1
|
Papić B, Žvokelj L, Pislak Ocepek M, Hočevar B, Kozar M, Rus R, Zajc U, Kušar D. The Diagnostic Value of qPCR Quantification of Paenibacillus larvae in Hive Debris and Adult Bees for Predicting the Onset of American Foulbrood. Vet Sci 2024; 11:442. [PMID: 39330821 PMCID: PMC11436083 DOI: 10.3390/vetsci11090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
American foulbrood (AFB) is a serious infectious disease of honeybees (Apis mellifera) caused by Paenibacillus larvae. Increased P. larvae count in hive-related material is associated with an increased risk of AFB. Here, we quantified P. larvae cells in 106 adult bee and 97 hive debris samples using quantitative PCR (qPCR); 66/106 adult bee and 66/97 hive debris samples were collected simultaneously from the same bee colony (paired-sample design). The corresponding bee colonies were also examined for the presence of AFB clinical signs. A binary logistic regression model to distinguish between AFB-affected and unaffected honeybee colonies showed a strong diagnostic accuracy of both sample types for predicting the onset of AFB based on P. larvae counts determined by qPCR. The colonies with a P. larvae count greater than 4.5 log cells/adult bee or 7.3 log cells/mL hive debris had a 50% probability of being clinically affected and were categorized as high-risk. The AFB-unaffected colonies had significantly lower P. larvae counts than the AFB-affected colonies, but the latter did not differ significantly in P. larvae counts in relation to the severity of clinical signs. Both bee-related sample types had a high diagnostic value for predicting disease outcome based on P. larvae counts. These results improve the understanding of the relationship between P. larvae counts and AFB occurrence, which is essential for early detection of high-risk colonies.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Lucija Žvokelj
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Metka Pislak Ocepek
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Barbara Hočevar
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Monika Kozar
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Rene Rus
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Urška Zajc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Tlak Gajger I, Bakarić K, Toplak I, Šimenc L, Zajc U, Pislak Ocepek M. Winter Hive Debris Analysis Is Significant for Assessing the Health Status of Honeybee Colonies ( Apis mellifera). INSECTS 2024; 15:350. [PMID: 38786906 PMCID: PMC11121827 DOI: 10.3390/insects15050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Honeybee diseases are one of the most significant and most common causes of honeybee colonies' weakness and death. An early diagnosis of subclinical infections is necessary to implement precautionary and control measures. Sampling debris from hive bottom boards is simple, non-invasive, and cheap. In this study, we collected winter debris samples in apiaries located in the continental part of Croatia. We used molecular methods, PCR and qPCR, for the first time to analyze those samples. Laboratory results were compared with the health condition and strength of honeybee colonies at an apiary in spring. Our study successfully identified the presence and quantity of various pathogens, including the presence of Vairimorpha spp. (Nosema spp.), quintefied Paenibacillus larvae, Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV), and Sacbrood Virus (SBV). However, our analysis did not detect Melissococcus plutonius, Crithidia mellificae, Lotmaria passim, and Aethina tumida. Samples of winter debris were also examined for the presence and quantification of the V. destructor mites, and their natural mite fall was observed in spring. Honeybee colonies were simultaneously infected by an average of four to six pathogens. Some observed honeybee colonies developed characteristic symptoms, while others did not survive the winter.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Klara Bakarić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia;
| | - Ivan Toplak
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (I.T.); (L.Š.); (U.Z.); (M.P.O.)
| | - Laura Šimenc
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (I.T.); (L.Š.); (U.Z.); (M.P.O.)
| | - Urška Zajc
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (I.T.); (L.Š.); (U.Z.); (M.P.O.)
| | - Metka Pislak Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (I.T.); (L.Š.); (U.Z.); (M.P.O.)
| |
Collapse
|
3
|
TAKAMATSU D. Atypical Melissococcus plutonius strains: their characteristics, virulence, epidemiology, and mysteries. J Vet Med Sci 2023; 85:880-894. [PMID: 37460304 PMCID: PMC10539817 DOI: 10.1292/jvms.23-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 09/05/2023] Open
Abstract
Melissococcus plutonius is a Gram-positive lanceolate coccus that is the causative agent of European foulbrood, an important bacterial disease of honey bee brood. Although this bacterium was originally described in the early 20th century, a culture method for this bacterium was not established until more than 40 years after its discovery due to its fastidious characteristics, including the requirement for high potassium and anaerobic/microaerophilic conditions. These characteristics were considered to be common to the majority of M. plutonius strains isolated worldwide, and M. plutonius was also thought to be genetically homologous or clonal for years. However, non-fastidious variants of this species (designated as atypical M. plutonius) were very recently identified in Japan. Although the morphology of these unusual strains was similar to that of traditionally well-known M. plutonius strains, atypical strains were genetically very different from most of the M. plutonius strains previously isolated and were highly virulent to individual bee larva. These atypical variants were initially considered to be unique to Japan, but were subsequently found worldwide; however, the frequency of isolation varied from country to country. The background of the discovery of atypical M. plutonius in Japan and current knowledge on atypical strains, including their biochemical and culture characteristics, virulence, detection methods, and global distribution, are described in this review. Remaining mysteries related to atypical M. plutonius and directions for future research are also discussed.
Collapse
Affiliation(s)
- Daisuke TAKAMATSU
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Kok DN, Zhou D, Tsourkas PK, Hendrickson HL. Paenibacillus larvae and their phages; a community science approach to discovery and initial testing of prophylactic phage cocktails against American Foulbrood in New Zealand. MICROBIOME RESEARCH REPORTS 2023; 2:30. [PMID: 38045927 PMCID: PMC10688787 DOI: 10.20517/mrr.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 07/15/2023] [Indexed: 12/05/2023]
Abstract
Background: American foulbrood (AFB) is a devastating disease of the European honey bee (Apis mellifera) and is found throughout the world. AFB is caused by the bacterium Paenibacillus larvae (P. larvae). Treatment with antibiotics is strictly forbidden in many regions, including New Zealand. Safe and natural prophylactic solutions to protect honey bees from AFB are needed. Bacteriophages are a well-studied alternative to antibiotics and have been shown to be effective against P. larvae in other countries. Methods: We employed a community science approach to obtaining samples from around New Zealand to discover novel bacteriophages. Standard isolation approaches were employed for both bacteria and bacteriophages. Host range testing was performed by agar overlay spot tests, and cocktail formulation and in vitro testing were performed in 96-well plate assays, followed by sub-sampling and CFU visualization on agar plates. Results: Herein, we describe the discovery and isolation of eight P. larvae bacterial isolates and 26 P. larvae bacteriophages that are novel and native to New Zealand. The phage genomes were sequenced and annotated, and their genomes were compared to extant sequenced P. larvae phage genomes. We test the host ranges of the bacteriophages and formulate cocktails to undertake in vitro testing on a set of representative bacterial strains. These results form the basis of a promising solution for protecting honey bees in New Zealand from AFB.
Collapse
Affiliation(s)
- Danielle N. Kok
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Diana Zhou
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Philippos K. Tsourkas
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - Heather L. Hendrickson
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
5
|
Matiašovic J, Bzdil J, Papežíková I, Čejková D, Vasina E, Bizos J, Navrátil S, Šedivá M, Klaudiny J, Pikula J. Genomic analysis of Paenibacillus larvae isolates from the Czech Republic and the neighbouring regions of Slovakia. Res Vet Sci 2023; 158:34-40. [PMID: 36913910 DOI: 10.1016/j.rvsc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/16/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybee larvae. In the Czech Republic, two large infested regions were recognised. This study aimed to analyse P. larvae strains occurring in the Czech Republic in the years 2016-2017 and to characterise the genetic structure of their population with the use of Enterobacterial Repetitive Intergenic Consensus genotyping (ERIC), multilocus sequence typing (MLST) and whole genome sequence (WGS) analysis. The results were complemented by the analysis of isolates collected in the year 2018 in areas of Slovakia located near the Czechia-Slovakia border. ERIC genotyping revealed that 78.9% of tested isolates belonged to the ERIC II genotype and 21.1% to ERIC I genotype. MLST showed six sequence types with ST10 and ST11 being the most frequent among isolates. Within six isolates we found discrepancies in correlations between MLST and ERIC genotypes. The use of MLST and WGS analysis of isolates revealed that each of the large infested geographic regions had its own dominating P. larvae strains. We assume that these strains represented primary sources of infection in the affected areas. In addition, the sporadic presence of strains identified by core genome analysis as genetically related was unveiled in geographically distant regions suggesting possible human-mediated transmission of AFB.
