and C22-steroidal materials. The optimalization of sterol production with mycobacterial phytosterol conversion has been investigated for decades. One of the major challenges is that current industrial mycobacterial strains accumulate unignorable impurities analogous to desired sterol intermediates, significantly hampering product extractions and refinements. Previously, we identified Mycobacterium neoaurum HGMS2 as an efficient 4-AD-producing strain (Wang et al. in Microb Cell Fact. 19:187, 2020). Recently, we have genetically modified the HGMS2 strain to remove its major impurities including ADD and 9OH-AD (Li et al. in Microb Cell Fact. 20:158, 2021). Unexpectedly, the modified mutants started to significantly accumulate BA compared with the HGMS2 strain. In this work, while we attempted to block BA occurrence during 4-AD accumulation in HGMS2 mutants, we identified a few loop pathways that regulated metabolic flux switching between 4-AD and BA accumulations and found that both the 4-AD and BA pathways shared a 9,10-secosteroidial route. One of the key enzymes in the loop pathways was Hsd4A1, which played an important role in determining 4-AD accumulation. The inactivation of the hsd4A1 gene significantly blocked the 4-AD metabolic pathway so that the phytosterol degradation pathway flowed to the BA metabolic pathway, suggesting that the BA metabolic pathway is a complementary pathway to the 4-AD pathway. Thus, knocking out the hsd4A1 gene essentially made the HGMS2 mutant (HGMS2Δhsd4A1) start to efficiently accumulate BA. After further knocking out the endogenous kstd and ksh genes, an HGMS2Δhsd4A1 mutant, HGMS2Δhsd4A1/Δkstd1, enhanced the phytosterol conversion rate to BA in 1.2-fold compared with the HGMS2Δhsd4A1 mutant in pilot-scale fermentation. The final BA yield increased to 38.3 g/L starting with 80 g/L of phytosterols. Furthermore, we knocked in exogenous active kstd or ksh genes to HGMS2Δhsd4A1/Δ kstd1 to construct DBA- and 9OH-BA-producing strains. The resultant DBA- and 9OH-BA-producing strains, HGMS2Δhsd4A1/kstd2 and HGMS2Δkstd1/Δhsd4A1/kshA1B1, efficiently converted phytosterols to DBA- and 9OH-BA with the rates of 42.5% and 40.3%, respectively, and their final yields reached 34.2 and 37.3 g/L, respectively, starting with 80 g/L phytosterols. Overall, our study not only provides efficient strains for the industrial production of BA, DBA and 9OH-BA but also provides insights into the metabolic engineering of the HGMS2 strain to produce other important steroidal compounds.
Collapse
Key Words
- 1,4-androstadiene-3,17-dione (ADD)
- 22-hydroxy-23,24-bisnorchol-4-ene-3-one (BA)
- 3-hydroxy-9,10-secoandrost-1,3,5(10)-triene-9,17-dione (HSA)
- 3-ketosteroid-1,2-dehydrogenase (KstD)
- 3-ketosteroid-9α-hydroxylase (Ksh)
- 4-androstene-3,17-dione (4-AD)
- 9α-hydroxyl-4-androstene-3,17-dione (9OH-AD)
- Bioconversion
- Biotransformation
- Cholesterol oxidases (Cho)
- Monooxygenase (Mon)
- Phytosterols and Mycobacterium sp.
Collapse
|
9
|
Ji J, Zeng C, Wu P, Wang Y, Chen X, Yan X. Improved Whole-Cell Biocatalyst for the Synthesis of Vitamin E Precursor 2,3,5-Trimethylhydroquinone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1162-1169. [PMID: 36621524 DOI: 10.1021/acs.jafc.2c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2,3,5-Trimethylhydroquinone (2,3,5-TMHQ) is the key precursor in the synthesis of vitamin E. It is still a major challenge to produce 2,3,5-TMHQ under mild reaction conditions by chemical methods. The monooxygenase system MpdAB can specifically catalyze the conversion of 2,3,6-trimethylphenol (2,3,6-TMP) to 2,3,5-TMHQ. However, the weak catalytic capacity of wild-type MpdA and the cytotoxicity of the substrate limited the production efficiency of 2,3,5-TMHQ. Here, homologous modeling and saturation mutation were performed to increase the catalytic activity of MpdA. Two variants, L128A and L128K, with higher activity toward 2,3,6-TMP (1.86-1.87-fold) were obtained. On the other hand, an evolved strain B5-4M-evolved with enhanced resistance to 2,3,6-TMP (8.15-fold higher for 1000 μM 2,3,6-TMP) was obtained through adaptive laboratory evolution. Subsequently, a 5.29-fold (or 4.87-fold) improvement in 2,3,5-TMHQ production was achieved by a strain B5-4M-evolved harboring L128K (or L128A) and MpdB, in comparison with that of the wild type (strain B5-4M expressing MpdAB). This study provides better genetic resources for producing 2,3,5-TMHQ and proves that the synthesis efficiency of 2,3,5-TMHQ can be improved through enzyme modification and adaptive laboratory evolution.
