1
|
Chen YYM, Yang YC, Shieh HR, Lin YJ, Ke WJ, Chiu CH. Functional Analysis of the Major Pilin Proteins of Type IV Pili in Streptococcus sanguinis CGMH010. Int J Mol Sci 2024; 25:5402. [PMID: 38791440 PMCID: PMC11121087 DOI: 10.3390/ijms25105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The pil gene cluster for Type IV pilus (Tfp) biosynthesis is commonly present and highly conserved in Streptococcus sanguinis. Nevertheless, Tfp-mediated twitching motility is less common among strains, and the factors determining twitching activity are not fully understood. Here, we analyzed the functions of three major pilin proteins (PilA1, PilA2, and PilA3) in the assembly and activity of Tfp in motile S. sanguinis CGMH010. Using various recombinant pilA deletion strains, we found that Tfp composed of different PilA proteins varied morphologically and functionally. Among the three PilA proteins, PilA1 was most critical in the assembly of twitching-active Tfp, and recombinant strains expressing motility generated more structured biofilms under constant shearing forces compared to the non-motile recombinant strains. Although PilA1 and PilA3 shared 94% identity, PilA3 could not compensate for the loss of PilA1, suggesting that the nature of PilA proteins plays an essential role in twitching activity. The single deletion of individual pilA genes had little effect on the invasion of host endothelia by S. sanguinis CGMH010. In contrast, the deletion of all three pilA genes or pilT, encoding the retraction ATPase, abolished Tfp-mediated invasion. Tfp- and PilT-dependent invasion were also detected in the non-motile S. sanguinis SK36, and thus, the retraction of Tfp, but not active twitching, was found to be essential for invasion.
Collapse
Affiliation(s)
- Yi-Ywan M. Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.S.); (Y.-J.L.); (W.-J.K.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Yuan-Chen Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Hui-Ru Shieh
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.S.); (Y.-J.L.); (W.-J.K.)
| | - Yu-Juan Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.S.); (Y.-J.L.); (W.-J.K.)
| | - Wan-Ju Ke
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.S.); (Y.-J.L.); (W.-J.K.)
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| |
Collapse
|
2
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
3
|
Treerat P, Anderson D, Giacaman RA, Merritt J, Kreth J. Glycerol metabolism supports oral commensal interactions. THE ISME JOURNAL 2023; 17:1116-1127. [PMID: 37169870 PMCID: PMC10284889 DOI: 10.1038/s41396-023-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
During oral biofilm development, interspecies interactions drive species distribution and biofilm architecture. To understand what molecular mechanisms determine these interactions, we used information gained from recent biogeographical investigations demonstrating an association of corynebacteria with streptococci. We previously reported that Streptococcus sanguinis and Corynebacterium durum have a close relationship through the production of membrane vesicle and fatty acids leading to S. sanguinis chain elongation and overall increased fitness supporting their commensal state. Here we present the molecular mechanisms of this interspecies interaction. Coculture experiments for transcriptomic analysis identified several differentially expressed genes in S. sanguinis. Due to its connection to fatty acid synthesis, we focused on the glycerol-operon. We further explored the differentially expressed type IV pili genes due to their connection to motility and biofilm adhesion. Gene inactivation of the glycerol kinase glpK had a profound impact on the ability of S. sanguinis to metabolize C. durum secreted glycerol and impaired chain elongation important for their interaction. Investigations on the effect of type IV pili revealed a reduction of S. sanguinis twitching motility in the presence of C. durum, which was caused by a decrease in type IV pili abundance on the surface of S. sanguinis as determined by SEM. In conclusion, we identified that the ability to metabolize C. durum produced glycerol is crucial for the interaction of C. durum and S. sanguinis. Reduced twitching motility could lead to a closer interaction of both species, supporting niche development in the oral cavity and potentially shaping symbiotic health-associated biofilm communities.