Collapse
Affiliation(s)
- Ján Matiašovic
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic.
| | - Jaroslav Bzdil
- Ptácy s.r.o., Valašská Bystřice 194, 756 27 Valašská Bystřice, Czech Republic
| | - Ivana Papežíková
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Darina Čejková
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; Department of Biomedical Engineering, Brno University of Technology, Technická 12, 616 00 Brno, Czech Republic
| | - Evgeniya Vasina
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jiří Bizos
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic
| | - Stanislav Navrátil
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Mária Šedivá
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Jaroslav Klaudiny
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Jiří Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
6
|
Truong AT, Yoo MS, Seo SK, Hwang TJ, Yoon SS, Cho YS. Prevalence of honey bee pathogens and parasites in South Korea: A five-year surveillance study from 2017 to 2021. Heliyon 2023; 9:e13494. [PMID: 36816323 PMCID: PMC9929316 DOI: 10.1016/j.heliyon.2023.e13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Honey bees play an important role in the pollination of crops and wild plants and provide important products to humans. Pathogens and parasites are the main factors that threaten beekeeping in South Korea. Therefore, a nationwide detection of 14 honey bee pathogens, including parasites (phorid flies, Nosema ceranae, and Acarapis woodi mites), viruses, bacteria, and fungal pathogens, was conducted from 2017 to 2021 in the country. The infection rate and the trend of detection of each pathogenic agent were determined. A total of 830 honey bee samples from Apis cerana (n = 357) and A. mellifera (n = 473) were examined. N. ceranae (35.53%), deformed wing virus (52.63%), sacbrood virus (SBV) (52.63%), and black queen cell virus (55.26%) were the most prevalent honey bee pathogens, and their prevalence rapidly increased from 2017 to 2021. The prevalence of Paenibacillus larvae, Israeli acute paralysis virus, Ascosphaera apis, A. woodi, Melissococcus plutonius, and chronic bee paralysis virus remained stable during the surveillance period, with infection rates ranging from 5.26% to 16.45% in 2021. Other pathogens, including acute bee paralysis virus, phorid flies, Kashmir bee virus, and Aspergillus flavus, had low infection rates that gradually declined during the detection period. The occurrence of honeybee pathogens peaked in July. SBV was the most common pathogen in A. cerana, whereas N. ceranae was predominant in A. mellifera. This study provides information regarding the current status of honey bee pathogens and presents the trend of the occurrence of each pathogen in South Korea. These data are important for predicting outbreaks of honey bee diseases in the country.
Collapse
Affiliation(s)
- A-Tai Truong
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - Mi-Sun Yoo
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Soo Kyoung Seo
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Tae Jun Hwang
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yun Sang Cho
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| |
Collapse
|
7
|
Grossar D, Haynes E, Budge GE, Parejo M, Gauthier L, Charrière JD, Chapuisat M, Dietemann V. Population genetic diversity and dynamics of the honey bee brood pathogen Melissococcus plutonius in a region with high prevalence. J Invertebr Pathol 2023; 196:107867. [PMID: 36503887 PMCID: PMC9885493 DOI: 10.1016/j.jip.2022.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
European foulbrood (EFB) is a honey bee brood disease caused by the bacterium Melissococcus plutonius. Large-scale EFB outbreaks have been reported in several countries in recent decades, which entail costly sanitation measures of affected apiaries to restrict the spread of this contagious pathogen. To mitigate its impact, a better understanding of the population dynamics of the etiological agent is required. We here used multi-locus sequence typing (MLST) to infer the genetic diversity and geographical distribution of 160 M. plutonius isolates collected from EFB symptomatic honey bee colonies seven years apart. Isolates belonged to three clonal complexes (CCs) known worldwide and to 12 sequence types (STs), of which five were novel. Phylogenetic and clustering analyses showed that some of these novel sequence types have likely evolved locally during a period of outbreak, but most disappeared again. We further screened the isolates for melissotoxin A (mtxA), a putative virulence gene. The prevalence of STs in which mtxA was frequent increased over time, suggesting that this gene promotes spread. Despite the increased frequency of this gene in the population, the total number of cases decreased, which could be due to stricter control measures implemented before the second sampling period. Our results provide a better understanding of M. plutonius population dynamics and help identify knowledge gaps that limit efficient control of this emerging disease.
Collapse
Affiliation(s)
- Daniela Grossar
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Edward Haynes
- Bee health laboratory, Fera Science Ltd, Sand Hutton, York, YO41 1LZ, the United Kingdom of Great Britain and Northern Ireland; Fera Department of Biology, University of York, York, the United Kingdom of Great Britain and Northern Ireland
| | - Giles E Budge
- Bee health laboratory, Fera Science Ltd, Sand Hutton, York, YO41 1LZ, the United Kingdom of Great Britain and Northern Ireland; School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, the United Kingdom of Great Britain and Northern Ireland
| | - Melanie Parejo
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU), Leioa, Bilbao, 48940, Spain
| | - Laurent Gauthier
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Jean-Daniel Charrière
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Dietemann
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Kok DN, Hendrickson HL. Save our bees: bacteriophages to protect honey bees against the pathogen causing American foulbrood in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2022.2157847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Danielle N. Kok
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | |
Collapse
|
9
|
Binney BM, Pragert H, Foxwell J, Gias E, Birrell ML, Phiri BJ, Quinn O, Taylor M, Ha HJ, Hall RJ. Genomic analysis of the population structure of Paenibacillus larvae in New Zealand. Front Microbiol 2023; 14:1161926. [PMID: 37152741 PMCID: PMC10157257 DOI: 10.3389/fmicb.2023.1161926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
New Zealand is a remote country in the South Pacific Ocean. The isolation and relatively late arrival of humans into New Zealand has meant there is a recorded history of the introduction of domestic species. Honey bees (Apis mellifera) were introduced to New Zealand in 1839, and the disease American foulbrood was subsequently found in the 1870s. Paenibacillus larvae, the causative agent of American foulbrood, has been genome sequenced in other countries. We sequenced the genomes of P. larvae obtained from 164 New Zealand apiaries where American foulbrood was identified in symptomatic hives during visual inspection. Multi-locus sequencing typing (MLST) revealed the dominant sequence type to be ST18, with this clonal cluster accounting for 90.2% of isolates. Only two other sequence types (with variants) were identified, ST5 and ST23. ST23 was only observed in the Otago area, whereas ST5 was limited to two geographically non-contiguous areas. The sequence types are all from the enterobacterial repetitive intergenic consensus I (ERIC I) genogroup. The ST18 and ST5 from New Zealand and international P. larvae all clustered by sequence type. Based on core genome MLST and SNP analysis, localized regional clusters were observed within New Zealand, but some closely related genomes were also geographically dispersed, presumably due to hive movements by beekeepers.
Collapse
Affiliation(s)
- Barbara M. Binney
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Hayley Pragert
- Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand
| | - Jonathan Foxwell
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Edna Gias
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Meredith L. Birrell
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Bernard J. Phiri
- Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand
| | - Oliver Quinn
- Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand
| | - Michael Taylor
- Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand
| | - Hye Jeong Ha
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Richard J. Hall
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
- *Correspondence: Richard J. Hall,
| |
Collapse
|
10
|
Ribeiro HG, Nilsson A, Melo LDR, Oliveira A. Analysis of intact prophages in genomes of Paenibacillus larvae: An important pathogen for bees. Front Microbiol 2022; 13:903861. [PMID: 35923395 PMCID: PMC9341999 DOI: 10.3389/fmicb.2022.903861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a highly contagious and worldwide spread bacterial disease that affects honeybee brood. In this study, all complete P. larvae genomes available on the NCBI database were analyzed in order to detect presence of prophages using the PHASTER software. A total of 55 intact prophages were identified in 11 P. larvae genomes (5.0 ± 2.3 per genome) and were further investigated for the presence of genes encoding relevant traits related to P. larvae. A closer look at the prophage genomes revealed the presence of several putative genes such as metabolic and antimicrobial resistance genes, toxins or bacteriocins, potentially influencing host performance. Some of the coding DNA sequences (CDS) were present in all ERIC-genotypes, while others were only found in a specific genotype. While CDS encoding toxins and antitoxins such as HicB and MazE were found in prophages of all bacterial genotypes, others, from the same category, were provided by prophages particularly to ERIC I (enhancin-like toxin), ERIC II (antitoxin SocA) and ERIC V strains (subunit of Panton-Valentine leukocidin system (PVL) LukF-PV). This is the first in-depth analysis of P. larvae prophages. It provides better knowledge on their impact in the evolution of virulence and fitness of P. larvae, by discovering new features assigned by the viruses.
Collapse
Affiliation(s)
- Henrique G. Ribeiro
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Anna Nilsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luís D. R. Melo
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- *Correspondence: Luís D. R. Melo,
| | - Ana Oliveira
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Ana Oliveira,
| |
Collapse
|
11
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
12
|
Molecular basis of antibiotic self-resistance in a bee larvae pathogen. Nat Commun 2022; 13:2349. [PMID: 35487884 PMCID: PMC9054821 DOI: 10.1038/s41467-022-29829-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
Paenibacillus larvae, the causative agent of the devastating honey-bee disease American Foulbrood, produces the cationic polyketide-peptide hybrid paenilamicin that displays antibacterial and antifungal activity. Its biosynthetic gene cluster contains a gene coding for the N-acetyltransferase PamZ. We show that PamZ acts as self-resistance factor in Paenibacillus larvae by deactivation of paenilamicin. Using tandem mass spectrometry, nuclear magnetic resonance spectroscopy and synthetic diastereomers, we identified the N-terminal amino group of the agmatinamic acid as the N-acetylation site. These findings highlight the pharmacophore region of paenilamicin, which we very recently identified as a ribosome inhibitor. Here, we further determined the crystal structure of PamZ:acetyl-CoA complex at 1.34 Å resolution. An unusual tandem-domain architecture provides a well-defined substrate-binding groove decorated with negatively-charged residues to specifically attract the cationic paenilamicin. Our results will help to understand the mode of action of paenilamicin and its role in pathogenicity of Paenibacillus larvae to fight American Foulbrood. The authors show that the N-acetyltransferase PamZ acts as a self-resistance factor disabling the antibacterial paenilamicin that is produced by the honey bee larvae pathogen Paenibacillus larvae.