Collapse
Affiliation(s)
- Junbin Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Nanjing Key Laboratory of Quality and Safety of Agricultural Products, College of Food Science, Nanjing XiaoZhuang University, Nanjing 211171, Jiangsu, People's Republic of China
| | - Caiting Zeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Panpan Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai 200433, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Tekucheva DN, Nikolayeva VM, Karpov MV, Timakova TA, Shutov AV, Donova MV. Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: "one-pot", two modes. BIORESOUR BIOPROCESS 2022; 9:116. [PMID: 38647765 PMCID: PMC10992188 DOI: 10.1186/s40643-022-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The main male hormone, testosterone is obtained from cheap and readily available phytosterol using the strains of Mycolicibacterium neoaurum VKM Ac-1815D, or Ac-1816D. During the first "oxidative" stage, phytosterol (5-10 g/L) was aerobically converted by Ac-1815D, or Ac-1816D to form 17-ketoandrostanes: androstenedione, or androstadienedione, respectively. At the same bioreactor, the 17-ketoandrostanes were further transformed to testosterone due to the presence of 17β-hydroxysteroid dehydrogenase activity in the strains ("reductive" mode). The conditions favorable for "oxidative" and "reductive" stages have been revealed to increase the final testosterone yield. Glucose supplement and microaerophilic conditions during the "reductive" mode ensured increased testosterone production by mycolicibacteria cells. Both strains effectively produced testosterone from phytosterol, but highest ever reported testosterone yield was achieved using M. neoaurum VKM Ac-1815D: 4.59 g/l testosterone was reached from 10 g/l phytosterol thus corresponding to the molar yield of over 66%. The results contribute to the knowledge on phytosterol bioconversion by mycolicibacteria, and are of significance for one-pot testosterone bioproduction from phytosterol bypassing the intermediate isolation of the 17-ketoandrostanes.
Collapse
Affiliation(s)
- Daria N Tekucheva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| | - Vera M Nikolayeva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Mikhail V Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Tatiana A Timakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Andrey V Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
11
|
Focused mutagenesis in non-catalytic cavity for improving catalytic efficiency of 3-ketosteroid-Δ1-dehydrogenase. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Wang XX, Ke X, Liu ZQ, Zheng YG. Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World J Microbiol Biotechnol 2022; 38:191. [PMID: 35974205 PMCID: PMC9381402 DOI: 10.1007/s11274-022-03369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Steroidal resource occupies a vital proportion in the pharmaceutical industry attributing to their important therapeutic effects on fertility, anti-inflammatory and antiviral activities. Currently, microbial transformation from phytosterol has become the dominant strategy of steroidal drug intermediate synthesis that bypasses the traditional chemical route. Mycobacterium sp. serve as the main industrial microbial strains that are capable of introducing selective functional modifications of steroidal intermediate, which has become an indispensable platform for steroid biomanufacturing. By reviewing the progress in past two decades, the present paper concentrates mainly on the microbial rational modification aspects that include metabolic pathway editing, key enzymes engineering, material transport pathway reinforcement, toxic metabolic intermediates removal and byproduct reconciliation. In addition, progress on omics analysis and direct genetic manipulation are summarized and classified that may help reform the industrial hosts with more efficiency. The paper provides an insightful present for steroid biomanufacturing especially on the current trends and prospects of mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
13
|
Nunes VO, Vanzellotti NDC, Fraga JL, Pessoa FLP, Ferreira TF, Amaral PFF. Biotransformation of Phytosterols into Androstenedione—A Technological Prospecting Study. Molecules 2022; 27:molecules27103164. [PMID: 35630641 PMCID: PMC9147728 DOI: 10.3390/molecules27103164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Androstenedione (AD) is a key intermediate in the body’s steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry’s search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on “process improvement” techniques and on possible modifications of the “microorganism” involved in biosynthesis (64 and 62 documents, respectively). The most-reported “process improvement” technique is “chemical addition” (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the “microorganism” category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.