Collapse
Affiliation(s)
- Puthayalai Treerat
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| | - David Anderson
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Zeng L, Walker AR, Burne RA, Taylor ZA. Glucose Phosphotransferase System Modulates Pyruvate Metabolism, Bacterial Fitness, and Microbial Ecology in Oral Streptococci. J Bacteriol 2023; 205:e0035222. [PMID: 36468868 PMCID: PMC9879115 DOI: 10.1128/jb.00352-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Spontaneous mutants with defects in the primary glucose phosphotransferase permease (manLMNO) of Streptococcus sanguinis SK36 showed enhanced fitness at low pH. Transcriptomics and metabolomics with a manL deletion mutant (SK36/manL) revealed redirection of pyruvate to production of acetate and formate, rather than lactate. These observations were consistent with measurements of decreased lactic acid accumulation and increased excretion of acetate, formate, pyruvate, and H2O2. Genes showing increased expression in SK36/manL included those encoding carbohydrate transporters, extracellular glycosidases, intracellular polysaccharide metabolism, and arginine deiminase and pathways for metabolism of acetoin, ethanolamine, ascorbate, and formate, along with genes required for membrane biosynthesis and adhesion. Streptococcus mutans UA159 persisted much better in biofilm cocultures with SK36/manL than with SK36, an effect that was further enhanced by culturing the biofilms anaerobically but dampened by adding arginine to the medium. We posited that the enhanced persistence of S. mutans with SK36/manL was in part due to excess excretion of pyruvate by the latter, as addition of pyruvate to S. mutans-S. sanguinis cocultures increased the proportions of UA159 in the biofilms. Reducing the buffer capacity or increasing the concentration of glucose benefited UA159 when cocultured with SK36, but not with SK36/manL, likely due to the altered metabolism and enhanced acid tolerance of the mutant. When manL was deleted in S. mutans or Streptococcus gordonii, the mutants presented altered fitness characteristics. Our study demonstrated that phosphotransferase system (PTS)-dependent modulation of central metabolism can profoundly affect streptococcal fitness and metabolic interactions, revealing another dimension in commensal-pathogen relationships influencing dental caries development. IMPORTANCE Dental caries is underpinned by a dysbiotic microbiome and increased acid production. As beneficial bacteria that can antagonize oral pathobionts, oral streptococci such as S. sanguinis and S. gordonii can ferment many carbohydrates, despite their relative sensitivity to low pH. We characterized the molecular basis for why mutants of glucose transporter ManLMNO of S. sanguinis showed enhanced production of hydrogen peroxide and ammonia and improved persistence under acidic conditions. A metabolic shift involving more than 300 genes required for carbohydrate transport, energy production, and envelope biogenesis was observed. Significantly, manL mutants engineered in three different oral streptococci displayed altered capacities for acid production and interspecies antagonism, highlighting the potential for targeting the glucose-PTS to modulate the pathogenicity of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Zachary A. Taylor
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Prevalence of Type IV Pili-Mediated Twitching Motility in Streptococcus sanguinis Strains and Its Impact on Biofilm Formation and Host Adherence. Appl Environ Microbiol 2022; 88:e0140322. [PMID: 36094177 PMCID: PMC9499025 DOI: 10.1128/aem.01403-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (Tfp) are known to mediate several biological activities, including surface-dependent twitching motility. Although a pil gene cluster for Tfp biosynthesis is found in all sequenced Streptococcus sanguinis strains, Tfp-mediated twitching motility is less commonly detected. Upon examining 81 clinical strains, 39 strains generated twitching zones on blood agar plates (BAP), while 27 strains displayed twitching on Todd-Hewitt (TH) agar. Although BAP appears to be more suitable for the development of twitching zones, 5 strains exhibited twitching motility only on TH agar, indicating