Collapse
|
13
|
Use of Lactobacillus plantarum in Preventing Clinical Cases of American and European Foulbrood in Central Italy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
American and European Foulbrood (AFB and EFB) are considered the most contagious infectious diseases affecting honeybees worldwide. New sustainable strategies need to be implemented for their prevention and control, and probiotics may represent one solution to investigate. In our study, we evaluated the efficacy of one strain of Lactobacillus plantarum (L. plantarum) isolated from northern Italy, orally administered to the bees for AFB and EFB prevention. From March to September 2014, a total of 979 honeybee colonies (9.6% of Viterbo province—Central Italy) were taken under observation from 22 apiaries. Overall prevalence of AFB was 5.3% in treated colonies and 5.1% in the untreated ones. On the contrary, EFB prevalence was lower in the treated colonies (2.5%) compared to the untreated ones (4.5%). L. plantarum showed a significant effect in reducing insurgence of cases of EFB up to 35 days after the end of the treatment (p-value: 0.034). Thanks to this study we could investigate the preventive efficacy of L. plantarum in controlling AFB and EFB, and obtain official data on their clinical prevalence in Central Italy.
Collapse
|
14
|
Papić B, Golob M, Zdovc I, Avberšek J, Pislak Ocepek M, Kušar D. Using whole-genome sequencing to assess the diversity of Paenibacillus larvae within an outbreak and a beekeeping operation. Microb Genom 2021; 7. [PMID: 34860153 PMCID: PMC8767340 DOI: 10.1099/mgen.0.000709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The spore-forming bacterium
Paenibacillus larvae
is the causative agent of American foulbrood (AFB), a devastating disease of honeybees (Apis mellifera). In the present study, we used whole-genome sequencing (WGS) to investigate an extensive outbreak of AFB in northwestern Slovenia in 2019. A total of 59
P
.
larvae
isolates underwent WGS, of which 40 originated from a single beekeeping operation, to assess the diversity of
P. larvae
within the beekeeping operation, apiary and colony. By applying a case-specific single-linkage threshold of 34 allele differences (AD), whole-genome multilocus sequence typing (wgMLST) identified two outbreak clusters represented by ERIC II-ST11 clones. All isolates from a single beekeeping operation fell within cluster 1 and the median pairwise AD between them was 10 (range=1–22). The median pairwise AD for apiaries of the same beekeeping operation ranged from 8 to 11 (min.=1, max.=22). For colonies of the same apiary and honey samples from these colonies, the median pairwise AD ranged from 8 to 14 (min.=1, max.=20). The maximum within-cluster distance was 33 pairwise AD for cluster 1 and 44 for cluster 2 isolates. The minimum distance between the outbreak-related and non-related isolates was 37 AD, confirming the importance of associated epidemiological data for delineating outbreak clusters. The observed transmission events could be explained by the activities of honeybees and beekeepers. The present study provides insight into the genetic diversity of
P. larvae
at different levels and thus provides information for future AFB surveillance.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Metka Pislak Ocepek
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| |
Collapse
|
15
|
Anti-Virulence Strategy against the Honey Bee Pathogenic Bacterium Paenibacillus larvae via Small Molecule Inhibitors of the Bacterial Toxin Plx2A. Toxins (Basel) 2021; 13:toxins13090607. [PMID: 34564612 PMCID: PMC8470879 DOI: 10.3390/toxins13090607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
American Foulbrood, caused by Paenibacillus larvae, is the most devastating bacterial honey bee brood disease. Finding a treatment against American Foulbrood would be a huge breakthrough in the battle against the disease. Recently, small molecule inhibitors against virulence factors have been suggested as candidates for the development of anti-virulence strategies against bacterial infections. We therefore screened an in-house library of synthetic small molecules and a library of flavonoid natural products, identifying the synthetic compound M3 and two natural, plant-derived small molecules, Acacetin and Baicalein, as putative inhibitors of the recently identified P. larvae toxin Plx2A. All three inhibitors were potent in in vitro enzyme activity assays and two compounds were shown to protect insect cells against Plx2A intoxication. However, when tested in exposure bioassays with honey bee larvae, no effect on mortality could be observed for the synthetic or the plant-derived inhibitors, thus suggesting that the pathogenesis strategies of P. larvae are likely to be too complex to be disarmed in an anti-virulence strategy aimed at a single virulence factor. Our study also underscores the importance of not only testing substances in in vitro or cell culture assays, but also testing the compounds in P. larvae-infected honey bee larvae.
Collapse
|
16
|
Leska A, Nowak A, Nowak I, Górczyńska A. Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules 2021; 26:5080. [PMID: 34443668 PMCID: PMC8398688 DOI: 10.3390/molecules26165080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past two decades, there has been an alarming decline in the number of honey bee colonies. This phenomenon is called Colony Collapse Disorder (CCD). Bee products play a significant role in human life and have a huge impact on agriculture, therefore bees are an economically important species. Honey has found its healing application in various sectors of human life, as well as other bee products such as royal jelly, propolis, and bee pollen. There are many putative factors of CCD, such as air pollution, GMO, viruses, or predators (such as wasps and hornets). It is, however, believed that pesticides and microorganisms play a huge role in the mass extinction of bee colonies. Insecticides are chemicals that are dangerous to both humans and the environment. They can cause enormous damage to bees' nervous system and permanently weaken their immune system, making them vulnerable to other factors. Some of the insecticides that negatively affect bees are, for example, neonicotinoids, coumaphos, and chlorpyrifos. Microorganisms can cause various diseases in bees, weakening the health of the colony and often resulting in its extinction. Infection with microorganisms may result in the need to dispose of the entire hive to prevent the spread of pathogens to other hives. Many aspects of the impact of pesticides and microorganisms on bees are still unclear. The need to deepen knowledge in this matter is crucial, bearing in mind how important these animals are for human life.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland; (I.N.); (A.G.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland; (I.N.); (A.G.)
| |
Collapse
|
17
|
Okamoto M, Kumagai M, Kanamori H, Takamatsu D. Antimicrobial Resistance Genes in Bacteria Isolated From Japanese Honey, and Their Potential for Conferring Macrolide and Lincosamide Resistance in the American Foulbrood Pathogen Paenibacillus larvae. Front Microbiol 2021; 12:667096. [PMID: 33995331 PMCID: PMC8116656 DOI: 10.3389/fmicb.2021.667096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
American foulbrood (AFB) is the most serious bacterial disease of honey bee brood. Spores of the causative agent Paenibacillus larvae are ingested by bee larvae via brood foods and germinated cells proliferate in the larval midgut. In Japan, a macrolide antibiotic, tylosin, is used as the approved prophylactic for AFB. Although tylosin-resistant P. larvae has yet to be found in Japan, it may emerge in the future through the acquisition of macrolide resistance genes from other bacteria, and bacteria latent in brood foods, such as honey, may serve as a source of resistance genes. In this study, to investigate macrolide resistance genes in honey, we attempted to isolate tylosin-resistant bacteria from 53 Japanese honey samples and obtained 209 isolates from 48 samples in the presence of 1 μg/ml of tylosin. All isolates were Gram-positive spore-forming bacteria mainly belonging to genera Bacillus and Paenibacillus, and 94.3% exhibited lower susceptibility to tylosin than Japanese P. larvae isolates. Genome analysis of 50 representative isolates revealed the presence of putative macrolide resistance genes in the isolates, and some of them were located on mobile genetic elements (MGEs). Among the genes on MGEs, ermC on the putative mobilizable plasmid pJ18TS1mac of Oceanobacillus strain J18TS1 conferred tylosin and lincomycin resistance to P. larvae after introducing the cloned gene using the expression vector. Moreover, pJ18TS1mac was retained in the P. larvae population for a long period even under non-selective conditions. This suggests that bacteria in honey is a source of genes for conferring tylosin resistance to P. larvae; therefore, monitoring of bacteria in honey may be helpful to predict the emergence of tylosin-resistant P. larvae and prevent the selection of resistant strains.