Collapse
Affiliation(s)
- Victor Oliveira Nunes
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Nathália de Castro Vanzellotti
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Jully Lacerda Fraga
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Fernando Luiz Pellegrini Pessoa
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Centro Universitário SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | - Tatiana Felix Ferreira
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Priscilla Filomena Fonseca Amaral
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
14
|
Characterization of the 2,6-Dimethylphenol Monooxygenase MpdAB and Evaluation of Its Potential in Vitamin E Precursor Synthesis. Appl Environ Microbiol 2022; 88:e0011022. [PMID: 35380460 DOI: 10.1128/aem.00110-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,6-Dimethylphenol (2,6-DMP) is a widely used chemical intermediate whose residue has been frequently detected in the environment, posing a threat to some aquatic organisms. Microbial degradation is an effective method to eliminate 2,6-DMP in nature. However, the genetic and biochemical mechanisms of 2,6-DMP metabolism remain unknown. Mycobacterium neoaurum B5-4 is a 2,6-DMP-degrading bacterium isolated in our previous study. Here, a 2,6-DMP degradation-deficient mutant of strain B5-4 was screened. Comparative genomic, transcriptomic, gene disruption, and genetic complementation data indicated that mpdA and mpdB are responsible for the initial step of 2,6-DMP degradation in M. neoaurum B5-4. MpdAB was predicted to be a two-component flavin-dependent monooxygenase system, which shows 32% and 36% identities with HsaAB from Mycobacterium tuberculosis CDC1551. The transcription of mpdA and mpdB was substantially increased upon exposure to 2,6-DMP. Nuclear magnetic resonance analysis showed that purified 6×His-MpdA and 6×His-MpdB hydroxylated 2,6-DMP and 2,3,6-trimethylphenol (2,3,6-TMP) at the para-position using NADH and flavin adenine dinucleotide (FAD) as cofactors. The apparent Km values of MpdAB for 2,6-DMP and 2,3,6-TMP were 0.12 ± 0.01 and 0.17 ± 0.01 mM, respectively, and the corresponding kcat/Km values were 4.02 and 2.84 s-1 mM-1, respectively. Since para-hydroxylated 2,3,6-TMP is a major precursor for vitamin E synthesis, the potential of MpdAB in vitamin E synthesis was preliminarily evaluated using whole-cell catalysis. Low expression levels of MpdA and 2,3,6-TMP cytotoxicity limited the efficiency of whole-cell catalysis. Together, this study reveals the genetic and biochemical basis for the initial step of 2,6-DMP biodegradation and provides candidate enzymes for vitamin E synthesis. IMPORTANCE Although the microbial degradation of the six isomers of dimethylphenol has been extensively studied, the genetic and biochemical mechanisms of 2,6-DMP degradation remain unclear. This study identified the genes responsible for the initial step in the 2,6-DMP catabolic pathway in M. neoaurum B5-4. Moreover, MpdAB also catalyzed the transformation of 2,3,6-TMP to 2,3,5-trimethylhydroquinone (2,3,5-TMHQ), a crucial step in vitamin E synthesis. Overall, this study provides candidate enzymes for both the bioremediation of 2,6-DMP contamination and the development of a green method to synthesize vitamin E.