that twitching motility is not only strain specific but also sensitive to growth media. Furthermore, different twitching phenotypes were observed in strains expressing comparable levels of pilT, encoding the retraction ATPase, suggesting that the twitching phenotype on agar plates is regulated by multiple factors. By using a PilT-null and a pilin protein-null derivative (CHW02) of twitching-active S. sanguinis CGMH010, we found that Tfp retraction was essential for biofilm stability. Further, biofilm growth was amplified in CHW02 in the absence of shearing force, indicating that S. sanguinis may utilize other ligands for biofilm formation in the absence of Tfp. Similar to SK36, Tfp from CGMH010 were required for colonization of host cells, but PilT only marginally affected adherence and only in the twitching-active strain. Taken together, the results suggest that Tfp participates in host cell adherence and that Tfp retraction facilitates biofilm stability. IMPORTANCE Although the gene clusters encoding Tfp are commonly present in Streptococcus sanguinis, not all strains express surface-dependent twitching motility on agar surfaces. Regardless of whether the Tfp could drive motility, Tfp can serve as a ligand for the colonization of host cells. Though many S. sanguinis strains lack twitching activity, motility can enhance biofilm stability in a twitching-active strain; thus, perhaps motility provides little or no advantage to the survival of bacteria within dental plaque. Rather, Tfp retraction could provide additional advantages for the bacteria to establish infections outside the oral cavity.
Collapse
|
6
|
Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis. Microbiol Spectr 2021; 9:e0175221. [PMID: 34756087 PMCID: PMC8579931 DOI: 10.1128/spectrum.01752-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus sanguinis is a common cause of infective endocarditis (IE). Efforts by research groups are aimed at identifying and characterizing virulence factors that contribute to the ability of this organism to cause IE. This Gram-positive pathogen causes heart infection by gaining access to the bloodstream, adhering to host extracellular matrix protein and/or platelets, colonizing the aortic endothelium, and incorporating itself into the aortic vegetation. While many virulence factors have been reported to contribute to the ability of S. sanguinis to cause IE, it is noteworthy that type IV pili (T4P) have not been described to be a virulence factor in this organism, although S. sanguinis strains typically encode these pili. Type IV pili are molecular machines that are capable of mediating diverse virulence functions and surface motility. T4P have been shown to mediate twitching motility in some strains of S. sanguinis, although in most strains it has been difficult to detect twitching motility. While we found that T4P are dispensable for direct in vitro platelet binding and aggregation phenotypes, we show that they are critical to the development of platelet-dependent biofilms representative of the cardiac vegetation. We also observed that T4P are required for in vitro invasion of S. sanguinis into human aortic endothelial cells, which indicates that S. sanguinis may use T4P to take advantage of an intracellular niche during infection. Importantly, we show that T4P of S. sanguinis are critical to disease progression (vegetation development) in a native valve IE rabbit model. The results presented here expand our understanding of IE caused by S. sanguinis and identify T4P as an important virulence factor for this pathogen. IMPORTANCE This work provides evidence that type IV pili produced by Streptococcus sanguinis SK36 are critical to the ability of these bacteria to attach to and colonize the aortic heart valve (endocarditis). We found that an S. sanguinis type IV pili mutant strain was defective in causing platelet-dependent aggregation in a 24-h infection assay but not in a 1-h platelet aggregation assay, suggesting that the type IV pili act at later stages of vegetation development. In a rabbit model of disease, a T4P mutant strain does not develop mature vegetations that form on the heart, indicating that this virulence factor is critical to disease and could be a target for IE therapy.