Collapse
Affiliation(s)
- Mariko Okamoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masahiko Kumagai
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
18
|
ERIC and WGS Typing of Paenibacillus larvae in Slovenia: Investigation of ERIC I Outbreaks. INSECTS 2021; 12:insects12040362. [PMID: 33921572 PMCID: PMC8072612 DOI: 10.3390/insects12040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary American foulbrood is a serious disease of honeybees caused by Paenibacillus larvae. ERIC-PCR is a widely used method for typing of P. larvae that currently divides it into five ERIC types (ERIC I–V); these differ in certain phenotypic characteristics—most importantly, virulence. In the first part of the study, we assessed the distribution of ERIC types in Slovenia in the period 2017–2019 on a set of 506 P. larvae isolates. We identified ERIC II as the predominant type (70.2%), followed by ERIC I (29.8%). In the second part of the study, we typed 59 outbreak-related ERIC I isolates using whole-genome sequencing, which revealed seven ERIC I-ST2 outbreak clusters (≤35 allele differences). The transmission of the outbreak clone within a 3-km radius was observed in all seven clusters and could be explained by the activity of honeybees. The transmission of the outbreak clone between geographically distant apiaries was observed in three clusters and could be explained by migratory beekeeping and trading of bee colonies. The present findings highlight the importance of beekeeping activities in the transmission of P. larvae over large geographic distances. Abstract Paenibacillus larvae is the causative agent of American foulbrood (AFB), a fatal disease of honeybee brood. Here, we obtained 506 P. larvae isolates originating from honey or brood samples and from different geographic regions of Slovenia in the period 2017–2019. In the first part of the study, we conducted ERIC-PCR typing to assess the frequency of ERIC types in Slovenia. Capillary electrophoresis was used for the analysis of ERIC patterns, revealing good separation efficiency and enabling easy lane-to-lane comparisons. ERIC II was the predominant type (70.2%), followed by ERIC I (29.8%); two slightly altered ERIC I banding patterns were observed but were not considered relevant for the discrimination of ERIC types. No evident spatiotemporal clustering of ERIC types was observed. To assess the clonality of the outbreak-related P. larvae ERIC I isolates, 59 isolates of this type underwent whole-genome sequencing (WGS). Whole-genome multilocus sequence typing (wgMLST) revealed seven ERIC I-ST2 outbreak clusters (≤35 allele differences) with the median intra-outbreak diversity ranging from 7 to 27 allele differences. In all seven clusters, the transmission of P. larvae outbreak clone within a 3-km radius (AFB zone) was observed, which could be explained by the activity of honeybees. In three clusters, the transmission of the outbreak clone between geographically distant apiaries was revealed, which could be explained by the activities of beekeepers such as migratory beekeeping and trading of bee colonies. The present findings reinforce the importance of beekeeping activities in the transmission of P. larvae. WGS should be used as a reference typing method for the detection of P. larvae transmission clusters.
Collapse
|
19
|
Papić B, Diricks M, Kušar D. Analysis of the Global Population Structure of Paenibacillus larvae and Outbreak Investigation of American Foulbrood Using a Stable wgMLST Scheme. Front Vet Sci 2021; 8:582677. [PMID: 33718463 PMCID: PMC7952629 DOI: 10.3389/fvets.2021.582677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Paenibacillus larvae causes the American foulbrood (AFB), a highly contagious and devastating disease of honeybees. Whole-genome sequencing (WGS) has been increasingly used in bacterial pathogen typing, but rarely applied to study the epidemiology of P. larvae. To this end, we used 125 P. larvae genomes representative of a species-wide diversity to construct a stable whole-genome multilocus sequence typing (wgMLST) scheme consisting of 5745 loci. A total of 51 P. larvae isolates originating from AFB outbreaks in Slovenia were used to assess the epidemiological applicability of the developed wgMLST scheme. In addition, wgMLST was compared with the core-genome MLST (cgMLST) and whole-genome single nucleotide polymorphism (wgSNP) analyses. All three approaches successfully identified clusters of outbreak-associated strains, which were clearly separated from the epidemiologically unlinked isolates. High levels of backward comparability of WGS-based analyses with conventional typing methods (ERIC-PCR and MLST) were revealed; however, both conventional methods lacked sufficient discriminatory power to separate the outbreak clusters. The developed wgMLST scheme provides an improved understanding of the intra- and inter-outbreak genetic diversity of P. larvae and represents an important progress in unraveling the genomic epidemiology of this important honeybee pathogen.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Margo Diricks
- bioMérieux, Applied Maths NV, Sint-Martens-Latem, Belgium
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Bertolotti AC, Forsgren E, Schäfer MO, Sircoulomb F, Gaïani N, Ribière-Chabert M, Paris L, Lucas P, de Boisséson C, Skarin J, Rivière MP. Development and evaluation of a core genome multilocus sequence typing scheme for Paenibacillus larvae, the deadly American foulbrood pathogen of honeybees. Environ Microbiol 2021; 23:5042-5051. [PMID: 33615656 PMCID: PMC8518682 DOI: 10.1111/1462-2920.15442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Paenibacillus larvae is the causative agent of the fatal American foulbrood disease in honeybees (Apis mellifera). Strain identification is vital for preventing the spread of the disease. To date, the most accessible and robust scheme to identify strains is the multilocus sequence typing (MLST) method. However, this approach has limited resolution, especially for epidemiological studies. As the cost of whole-genome sequencing has decreased and as it becomes increasingly available to most laboratories, an extended MLST based on the core genome (cgMLST) presents a valuable tool for high-resolution investigations. In this study, we present a standardized, robust cgMLST scheme for P. larvae typing using whole-genome sequencing. A total of 333 genomes were used to identify, validate and evaluate 2419 core genes. The cgMLST allowed fine-scale differentiation between samples that had the same profile using traditional MLST and allowed for the characterization of strains impossible by MLST. The scheme was successfully used to trace a localized Swedish outbreak, where a cluster of 38 isolates was linked to a country-wide beekeeping operation. cgMLST greatly enhances the power of a traditional typing scheme, while preserving the same stability and standardization for sharing results and methods across different laboratories.
Collapse
Affiliation(s)
- Alicia C Bertolotti
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marc O Schäfer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | | | - Fabrice Sircoulomb
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Nicolas Gaïani
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Magali Ribière-Chabert
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Laurianne Paris
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Pierrick Lucas
- Anses, Ploufragan-Plouzané-Niort Laboratory, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Claire de Boisséson
- Anses, Ploufragan-Plouzané-Niort Laboratory, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Joakim Skarin
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Marie-Pierre Rivière
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| |
Collapse
|
21
|
The Buzz about ADP-Ribosylation Toxins from Paenibacillus larvae, the Causative Agent of American Foulbrood in Honey Bees. Toxins (Basel) 2021; 13:toxins13020151. [PMID: 33669183 PMCID: PMC7919650 DOI: 10.3390/toxins13020151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis.
Collapse
|
22
|
Laho M, Šedivá M, Majtán J, Klaudiny J. Fructose and Trehalose Selectively Enhance In Vitro Sporulation of Paenibacillus larvae ERIC I and ERIC II Strains. Microorganisms 2021; 9:225. [PMID: 33499318 PMCID: PMC7912100 DOI: 10.3390/microorganisms9020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Paenibacillus larvae is a Gram-positive bacterium, the spores of which are the causative agent of the most destructive brood disease of honeybees, American foulbrood (AFB). Obtaining viable spores of pathogen strains is requisite for different studies concerning AFB. The aim of this work was to investigate the effects of five saccharides that may naturally occur in higher amounts in bee larvae on in vitro sporulation of P. larvae. The effect of individual saccharides at different concentrations on spore yields of P. larvae strains of epidemiologically important ERIC genotypes was examined in Columbia sheep blood agar (CSA) and MYPGP agar media. It was found that fructose in ERIC I and trehalose in ERIC II strains at concentrations in the range of 0.5-2% represent new sporulation factors that significantly enhanced the yields of viable spores in both media, mostly in a concentration-dependent manner. The enhancements in spore yield were mainly caused by improvements of the germination ability of the spores produced. Glucose, maltose and sucrose at 1% or 0.5% concentrations also supported sporulation but to a lower extent and not in all strains and media. Based on the knowledge gained, a novel procedure was proposed for the preparation of viable P. larvae spores with supposed improved quality for AFB research.
Collapse
Affiliation(s)
- Maroš Laho
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (M.L.); (M.Š.)
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia;
| | - Mária Šedivá
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (M.L.); (M.Š.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia;
| | - Jaroslav Klaudiny
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (M.L.); (M.Š.)
| |
Collapse
|
23
|
Mechanistic Insight into Royal Protein Inhibiting the Gram-Positive Bacteria. Biomolecules 2021; 11:biom11010064. [PMID: 33418906 PMCID: PMC7825125 DOI: 10.3390/biom11010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 12/28/2022] Open
Abstract
Royal jelly (RJ), a natural honeybee product, has a wide range of antibacterial activities. N-glycosylated major royal jelly protein 2 (N-MRJP2), purified from RJ, can inhibit the growth of Paenibacillus larvae (P. larvae, Gram-positive), a contagious etiological agent of the American foulbrood disease of honeybees. However, the inhibitory mechanism is largely unknown. Antibacterial assay and membrane proteome were conducted to investigate the inhibition capacity of RJ from different instar larvae and P. larvae treated by N-MRJP2, respectively. The similar antibacterial efficiency of RJ from different larval instar indicates that RJ is vital for the adaptive immune defense of small larvae. The killing of P. larvae by N-MRJP2 is achieved by disturbing the cell wall biosynthesis, increasing the permeability of cell membrane, hindering aerobic respiration, restraining cell division and inducing cell death. This demonstrates that RJ is critical for the passive immunity of immature larvae and N-MRJP2 can be used as natural antibiotic substance to resist P. larvae, even for other gram-positive bacteria. This constitutes solid evidence that RJ and N-MRJP2 have potentials as novel antibacterial agents.