Collapse
|
15
|
Yuan CY, Ma ZG, Zhang JX, Liu XC, Du GL, Sun JS, Shi JP, Zhang BG. Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment. Microb Cell Fact 2021; 20:229. [PMID: 34949197 PMCID: PMC8705162 DOI: 10.1186/s12934-021-01717-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Steroid drugs are essential for disease prevention and clinical treatment. However, due to intricated steroid structure, traditional chemical methods are rarely implemented into the whole synthetic process for generating steroid intermediates. Novel steroid drug precursors and their ideal bacterial strains for industrial production have yet to be developed. Among these, 9,21-dihydroxy-20-methyl-pregna-4-en-3-one (9-OH-4-HP) is a novel steroid drug precursor, suitable for the synthesis of corticosteroids. In this study, a combined strategy of blocking Δ1-dehydrogenation and the C19 pathway as well as improving the intracellular environment was investigated to construct an effective 9-OH-4-HP-producing strain. Results The Δ1-dehydrogenation-deficient strain of wild-type Mycobacterium neoaurum DSM 44074 produces 9-OH-4-HP with a molar yield of 4.8%. Hsd4A, encoding a β-hydroxyacyl-CoA dehydrogenase, and fadA5, encoding an acyl-CoA thiolase, were separately knocked out to block the C19 pathway in the Δ1-dehydrogenation-deficient strain. The two engineered strains were able to accumulate 0.59 g L−1 and 0.47 g L−1 9-OH-4-HP from 1 g L−1 phytosterols, respectively. Furthermore, hsd4A and fadA5 were knocked out simultaneously in the Δ1-dehydrogenation-deficient strain. The 9-OH-4-HP production from the Hsd4A and FadA5 deficient strain was 11.9% higher than that of the Hsd4A deficient strain and 40.4% higher than that of the strain with FadA5 deficiency strain, respectively. The purity of 9-OH-4-HP obtained from the Hsd4A and FadA5 deficient strain has reached 94.9%. Subsequently, the catalase katE from Mycobacterium neoaurum and an NADH oxidase, nox, from Bacillus subtilis were overexpressed to improve the intracellular environment, leading to a higher 9-OH-4-HP production. Ultimately, 9-OH-4-HP production reached 3.58 g L−1 from 5 g L−1 phytosterols, and the purity of 9-OH-4-HP improved to 97%. The final 9-OH-4-HP production strain showed the best molar yield of 85.5%, compared with the previous reported strain with 30% molar yield of 9-OH-4-HP. Conclusion KstD, Hsd4A, and FadA5 are key enzymes for phytosterol side-chain degradation in the C19 pathway. Double deletion of hsd4A and fadA5 contributes to the blockage of the C19 pathway. Improving the intracellular environment of Mycobacterium neoaurum during phytosterol bioconversion could accelerate the conversion process and enhance the productivity of target sterol derivatives. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01717-w.
Collapse
Affiliation(s)
- Chen-Yang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Guo Ma
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Jing-Xian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Cen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gui-Lin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Song Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ji-Ping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Guo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Felpeto‐Santero C, Galán B, García JL. Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis. Microb Biotechnol 2021; 14:2514-2524. [PMID: 33660943 PMCID: PMC8601193 DOI: 10.1111/1751-7915.13735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
11α-hydroxylated steroid synthons are one of the most important commercially pharmaceutical intermediates used for the production of contraceptive drugs and glucocorticoids. These compounds are currently produced by biotransformation using fungal strains in two sequential fermentation steps. In this work, we have developed by a rational design new recombinant bacteria able to produce 11α-hydroxylated synthons in a single fermentation step using cholesterol (CHO) or phytosterols (PHYTO) as feedstock. We have designed a synthetic operon expressing the 11α-hydroxylating enzymes from the fungus Rhizopus oryzae that was cloned into engineered mutant strains of Mycolicibacterium smegmatis that were previously created to produce 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) from sterols. The introduction of the fungal synthetic operon in these modified bacterial chassis has allowed producing for the first time 11αOH-AD and 11αOH-ADD with high yields directly from sterols in a single fermentation step. Remarkably, the enzymes of sterol catabolic pathway from M. smegmatis recognized the 11α-hydroxylated intermediates as alternative substrates and were able to efficiently funnel sterols to the desired hydroxylated end-products.