Collapse
|
7
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Puccio T, Kunka KS, Zhu B, Xu P, Kitten T. Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen Streptococcus sanguinis. Front Microbiol 2020; 11:592615. [PMID: 33250881 PMCID: PMC7674665 DOI: 10.3389/fmicb.2020.592615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is typically considered beneficial due to its antagonistic relationship with the cariogenic pathogen Streptococcus mutans. However, S. sanguinis can also act as an opportunistic pathogen should it enter the bloodstream and colonize a damaged heart valve, leading to infective endocarditis. Studies have implicated manganese acquisition as an important virulence determinant in streptococcal endocarditis. A knockout mutant lacking the primary manganese import system in S. sanguinis, SsaACB, is severely attenuated for virulence in an in vivo rabbit model. Manganese is a known cofactor for several important enzymes in S. sanguinis, including superoxide dismutase, SodA, and the aerobic ribonucleotide reductase, NrdEF. To determine the effect of manganese depletion on S. sanguinis, we performed transcriptomic analysis on a ΔssaACB mutant grown in aerobic fermentor conditions after the addition of the metal chelator EDTA. Despite the broad specificity of EDTA, analysis of cellular metal content revealed a decrease in manganese, but not in other metals, that coincided with a drop in growth rate. Subsequent supplementation with manganese, but not iron, zinc, or magnesium, restored growth in the fermentor post-EDTA. Reduced activity of Mn-dependent SodA and NrdEF likely contributed to the decreased growth rate post-EDTA, but did not appear entirely responsible. With the exception of the Dps-like peroxide resistance gene, dpr, manganese depletion did not induce stress response systems. By comparing the transcriptome of ΔssaACB cells pre- and post-EDTA, we determined that manganese deprivation led to altered expression of diverse systems. Manganese depletion also led to an apparent induction of carbon catabolite repression in a glucose-independent manner. The combined results suggest that manganese limitation produces effects in S. sanguinis that are diverse and complex, with no single protein or system appearing entirely responsible for the observed growth rate decrease. This study provides further evidence for the importance of this trace element in streptococcal biology. Future studies will focus on determining mechanisms for regulation, as the multitude of changes observed in this study indicate that multiple regulators may respond to manganese levels.
Collapse
Affiliation(s)
| | | | | | | | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism. Appl Environ Microbiol 2020; 86:AEM.00200-20. [PMID: 32086304 DOI: 10.1128/aem.00200-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Biological hydrolysis of cellulose above 70°C involves microorganisms that secrete free enzymes and deploy separate protein systems to adhere to their substrate. Strongly cellulolytic Caldicellulosiruptor bescii is one such extreme thermophile, which deploys modular, multifunctional carbohydrate-acting enzymes to deconstruct plant biomass. Additionally, C. bescii also encodes noncatalytic carbohydrate binding proteins, which likely evolved as a mechanism to compete against other heterotrophs in carbon-limited biotopes that these bacteria inhabit. Analysis of the Caldicellulosiruptor pangenome identified a type IV pilus (T4P) locus encoded upstream of the tāpirins, that is encoded by all Caldicellulosiruptor species. In this study, we sought to determine if the C. bescii T4P plays a role in attachment to plant polysaccharides. The major C. bescii pilin (CbPilA) was identified by the presence of pilin-like protein domains, paired with transcriptomics and proteomics data. Using immuno-dot blots, we determined that the plant polysaccharide xylan induced production of CbPilA 10- to 14-fold higher than glucomannan or xylose. Furthermore, we are able to demonstrate that recombinant CbPilA directly interacts with xylan and cellulose at elevated temperatures. Localization of CbPilA at the cell surface was confirmed by immunofluorescence microscopy. Lastly, a direct role for CbPilA in cell adhesion was demonstrated using recombinant CbPilA or anti-CbPilA antibodies to reduce C. bescii cell adhesion to xylan and crystalline cellulose up to 4.5- and 2-fold, respectively. Based on these observations, we propose that CbPilA and, by extension, the T4P play a role in Caldicellulosiruptor cell attachment to plant biomass.IMPORTANCE Most microorganisms are capable of attaching to surfaces in order to persist in their environment. Type IV (T4) pili produced by certain mesophilic Firmicutes promote adherence; however, a role for T4 pili encoded by thermophilic members of this phylum has yet to be demonstrated. Prior comparative genomics analyses identified a T4 pilus locus possessed by an extremely thermophilic genus within the Firmicutes Here, we demonstrate that attachment to plant biomass-related carbohydrates by strongly cellulolytic Caldicellulosiruptor bescii is mediated by T4 pilins. Surprisingly, xylan but not cellulose induced expression of the major T4 pilin. Regardless, the C. bescii T4 pilin interacts with both polysaccharides at high temperatures and is located to the cell surface, where it is directly involved in C. bescii attachment. Adherence to polysaccharides is likely key to survival in environments where carbon sources are limiting, allowing C. bescii to compete against other plant-degrading microorganisms.