Collapse
|
24
|
Microbial Ecology of European Foul Brood Disease in the Honey Bee ( Apis mellifera): Towards a Microbiome Understanding of Disease Susceptibility. INSECTS 2020; 11:insects11090555. [PMID: 32825355 PMCID: PMC7565670 DOI: 10.3390/insects11090555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/01/2023]
Abstract
Simple Summary Honey bees are vital to the agriculture of the world, but like all managed organisms, disease control has become challenging due to the overuse and misuse of antibiotics. Alternate solutions with potential to control disease include natural compounds and probiotic supplements. Probiotic supplements in honey bees have been praised by industry, but studies applying probiotics to honey bee larval disease are lacking and technically challenging. In this study we tested the effectiveness of a demonstrated probiotic (Parasacharribacter apium strain C6) to mitigate a damaging larval disease called European Foul Brood (EFB). Based on a controlled laboratory study and two separate trials, the probiotic had no effect on EFB disease. The control groups performed as expected, validating the very sensitive lab procedure used to artificially rear honey bee larvae. Surprisingly, the probiotic provided no survival benefit to larvae in the absence of disease, contradicting past results. We discuss the difficult technique of larval rearing in the laboratory with reference to an improved experimental design introducing disease agents and potential remedies. In summary, our findings indicate that the representation of honey bee health and disease in the laboratory setting requires repeatable validation with reference to rigorous control and natural colony context. Abstract European honey bees (Apis mellifera Linnaeus) are beneficial insects that provide essential pollination services for agriculture and ecosystems worldwide. Modern commercial beekeeping is plagued by a variety of pathogenic and environmental stressors often confounding attempts to understand colony loss. European foulbrood (EFB) is considered a larval-specific disease whose causative agent, Melissococcus plutonius, has received limited attention due to methodological challenges in the field and laboratory. Here, we improve the experimental and informational context of larval disease with the end goal of developing an EFB management strategy. We sequenced the bacterial microbiota associated with larval disease transmission, isolated a variety of M.plutonius strains, determined their virulence against larvae in vitro, and explored the potential for probiotic treatment of EFB disease. The larval microbiota was a low diversity environment similar to honey, while worker mouthparts and stored pollen contained significantly greater bacterial diversity. Virulence of M. plutonius against larvae varied markedly by strain and inoculant concentration. Our chosen probiotic, Parasaccharibacter apium strain C6, did not improve larval survival when introduced alone, or in combination with a virulent EFB strain. We discuss the importance of positive and negative controls for in vitro studies of the larval microbiome and disease.
Collapse
|
25
|
Jończyk-Matysiak E, Popiela E, Owczarek B, Hodyra-Stefaniak K, Świtała-Jeleń K, Łodej N, Kula D, Neuberg J, Migdał P, Bagińska N, Orwat F, Weber-Dąbrowska B, Roman A, Górski A. Phages in Therapy and Prophylaxis of American Foulbrood - Recent Implications From Practical Applications. Front Microbiol 2020; 11:1913. [PMID: 32849478 PMCID: PMC7432437 DOI: 10.3389/fmicb.2020.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
American foulbrood is one of the most serious and yet unsolved problems of beekeeping around the world, because it causes a disease leading to the weakening of the vitality of honey bee populations and huge economic losses both in agriculture and horticulture. The etiological agent of this dangerous disease is an extremely pathogenic spore-forming bacterium, Paenibacillus larvae, which makes treatment very difficult. What is more, the use of antibiotics in the European Union is forbidden due to restrictions related to the prevention of the presence of antibiotic residues in honey, as well as the global problem of spreading antibiotic resistance in case of bacterial strains. The only available solution is burning of entire bee colonies, which results in large economic losses. Therefore, bacteriophages and their lytic enzymes can be a real effective alternative in the treatment and prevention of this Apis mellifera disease. In this review, we summarize phage characteristics that make them a potentially useful tool in the fight against American foulbrood. In addition, we gathered data regarding phage application that have been described so far, and attempted to show practical implications and possible limitations of their usage.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ewa Popiela
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Norbert Łodej
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dominika Kula
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Neuberg
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
26
|
Lamei S, Stephan JG, Nilson B, Sieuwerts S, Riesbeck K, de Miranda JR, Forsgren E. Feeding Honeybee Colonies with Honeybee-Specific Lactic Acid Bacteria (Hbs-LAB) Does Not Affect Colony-Level Hbs-LAB Composition or Paenibacillus larvae Spore Levels, Although American Foulbrood Affected Colonies Harbor a More Diverse Hbs-LAB Community. MICROBIAL ECOLOGY 2020; 79:743-755. [PMID: 31506760 PMCID: PMC7176604 DOI: 10.1007/s00248-019-01434-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The main current methods for controlling American Foulbrood (AFB) in honeybees, caused by the bacterial pathogen Paenibacillus larvae, are enforced incineration or prophylactic antibiotic treatment, neither of which is fully satisfactory. This has led to an increased interest in the natural relationships between the pathogenic and mutualistic microorganisms of the honeybee microbiome, in particular, the antagonistic effects of Honeybee-Specific Lactic Acid Bacteria (hbs-LAB) against P. larvae. We investigated whether supplemental administration of these bacteria affected P. larvae infection at colony level over an entire flowering season. Over the season, the supplements affected neither colony-level hbs-LAB composition nor naturally subclinical or clinical P. larvae spore levels. The composition of hbs-LAB in colonies was, however, more diverse in apiaries with a history of clinical AFB, although this was also unrelated to P. larvae spore levels. During the experiments, we also showed that qPCR could detect a wider range of hbs-LAB, with higher specificity and sensitivity than mass spectrometry. Honeybee colonies are complex super-organisms where social immune defenses, natural homeostatic mechanisms, and microbiome diversity and function play a major role in disease resistance. This means that observations made at the individual bee level cannot be simply extrapolated to infer similar effects at colony level. Although individual laboratory larval assays have clearly demonstrated the antagonistic effects of hbs-LAB on P. larvae infection, the results from the experiments presented here indicate that direct conversion of such practice to colony-level administration of live hbs-LAB is not effective.
Collapse
Affiliation(s)
- Sepideh Lamei
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Bo Nilson
- Clinical Microbiology, Labmedicine, Region Skåne, Lund, Sweden
- Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | | | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
27
|
Daisley BA, Pitek AP, Chmiel JA, Al KF, Chernyshova AM, Faragalla KM, Burton JP, Thompson GJ, Reid G. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. THE ISME JOURNAL 2020; 14:476-491. [PMID: 31664160 PMCID: PMC6976702 DOI: 10.1038/s41396-019-0541-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/12/2022]
Abstract
American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this pathogenic transition is not fully understood, and no cure exists for AFB. Here, we evaluated how hive supplementation with probiotic lactobacilli (delivered through a nutrient patty; BioPatty) affected colony resistance towards a naturally occurring AFB outbreak. Results demonstrated a significantly lower pathogen load and proteolytic activity of honey bee larvae from BioPatty-treated hives. Interestingly, a distinctive shift in the microbiota composition of adult nurse bees occurred irrespective of treatment group during the monitoring period, but only vehicle-supplemented nurse bees exhibited higher P. larvae loads. In vitro experiments utilizing laboratory-reared honey bee larvae showed Lactobacillus plantarum Lp39, Lactobacillus rhamnosus GR-1, and Lactobacillus kunkeei BR-1 (contained in the BioPatty) could reduce pathogen load, upregulate expression of key immune genes, and improve survival during P. larvae infection. These findings suggest the usage of a lactobacilli-containing hive supplement, which is practical and affordable for beekeepers, may be effective for reducing enzootic pathogen-related hive losses.
Collapse
Affiliation(s)
- Brendan A Daisley
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - John A Chmiel
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Kait F Al
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Anna M Chernyshova
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | | | - Jeremy P Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.
- Department of Surgery, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
28
|
Turner M, Tremblay O, Heney K, Lugo M, Ebeling J, Genersch E, Merrill A. Characterization of C3larvinA, a novel RhoA-targeting ADP-ribosyltransferase toxin produced by the honey bee pathogen, Paenibacillus larvae. Biosci Rep 2020; 40:BSR20193405. [PMID: 31844879 PMCID: PMC6954368 DOI: 10.1042/bsr20193405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
C3larvinA is a putative virulence factor produced by Paenibacillus larvae enterobacterial-repetitive-intergenic-consensus (ERIC) III/IV (strain 11-8051). Biochemical, functional and structural analyses of C3larvinA revealed that it belongs to the C3-like mono-ADP-ribosylating toxin subgroup. Mammalian RhoA was the target substrate for its transferase activity suggesting that it may be the biological target of C3larvinA. The kinetic parameters of the NAD+ substrate for the transferase (KM = 75 ± 10 µM) and glycohydrolase (GH) (KM = 107 ± 20 µM) reactions were typical for a C3-like bacterial toxin, including the Plx2A virulence factor from Paenibacillus larvae ERIC I. Upon cytoplasmic expression in yeast, C3larvinA caused a growth-defective phenotype indicating that it is an active C3-like toxin and is cytotoxic to eukaryotic cells. The catalytic variant of the Q187-X-E189 motif in C3larvinA showed no cytotoxicity toward yeast confirming that the cytotoxicity of this factor depends on its enzymatic activity. A homology consensus model of C3larvinA with NAD+ substrate was built on the structure of Plx2A, provided additional confirmation that C3larvinA is a member of the C3-like mono-ADP-ribosylating toxin subgroup. A homology model of C3larvinA with NADH and RhoA was built on the structure of the C3cer-NADH-RhoA complex which provided further evidence that C3larvinA is a C3-like toxin that shares an identical catalytic mechanism with C3cer from Bacillus cereus. C3larvinA induced actin cytoskeleton reorganization in murine macrophages, whereas in insect cells, vacuolization and bi-nucleated cells were observed. These cellular effects are consistent with C3larvinA disrupting RhoA function by covalent modification that is shared among C3-like bacterial toxins.