Collapse
Affiliation(s)
- Carmen Felpeto‐Santero
- Centro de Investigaciones Biológicas Margarita SalasAgencia del Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Beatriz Galán
- Centro de Investigaciones Biológicas Margarita SalasAgencia del Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Luis García
- Centro de Investigaciones Biológicas Margarita SalasAgencia del Consejo Superior de Investigaciones CientíficasMadridSpain
| |
Collapse
|
17
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
18
|
Li X, Chen T, Peng F, Song S, Yu J, Sidoine DN, Cheng X, Huang Y, He Y, Su Z. Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9α-hydroxylated derivatives by engineered Mycobacteria. Microb Cell Fact 2021; 20:158. [PMID: 34399754 PMCID: PMC8365914 DOI: 10.1186/s12934-021-01653-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
4-Androstene-3,17-dione (4-AD), 1,4-androstadiene-3,17-dione (ADD) and 9α-hydroxyl-4-androstene-3,17-dione (9OH-AD), which are important starting compounds for the synthesis of steroidal medicines, can be biosynthetically transformed from phytosterols by Mycobacterium strains. Genomic and metabolic analyses have revealed that currently available 4-AD-producing strains maintain the ability to convert 4-AD to ADD and 9OH-AD via 3-ketosteroid-1,2-dehydrogenase (KstD) and 3-ketosteroid-9α-hydroxylase (Ksh), not only lowering the production yield of 4-AD but also hampering its purification refinement. Additionally, these 4-AD industrial strains are excellent model strains to construct ADD- and 9OH-AD-producing strains. We recently found that Mycobacterium neoaurum HGMS2, a 4-AD-producing strain, harbored fewer kstd and ksh genes through whole-genomic and enzymatic analyses, compared with other strains (Wang et al. in Microbial Cell Fact 19:187, 2020). In this study, we attempted to construct an efficient 4-AD-producing strain by knocking out the kstd and ksh genes from the M. neoaurum HGMS2 strain. Next, we used kstd- and ksh-default HGMS2 mutants as templates to construct ADD- and 9OH-AD-producing strains by knocking in active kstd and ksh genes, respectively. We found that after knocking out its endogenous kstd and ksh genes, one of these knockout mutants, HGMS2Δkstd211 + ΔkshB122, showed a 20% increase in the rate of phytosterol to 4-AD conversion, compared relative to the wild-type strain and an increase in 4-AD yield to 38.3 g/L in pilot-scale fermentation. Furthermore, we obtained the ADD- and 9OH-AD-producing strains, HGMS2kstd2 + Δkstd211+ΔkshB122 and HGMS2kshA51 + Δkstd211+ΔkshA226, by knocking in heterogenous active kstd and ksh genes to selected HGMS2 mutants, respectively. During pilot-scale fermentation, the conversion rates of the ADD- and 9OH-AD-producing mutants transforming phytosterol were 42.5 and 40.3%, respectively, and their yields reached 34.2 and 37.3 g/L, respectively. Overall, our study provides efficient strains for the production of 4-AD, ADD and 9OH-AD for the pharmaceutical industry and provides insights into the metabolic engineering of the HGMS2 strain to produce other important steroidal compounds.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Tian Chen
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Fei Peng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Shikui Song
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Jingpeng Yu
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Douanla Njimeli Sidoine
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Xiyao Cheng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yijun He
- Hubei Goto Biotech Inc., No. 1 Baiguoshu Road, Shuidu Industrial Park, Danjiangkou, 442700, Hubei, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
19
|
The Inhibitory Effect of Cyclodextrin on Oxygen Bioavailability Is a Key Factor for the Metabolic Flux Redistribution Toward Steroid Alcohols in Phytosterol Resting Cells Bioconversion. Appl Biochem Biotechnol 2021; 193:2443-2454. [PMID: 33713271 DOI: 10.1007/s12010-021-03540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
In the present work, we tried to identify the mechanism why by which the steroid alcohols accumulated when hydroxypropyl-β-cyclodextrin (HP-β-CD) was present to enhance the sterol conversion rate. Compared with the bioconversion system without HP-β-CD, the reaction rate was greatly improved in presence of HP-β-CD, but the steroid alcohols largely accumulated concurrently. In a reaction system with an enhanced reaction rate, the higher intracellular NADH/NAD+ level was detected, and the production of steroid alcohols increased also. Mycobacterium neoaurum mutants with higher KshA activity (3-ketosteroid 9α-hydrolase, a monooxygenase hydroxylating the nucleus at C-9 at the expense of NAD(P)H consumption) reduced the steroid alcohol production, and in the meantime, the NADH/NAD+ level was decreased consequently. Further research found that oxygen availability was seriously inhibited by the cyclodextrin in a reaction system. These results indicated that NADH formed in the bioconversion was not properly regenerated via the respiratory chain because of the poor oxygen bioavailability. The inhibitory effect of cyclodextrin on oxygen bioavailability is a key factor for the metabolic flux redistribution toward steroid alcohols in phytosterol resting cells bioconversion.