Collapse
|
10
|
Bai Y, Shang M, Xu M, Wu A, Sun L, Zheng L. Transcriptome, Phenotypic, and Virulence Analysis of Streptococcus sanguinis SK36 Wild Type and Its CcpA-Null Derivative (ΔCcpA). Front Cell Infect Microbiol 2019; 9:411. [PMID: 31867286 PMCID: PMC6904348 DOI: 10.3389/fcimb.2019.00411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Catabolic control protein (CcpA) is linked to complex carbohydrate utilization and virulence factor in many bacteria species, influences the transcription of target genes by many mechanisms. To characterize the activity and regulatory mechanisms of CcpA in Streptococcus sanguinis, here, we analyzed the transcriptome of Streptococcus sanguinis SK36 and its CcpA-null derivative (ΔCcpA) using RNA-seq. Compared to the regulon of CcpA in SK36 in the RegPrecise database, we found that only minority of differentially expressed genes (DEGs) contained putative catabolite response element (cre) in their regulatory regions, indicating that many genes could have been affected indirectly by the loss of CcpA and analyzing the sequence of the promoter region using prediction tools is not a desirable method to recognize potential target genes of global regulator CcpA. Gene ontology and pathway analysis of DEGs revealed that CcpA exerts an influence predominantly involved in carbon catabolite metabolism and some amino acid catabolite pathways, which has been linked to expression of virulence genes in many pathogens and coordinately regulate the disease progression in vivo studies. However, in some scenarios, differences observed at the transcript level could not reflect the real differences at the protein level. Therefore, to confirm the differences in phenotype and virulence of SK36 and ΔCcpA, we characterized the role of CcpA in the regulation of biofilm development, EPS production and the virulence of Streptococcus sanguinis. Results showed CcpA inactivation impaired biofilm and EPS formation, and CcpA also involved in virulence in rabbit infective endocarditis model. These findings will undoubtedly contribute to investigate the mechanistic links between the global regulator CcpA and the virulence of Streptococcus sanguinis, further broaden our understanding of the relationship between basic metabolic processes and virulence.
Collapse
Affiliation(s)
- Yibo Bai
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mengmeng Shang
- Department of Scientific Research, Peking Union Medical College Hospital (East), Beijing, China
| | - Mengya Xu
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Anyi Wu
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lanyan Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Pelicic V. Monoderm bacteria: the new frontier for type IV pilus biology. Mol Microbiol 2019; 112:1674-1683. [PMID: 31556183 PMCID: PMC6916266 DOI: 10.1111/mmi.14397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
In the diverse world of bacterial pili, type IV pili (Tfp) are unique for two reasons: their multifunctionality and ubiquity. This latter feature offers an extraordinary possibility, that is, to perform comparative studies in evolutionarily distant species in order to improve our fragmentary understanding of Tfp biology. Regrettably, such potential has remained largely untapped, because, for 20 years, Tfp have only been characterised in diderm bacteria. However, recent studies of Tfp in monoderms have started closing the gap, revealing many interesting commonalities and a few significant differences, extending the frontiers of knowledge of Tfp biology. Here, I review the current state of the art of the Tfp field in monoderm bacteria and discuss resulting implications for our general understanding of the assembly and function of these widespread filamentous nanomachines.
Collapse
Affiliation(s)
- Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|