Collapse
Affiliation(s)
- Madison Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Olivier Tremblay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kayla A. Heney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Miguel R. Lugo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf 16540, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf 16540, Germany
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Berlin 14163, Germany
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
29
|
Beims H, Bunk B, Erler S, Mohr KI, Spröer C, Pradella S, Günther G, Rohde M, von der Ohe W, Steinert M. Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American Foulbrood. Int J Med Microbiol 2020; 310:151394. [PMID: 31959580 DOI: 10.1016/j.ijmm.2020.151394] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a highly contagious brood disease of honey bees (Apis mellifera). AFB requires mandatory reporting to the veterinary authority in many countries and until now four genotypes, P. larvae ERIC I-IV, have been identified. We isolated a new genotype, ERIC V, from a Spanish honey sample. After a detailed phenotypic comparison with the reference strains of the ERIC I-IV genotypes, including spore morphology, non-ribosomal peptide (NRP) profiling, and in vivo infections of A. mellifera larvae, we established a genomic DNA Macrorestriction Fragment Pattern Analysis (MRFPA) scheme for future epidemiologic discrimination. Whole genome comparison of the reference strains and the new ERIC V genotype (DSM 106052) revealed that the respective virulence gene inventories of the five genotypes corresponded with the time needed to kill 100 % of the infected bee larvae (LT100) in in vivo infection assays. The rarely isolated P. larvae genotypes ERIC II I-V with a fast-killing phenotype (LT100 3 days) harbor genes with high homology to virulence factors of other insect pathogens. These virulence genes are absent in the epidemiologically prevalent genotypes ERIC I (LT100 12 days) and ERIC II (LT100 7 days), which exhibit slower killing phenotypes. Since killing-retardation is known to reduce the success of hygienic cleaning by nurse bees, the identified absence of virulence factors might explain the epidemiological prevalences of ERIC genotypes. The discovery of the P. larvae ERIC V isolate suggests that more unknown ERIC genotypes exist in bee colonies. Since inactivation or loss of a few genes can transform a fast-killing phenotype into a more dangerous slow-killing phenotype, these rarely isolated genotypes may represent a hidden reservoir for future AFB outbreaks.
Collapse
Affiliation(s)
- Hannes Beims
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany; Lower Saxony State Office for Consumer Protection and Food Safety, Institute of Apiculture, Celle, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Silvio Erler
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie-Zoologie, Halle, Germany
| | - Kathrin I Mohr
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Department Microbial Drugs, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Silke Pradella
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gabi Günther
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Department Microbial Drugs, Braunschweig, Germany
| | - Werner von der Ohe
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute of Apiculture, Celle, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany.
| |
Collapse
|
30
|
Ribeiro HG, Melo LDR, Oliveira H, Boon M, Lavigne R, Noben JP, Azeredo J, Oliveira A. Characterization of a new podovirus infecting Paenibacillus larvae. Sci Rep 2019; 9:20355. [PMID: 31889094 PMCID: PMC6937236 DOI: 10.1038/s41598-019-56699-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022] Open
Abstract
The Paenibacillus larvae infecting phage API480 (vB_PlaP_API480) is the first reported podovirus for this bacterial species, with an 58 nm icosahedral capsid and a 12 × 8 nm short, non-contractile tail. API480 encodes 77 coding sequences (CDSs) on its 45,026 bp dsDNA genome, of which 47 were confirmed using mass spectrometry. This phage has got very limited genomic and proteomic similarity to any other known ones registered in public databases, including P. larvae phages. Comparative genomics indicates API480 is a new species as it's a singleton with 28 unique proteins. Interestingly, the lysis module is highly conserved among P. larvae phages, containing a predicted endolysin and two putative holins. The well kept overall genomic organisation (from the structural and morphogenetic modules to the host lysis, DNA replication and metabolism related proteins) confirms a common evolutionary ancestor among P. larvae infecting phages. API480 is able to infect 69% of the 61 field strains with an ERIC I genotype, as well as ERIC II strains. Furthermore, this phage is very stable when exposed to high glucose concentrations and to larval gastrointestinal conditions. This highly-specific phage, with its broad lytic activity and stability in hive conditions, might potentially be used in the biocontrol of American Foulbrood (AFB).
Collapse
Affiliation(s)
- Henrique G Ribeiro
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Maarten Boon
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Agoralaan D, 3590, Hasselt, Belgium
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
31
|
Erban T, Zitek J, Bodrinova M, Talacko P, Bartos M, Hrabak J. Comprehensive proteomic analysis of exoproteins expressed by ERIC I, II, III and IV Paenibacillus larvae genotypes reveals a wide range of virulence factors. Virulence 2019; 10:363-375. [PMID: 30957692 PMCID: PMC6527061 DOI: 10.1080/21505594.2019.1603133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/12/2022] Open
Abstract
American foulbrood is a quarantine disease of the honeybee Apis mellifera L. in many countries and contributes greatly to colony losses. We performed a label-free proteomics study of exoprotein fractions produced in vitro by Paenibacillus larvae reference strains of the ERIC I-IV genotypes. A quantitative comparison was performed of previous studied protein-based virulence factors and many newly identified putative virulence factors. Among the multiple proteases identified, key virulence factors included the microbial collagenase ColA and immune inhibitor A (InhA, an analog of the Bacillus thuringiensis protein InhA). Both of these virulence factors were detected in ERICs II-IV but were absent from ERIC I. Furthermore, the different S-layer proteins and polysaccharide deacetylases prevailed in ERICs II-IV. Thus, the expression patterns of these virulence factors corresponded with the different speeds at which honeybee larvae are known to be killed by ERICs II-IV compared to ERIC I. In addition, putative novel toxin-like proteins were identified, including vegetative insecticidal protein Vip1, a mosquitocidal toxin, and epsilon-toxin type B, which exhibit similarity to homologs present in Bacillus thuringiensis or Lysinibacillus sphaericus. Furthermore, a putative bacteriocin similar to Lactococcin 972 was identified in all assayed genotypes. It appears that P. larvae shares virulence factors similar to those of the Bacillus cereus group. Overall, the results provide novel information regarding P. larvae virulence potential, and a comprehensive exoprotein comparison of all four ERICs was performed for the first time. The identification of novel virulence factors can explain differences in the virulence of isolates.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Justyna Zitek
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia
| | - Miroslava Bodrinova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Milan Bartos
- BioVendor – Laboratorni medicina a.s., Brno, Czechia
| | - Jaroslav Hrabak
- Laboratory of Antibiotic Resistance and Applications of Mass Spectrometry in Microbiology, Biomedical Center and Institute of Microbiology, Faculty of Medicine in Plzen, Charles University, Plzen, Czechia
| |
Collapse
|
32
|
Stephan JG, Lamei S, Pettis JS, Riesbeck K, de Miranda JR, Forsgren E. Honeybee-Specific Lactic Acid Bacterium Supplements Have No Effect on American Foulbrood-Infected Honeybee Colonies. Appl Environ Microbiol 2019; 85:e00606-19. [PMID: 31003985 PMCID: PMC6581185 DOI: 10.1128/aem.00606-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus larvae, the causative agent of American foulbrood (AFB), is the primary bacterial pathogen affecting honeybees and beekeeping. The main methods for controlling AFB are incineration of diseased colonies or prophylactic antibiotic treatment (e.g., with tylosin), neither of which is fully satisfactory. The search for superior means for controlling AFB has led to an increased interest in the natural relationships between the honeybee-pathogenic and mutualistic microorganisms and, in particular, the antagonistic effects of honeybee-specific lactic acid bacteria (hbs-LAB) against P. larvae These effects have been demonstrated only on individual larvae in controlled laboratory bioassays. Here we investigated whether supplemental administration of hbs-LAB had a similar beneficial effect on P. larvae infection at colony level. We compared experimentally AFB-infected colonies treated with hbs-LAB supplements to untreated and tylosin-treated colonies and recorded AFB symptoms, bacterial spore levels, and two measures of colony health. To account for the complexity of a bee colony, we focused on (Bayesian) probabilities and magnitudes of effect sizes. Tylosin reduced AFB disease symptoms but also had a negative effect on colony strength. The tylosin treatment did not, however, affect P. larvae spore levels and might therefore "mask" the potential for disease. hbs-LAB tended to reduce brood size in the short term but was unlikely to affect AFB symptoms or spores. These results do not contradict demonstrated antagonistic effects of hbs-LAB against P. larvae at the individual bee level but rather suggest that supplementary administration of hbs-LAB may not be the most effective way to harness these beneficial effects at the colony level.IMPORTANCE The previously demonstrated antagonistic effects of honeybee-derived bacterial microbiota on the infectivity and pathogenicity of P. larvae in laboratory bioassays have identified a possible new approach to AFB control. However, honeybee colonies are complex superorganisms where social immune defenses play a major role in resistance against disease at the colony level. Few studies have investigated the effect of beneficial microorganisms on bee diseases at the colony level. Effects observed at the individual bee level do not necessarily translate into similar effects at the colony level. This study partially fills this gap by showing that, unlike at the individual level, hbs-LAB supplements did not affect AFB symptoms at the colony level. The inference is that the mechanisms regulating the honeybee microbial dynamics within a colony are too strong to manipulate positively through supplemental feeding of live hbs-LAB and that new potential remedies identified through laboratory research have to be tested thoroughly in situ, in colonies.