Collapse
|
20
|
Genome-Wide Transcriptome Profiling Provides Insight on Cholesterol and Lithocholate Degradation Mechanisms in Nocardioides simplex VKM Ac-2033D. Genes (Basel) 2020; 11:genes11101229. [PMID: 33092158 PMCID: PMC7593942 DOI: 10.3390/genes11101229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Steroid microbial degradation plays a significant ecological role for biomass decomposition and removal/detoxification of steroid pollutants. In this study, the initial steps of cholesterol degradation and lithocholate bioconversion by a strain with enhanced 3-ketosteroid dehydrogenase (3-KSD) activity, Nocardioides simplex VKM Ac-2033D, were studied. Biochemical, transcriptomic, and bioinformatic approaches were used. Among the intermediates of sterol sidechain oxidation cholest-5-en-26-oic acid and 3-oxo-cholesta-1,4-dien-26-oic acid were identified as those that have not been earlier reported for N. simplex and related species. The transcriptomic approach revealed candidate genes of cholesterol and lithocholic acid (LCA) catabolism by the strain. A separate set of genes combined in cluster and additional 3-ketosteroid Δ1-dehydrogenase and 3-ketosteroid 9α-hydroxylases that might be involved in LCA catabolism were predicted. Bioinformatic calculations based on transcriptomic data showed the existence of a previously unknown transcription factor, which regulates cholate catabolism gene orthologs. The results contribute to the knowledge on diversity of steroid catabolism regulation in actinobacteria and might be used at the engineering of microbial catalysts for ecological and industrial biotechnology.
Collapse
|
21
|
Wang H, Song S, Peng F, Yang F, Chen T, Li X, Cheng X, He Y, Huang Y, Su Z. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Microb Cell Fact 2020; 19:187. [PMID: 33008397 PMCID: PMC7532642 DOI: 10.1186/s12934-020-01442-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/25/2020] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium neoaurum strains can transform phytosterols to 4-androstene-3,17-dione (4-AD), a key intermediate for the synthesis of advanced steroidal medicines. In this work, we presented the complete genome sequence of the M. neoaurum strain HGMS2, which transforms β-sitosterol to 4-AD. Through genome annotation, a phytosterol-degrading pathway in HGMS2 was predicted and further shown to form a 9,10-secosteroid intermediate by five groups of enzymes. These five groups of enzymes included three cholesterol oxidases (ChoM; group 1: ChoM1, ChoM2 and Hsd), two monooxygenases (Mon; group 2: Mon164 and Mon197), a set of enzymes for side-chain degradation (group 3), one 3-ketosteroid-1,2-dehydrogenase (KstD; group 4: KstD211) and three 3-ketosteroid-9a-hydroxylases (Ksh; group 5: KshA226, KshA395 and KshB122). A gene cluster encoding Mon164, KstD211, KshA226, KshB122 and fatty acid β-oxidoreductases constituted one integrated metabolic pathway, while genes encoding other key enzymes were sporadically distributed. All key enzymes except those from group 3 were prepared as recombinant proteins and their activities were evaluated, and the proteins exhibited distinct activities compared with enzymes identified from other bacterial species. Importantly, we found that the KstD211 and KshA395 enzymes in the HGMS2 strain retained weak activities and caused the occurrence of two major impurities, i.e., 1,4-androstene-3,17-dione (ADD) and 9-hydroxyl-4-androstene-3,17-dione (9OH-AD) during β-sitosterol fermentation. The concurrence of these two 4-AD analogs not only lowered 4-AD production yield but also hampered 4-AD purification. HGMS2 has the least number of genes encoding KstD and Ksh enzymes compared with current industrial strains. Therefore, HGMS2 could be a potent strain by which the 4-AD production yield could be enhanced by disabling the KstD211 and KshA395 enzymes. Our work also provides new insight into the engineering of the HGMS2 strain to produce ADD and 9OH-AD for industrial application.