Collapse
Affiliation(s)
- Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sepideh Lamei
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Jeffery S Pettis
- USDA ARS, Beltsville Agricultural Research Center-East, Beltsville, Maryland, USA
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
33
|
Hroncova Z, Killer J, Hakl J, Titera D, Havlik J. In-hive variation of the gut microbial composition of honey bee larvae and pupae from the same oviposition time. BMC Microbiol 2019; 19:110. [PMID: 31126234 PMCID: PMC6534886 DOI: 10.1186/s12866-019-1490-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Knowledge of microbiota composition, persistence, and transmission as well as the overall function of the bacterial community is important and may be linked to honey bee health. This study aimed to investigate the inter-individual variation in the gut microbiota in honey bee larvae and pupae. RESULTS Individual larvae differed in the composition of major bacterial groups. In the majority of 5th instar bees, Firmicutes showed predominance (70%); however, after larval defecation and during pupation, the abundance decreased to 40%, in favour of Gammaproteobacteria. The 5th instar larvae hosted significantly more (P < 0.001) Firmicutes than black pupae. Power calculations revealed that 11 and 18 replicate-individuals, respectively, were required for the detection of significant differences (P < 0.05) in the Bacteroidetes and Firmicutes abundance between stages, while higher numbers of replicates were required for Actinobacteria (478 replicates) and Gammaproteobacteria (111 replicates). CONCLUSIONS Although sample processing and extraction protocols may have had a significant influence, sampling is very important for studying the bee microbiome, and the importance of the number of individuals pooled in samples used for microbiome studies should not be underestimated.
Collapse
Affiliation(s)
- Zuzana Hroncova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka, 129, 165 00 Prague, Czech Republic
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Pratelstvi, 815, 104 00 Prague, Czech Republic
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka, 129, 165 00 Prague, Czech Republic
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Josef Hakl
- Department of Agroecology and Crop Production, Czech University of Life Sciences Prague, Kamycka, 129, 165 00 Prague, Czech Republic
| | - Dalibor Titera
- Bee Research Institute, Dol 94, 252 66, Libcice nad Vltavou, Czech Republic
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic
| |
Collapse
|
34
|
Šedivá M, Laho M, Kohútová L, Mojžišová A, Majtán J, Klaudiny J. 10-HDA, A Major Fatty Acid of Royal Jelly, Exhibits pH Dependent Growth-Inhibitory Activity Against Different Strains of Paenibacillus larvae. Molecules 2018; 23:E3236. [PMID: 30544571 PMCID: PMC6320966 DOI: 10.3390/molecules23123236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Paenibacillus larvae (P. larvae) is a bacterial pathogen causing American foulbrood (AFB), the most serious disease of honeybee larvae. The food of young larvae could play an important role in the resistance of larvae against AFB. It contains antibacterial substances produced by honeybees that may inhibit the propagation of the pathogen in larval midguts. In this study, we identified and investigated the antibacterial effects of one of these substances, trans-10-hydroxy-2-decenoic acid (10-HDA), against P. larvae strains including all Enterobacterial Repetitive Intergenic Consensus (ERIC) genotypes. Its inhibitory activities were studied by determining the minimum inhibitory concentrations (MICs). It was found that 10-HDA efficacy increases substantially with decreasing pH; up to 12-fold differences in efficacy were observed between pH = 5.5 and pH = 7.2. P. larvae strains showed different susceptibility to 10-HDA; up to 2.97-fold differences existed among various strains with environmentally important ERIC I and ERIC II genotypes. Germinating spores of the pathogen were generally more susceptible to 10-HDA than vegetative cells. Our findings suggest that 10-HDA could play significant role in conferring antipathogenic activity to larval food in the midguts of young larvae and contribute to the resistance of individual larvae to P. larvae.
Collapse
Affiliation(s)
- Mária Šedivá
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Maroš Laho
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Lenka Kohútová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Andrea Mojžišová
- Veterinary and Food Institute in Dolny Kubin, Janoškova 58, 02601 Dolný Kubín, Slovakia.
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Jaroslav Klaudiny
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
35
|
Fünfhaus A, Göbel J, Ebeling J, Knispel H, Garcia-Gonzalez E, Genersch E. Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera). Sci Rep 2018; 8:8840. [PMID: 29892084 PMCID: PMC5995878 DOI: 10.1038/s41598-018-27193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
American Foulbrood is a worldwide distributed, fatal disease of the brood of the Western honey bee (Apis mellifera). The causative agent of this fatal brood disease is the Gram-positive, spore-forming bacterium Paenibacillus larvae, which can be classified into four different genotypes (ERIC I-IV), with ERIC I and II being the ones isolated from contemporary AFB outbreaks. P. larvae is a peritrichously flagellated bacterium and, hence, we hypothesized that P. larvae is capable of coordinated and cooperative multicellular behaviors like swarming motility and biofilm formation. In order to analyze these behaviors of P. larvae, we firstly established appropriate functional assays. Using these assays we demonstrated that P. larvae ERIC II, but not P. larvae ERIC I, was capable of swarming. Swarming motility was hampered in a P. larvae ERIC II-mutant lacking production of paenilarvin, an iturin-like lipopeptide exclusively expressed by this genotype. Both genotypes were able to form free floating biofilm aggregates loosely attached to the walls of the culture wells. Visualizing the biofilms by Congo red and thioflavin S staining suggested structural differences between the biofilms formed. Biofilm formation was shown to be independent from paenilarvin production because the paenilarvin deficient mutant was comparably able to form a biofilm.
Collapse
Affiliation(s)
- Anne Fünfhaus
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Josefine Göbel
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Henriette Knispel
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Eva Garcia-Gonzalez
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany.
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Berlin, Germany.
| |
Collapse
|
36
|
Felicioli A, Turchi B, Fratini F, Giusti M, Nuvoloni R, Dani FR, Sagona S. Proteinase pattern of honeybee prepupae from healthy and American Foulbrood infected bees investigated by zymography. Electrophoresis 2018; 39:2160-2167. [PMID: 29761912 DOI: 10.1002/elps.201800112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 11/05/2022]
Abstract
American foulbrood disease (AFB) is the main devastating disease that affects honeybees' brood, caused by Paenibacillus larvae. The trend of the research on AFB has addressed the mechanisms by which P. larvae bacteria kill honeybee larvae. Since prepupae could react to the infection of AFB by increasing protease synthesis, the aim of this work was to compare protease activity in worker prepupae belonging to healthy colonies and to colonies affected by AFB. This investigation was performed by zymography. In gel, proteolytic activity was observed in prepupae extracts belonging only to the healthy colonies. In the prepupae extracts, 2D zimography followed by protein identification by MS allowed to detect Trypsin-1 and Chymotrypsin-1, which were not observed in diseased specimens. Further investigations are needed to clarify the involvement of these proteinases in the immune response of honeybee larvae and the mechanisms by which P. larvae inhibits protease production in its host.
Collapse
Affiliation(s)
| | - Barbara Turchi
- Department of Veterinary Science, Pisa University, Pisa, Italy
| | - Filippo Fratini
- Department of Veterinary Science, Pisa University, Pisa, Italy
| | - Matteo Giusti
- Department of Veterinary Science, Pisa University, Pisa, Italy
| | | | - Francesca Romana Dani
- Department of Biology, University of Firenze, Sesto Fiorentino, Italy.,Mass Spectrometry Centre (CISM) of Florence University, Sesto Fiorentino, Italy
| | - Simona Sagona
- Department of Veterinary Science, Pisa University, Pisa, Italy
| |
Collapse
|
37
|
Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:89-96. [PMID: 29764667 DOI: 10.1016/j.cois.2018.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 05/09/2023]
Abstract
Pollination is an indispensable ecosystem service provided by many insects, especially by wild and managed bee species. Hence, reports on large scale honey bee colony losses and on population declines of many wild bees were alarming and resulted in increased awareness of the importance of bee health and increased interest in bee pathogens. To serve this interest, this review will give a comprehensive overview on bacterial bee pathogens by covering not only the famous pathogens (Paenibacillus larvae, Melissococcus plutonius), but also the orphan pathogens which have largely been neglected by the scientific community so far (spiroplasmas) and the pathogens which were only recently discovered as being pathogenic to bees (Serratia marcescens, Lysinibacillus sphaericus).