Collapse
Affiliation(s)
- Hongwei Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Shikui Song
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Fei Peng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Fei Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Tian Chen
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Xin Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Xiyao Cheng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.,Wuhan Amersino Biodevelop Inc., B1-Building, Biolake Park, Wuhan, 430075, Hubei, China
| | - Yijun He
- Hubei Goto Biotech Inc., No. 1 Baiguoshu Road, Shuidu Industrial Park, Danjiangkou, 442700, Hubei, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China. .,Wuhan Amersino Biodevelop Inc., B1-Building, Biolake Park, Wuhan, 430075, Hubei, China.
| |
Collapse
|
22
|
Sun H, Yang J, Song H. Engineering mycobacteria artificial promoters and ribosomal binding sites for enhanced sterol production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Luo JM, Cui HL, Jia HC, Li F, Cheng HJ, Shen YB, Wang M. Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Δ 1-Dehydrogenase Homologues from Arthrobacter simplex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9496-9512. [PMID: 32786835 DOI: 10.1021/acs.jafc.0c03360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenase (KsdD) is the key enzyme responsible for Δ1-dehydrogenation, which is one of the most valuable reactions for steroid catabolism. Arthrobacter simplex has been widely used in the industry due to its superior bioconversion efficiency, but KsdD information is not yet fully clear. Here, five KsdD homologues were identified in A. simplex CGMCC 14539. Bioinformatic analysis indicated their distinct properties and structures. Each KsdD was functionally confirmed by transcriptional response, overexpression, and heterologous expression. The substantial difference in substrate profiles might be related to the enzyme loop structure. Two promising enzymes (KsdD3 and KsdD5) were purified and characterized, exhibiting strong organic solvent tolerance and clear preference for 4-ene-3-oxosteroids. KsdD5 seemed to be more versatile due to good activity on substrates with or without a substituent at C11 and high optimal temperature and also possessed unique residues. It is the first time that KsdDs have been comprehensively disclosed in the A. simplex industrial strain.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Lin Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Chen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Fang Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| |
Collapse
|
24
|
Bragin EY, Shtratnikova VY, Schelkunov MI, Dovbnya DV, Donova MV. Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D. BMC Biotechnol 2019; 19:39. [PMID: 31238923 PMCID: PMC6593523 DOI: 10.1186/s12896-019-0533-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Background Aerobic side chain degradation of phytosterols by actinobacteria is the basis for the industrial production of androstane steroids which are the starting materials for the synthesis of steroid hormones. A native strain of Mycobacterium sp. VKM Ac-1817D effectively produces 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) from phytosterol, but also is capable of slow steroid core degradation. However, the set of the genes with products that are involved in phytosterol oxidation, their organisation and regulation remain poorly understood. Results High-throughput sequencing of the global transcriptomes of the Mycobacterium sp. VKM Ac-1817D cultures grown with or without phytosterol was carried out. In the presence of phytosterol, the expression of 260 genes including those related to steroid catabolism pathways significantly increased. Two of the five genes encoding the oxygenase unit of 3-ketosteroid-9α-hydroxylase (kshA) were highly up-regulated in response to phytosterol (55- and 25-fold, respectively) as well as one of the two genes encoding its reductase subunit (kshB) (40-fold). Only one of the five putative genes encoding 3-ketosteroid-∆1-dehydrogenase (KstD_1) was up-regulated in the presence of phytosterol (61-fold), but several substitutions in the conservative positions of its product were revealed. Among the genes over-expressed in the presence of phytosterol, several dozen genes did not possess binding sites for the known regulatory factors of steroid catabolism. In the promoter regions of these genes, a regularly occurring palindromic motif was revealed. The orthologue of TetR-family transcription regulator gene Rv0767c of M. tuberculosis was identified in Mycobacterium sp. VKM Ac-1817D as G155_05115. Conclusions High expression levels of the genes related to the sterol side chain degradation and steroid 9α-hydroxylation in combination with possible defects in KstD_1 may contribute to effective 9α-hydroxyandrost-4-ene-3,17-dione accumulation from phytosterol provided by this biotechnologically relevant strain. The TetR-family transcription regulator gene G155_05115 presumably associated with the regulation of steroid catabolism. The results are of significance for the improvement of biocatalytic features of the microbial strains for the steroid industry. Electronic supplementary material The online version of this article (10.1186/s12896-019-0533-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugeny Y Bragin
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290. .,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290.
| | - Victoria Y Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, 1, building 40, Moscow, Russian Federation, 119992
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Nobelya, 3, Moscow, Russian Federation, 121205.,Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny, 19, build. 1, Moscow, Russian Federation, 127051
| | - Dmitry V Dovbnya
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| | - Marina V Donova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| |
Collapse
|
25
|
A streamlined high throughput screening method for the Mycobacterium neoaurum mutants with expected yield of biotransformation derivatives from sterols. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|