Collapse
Affiliation(s)
- Anne Fünfhaus
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany; Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| |
Collapse
|
38
|
Ueno Y, Yoshida E, Misumi W, Watando E, Suzuki K, Hirai Y, Okura M, Osaki M, Katsuda K, Takamatsu D. Population structure and antimicrobial susceptibility of Paenibacillus larvae isolates from American foulbrood cases in Apis mellifera in Japan. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:210-216. [PMID: 29393586 DOI: 10.1111/1758-2229.12623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most destructive disease of the honey bee brood. In this study, we investigated the population structure and antimicrobial susceptibility of Japanese P. larvae using 100 isolates isolated between 1993 and 2017 in 17 prefectures. Using repetitive-element PCR and multilocus sequence typing, isolates from diverse origins were classified into six genotypes, including the novel genotype ERIC II-ST24. Among these genotypes, ERIC I-ST15 is the most common in Japan, while ERIC II-ST10 isolates were found to be increasing during the 2010s. Regardless of genotype or origin, all isolates were susceptible to the major antimicrobials used in the control of AFB, including mirosamicin and tylosin, which were approved for the prevention of AFB in Japan in 1999 and 2017 respectively. Despite nearly 20 years of use, mirosamicin is still effective against Japanese P. larvae in vitro; however, the development of AFB in honey bee colonies may not always be suppressed by this drug. The case information collected in this study provides insight into the conditions under which prophylactic medicine may not exert sufficient preventive effects in vivo.
Collapse
Affiliation(s)
- Yuichi Ueno
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Emi Yoshida
- Iwate Prefectural Chuo Livestock Hygiene Service Center, Takizawa, Iwate 020-0605, Japan
| | - Wakako Misumi
- Kagoshima Prefectural Kagoshima Chuo Livestock Hygiene Service Center, Hioki, Kagoshima 899-2201, Japan
| | - Eri Watando
- Aichi Prefectural Chuo Livestock Hygiene Service Center, Okazaki, Aichi 444-0805, Japan
| | - Kenta Suzuki
- Nagano Prefectural Matsumoto Livestock Hygiene Service Center, Matsumoto, Nagano 390-0851, Japan
| | - Yuko Hirai
- Aichi Prefectural Seibu Livestock Hygiene Service Center, Chita-gun, Aichi 470-2324, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Makoto Osaki
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Ken Katsuda
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
39
|
Forsgren E, Locke B, Sircoulomb F, Schäfer MO. Bacterial Diseases in Honeybees. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0083-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Hertlein G, Seiffert M, Gensel S, Garcia-Gonzalez E, Ebeling J, Skobalj R, Kuthning A, Süssmuth RD, Genersch E. Biological Role of Paenilarvins, Iturin-Like Lipopeptide Secondary Metabolites Produced by the Honey Bee Pathogen Paenibacillus larvae. PLoS One 2016; 11:e0164656. [PMID: 27760211 PMCID: PMC5070912 DOI: 10.1371/journal.pone.0164656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022] Open
Abstract
The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins' anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver.
Collapse
Affiliation(s)
- Gillian Hertlein
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Marlene Seiffert
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Sebastian Gensel
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | - Eva Garcia-Gonzalez
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Ranko Skobalj
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | - Anja Kuthning
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | | | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Berlin, Germany
| |
Collapse
|
41
|
Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol 2016; 100:7387-95. [PMID: 27394713 DOI: 10.1007/s00253-016-7716-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/23/2023]
Abstract
The gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood of honey bees, a notifiable disease in many countries. Hence, P. larvae can be considered as an entomopathogen of considerable relevance in veterinary medicine. P. larvae is a highly specialized pathogen with only one established host, the honey bee larva. No other natural environment supporting germination and proliferation of P. larvae is known. Over the last decade, tremendous progress in the understanding of P. larvae and its interactions with honey bee larvae at a molecular level has been made. In this review, we will present the recent highlights and developments in P. larvae research and discuss the impact of some of the findings in a broader context to demonstrate what we can learn from studying "exotic" pathogens.
Collapse
|
42
|
Mondet F, Kim SH, de Miranda JR, Beslay D, Le Conte Y, Mercer AR. Specific Cues Associated With Honey Bee Social Defence against Varroa destructor Infested Brood. Sci Rep 2016; 6:25444. [PMID: 27140530 PMCID: PMC4853723 DOI: 10.1038/srep25444] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 01/09/2023] Open
Abstract
Social immunity forms an essential part of the defence repertoire of social insects. In response to infestation by the parasitic mite Varroa destructor and its associated viruses, honey bees (Apis mellifera L.) have developed a specific behaviour (varroa-sensitive hygiene, or VSH) that helps protect the colony from this parasite. Brood cells heavily infested with mites are uncapped, the brood killed, and the cell contents removed. For this extreme sacrifice to be beneficial to the colony, the targeting of parasitized brood for removal must be accurate and selective. Here we show that varroa-infested brood produce uniquely identifiable cues that could be used by VSH-performing bees to identify with high specificity which brood cells to sacrifice. This selective elimination of mite-infested brood is a disease resistance strategy analogous to programmed cell death, where young bees likely to be highly dysfunctional as adults are sacrificed for the greater good of the colony.
Collapse
Affiliation(s)
- Fanny Mondet
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Seo Hyun Kim
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | | | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Alison R. Mercer
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
43
|
Hirai Y, Suzuki T, Inaba N, Minoguchi N, Takamatsu D. Existence of Paenibacillus larvae genotypes ERIC I-ST2, ERIC I-ST15 and ERIC II-ST10 in the western region of Aichi prefecture, Japan. J Vet Med Sci 2016; 78:1195-9. [PMID: 27020320 PMCID: PMC4976278 DOI: 10.1292/jvms.16-0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
American foulbrood is the most destructive honeybee bacterial disease. The etiological
agent, Paenibacillus larvae, has been classified into four genotypes by a
repetitive-element PCR (ERIC I-IV) and 21 sequence types by multilocus sequence typing
(ST1-21). In this study, we genotyped Japanese P. larvae isolates for the
first time and revealed the presence of three genotypes (ERIC I-ST2, ERIC I-ST15 and ERIC
II-ST10) in the western region of Aichi prefecture. ERIC I-ST15 and ERIC II-ST10 are
globally distributed types, whereas the ERIC I-ST2 isolate was the first isolate of this
genotype identified outside the native range of the European honeybee. The ERIC I and II
isolates differed in phenotypes including cell morphology, and these may be useful for
predicting ERIC types.
Collapse
Affiliation(s)
- Yuko Hirai
- Aichi Prefectural Seibu Livestock Hygiene Service Center, Owari branch, 8-2673-5 Shinogi-cho, Kasugai, Aichi 486-0851, Japan
| | | | | | | | | |
Collapse
|
44
|
Poppinga L, Genersch E. Molecular pathogenesis of American Foulbrood: how Paenibacillus larvae kills honey bee larvae. CURRENT OPINION IN INSECT SCIENCE 2015; 10:29-36. [PMID: 29588011 DOI: 10.1016/j.cois.2015.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 06/08/2023]
Abstract
American Foulbrood caused by Paenibacillus larvae is one of the unsolved health problems honey bee colonies are suffering from. In the recent past, considerable progress has been achieved in understanding molecular details of P. larvae infections of honey bee larvae. This was facilitated by the development of molecular tools for manipulating P. larvae and by the availability of complete genome sequences of different P. larvae genotypes. We here report on several peptides and proteins that have recently been identified, biochemically analyzed, and proposed to act as virulence factors of P. larvae. For some of them, experimental proof for their role as virulence factor has been provided allowing presenting a preliminary model for the molecular pathogenesis of American Foulbrood.
Collapse
Affiliation(s)
- Lena Poppinga
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany.
| |
Collapse
|
45
|
Morrissey BJ, Helgason T, Poppinga L, Fünfhaus A, Genersch E, Budge GE. Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ Microbiol 2015; 17:1414-24. [PMID: 25244044 PMCID: PMC4405054 DOI: 10.1111/1462-2920.12625] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/08/2014] [Indexed: 11/27/2022]
Abstract
American foulbrood is the most destructive brood disease of honeybees (Apis mellifera) globally. The absence of a repeatable, universal typing scheme for the causative bacterium Paenibacillus larvae has restricted our understanding of disease epidemiology. We have created the first multilocus sequence typing scheme (MLST) for P. larvae, which largely confirms the previous enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR)-based typing scheme's divisions while providing added resolution and improved repeatability. We have used the new scheme to determine the distribution and biogeography of 294 samples of P. larvae from across six continents. We found that of the two most epidemiologically important ERIC types, ERIC I was more diverse than ERIC II. Analysis of the fixation index (FST ) by distance suggested a significant relationship between genetic and geographic distance, suggesting that population structure exists in populations of P. larvae. Interestingly, this effect was only observed within the native range of the host and was absent in areas where international trade has moved honeybees and their disease. Correspondence analysis demonstrated similar sequence type (ST) distributions between native and non-native countries and that ERIC I and II STs mainly have differing distributions. The new typing scheme facilitates epidemiological study of this costly disease of a key pollinator.
Collapse
Affiliation(s)
- Barbara J Morrissey
- Biology Department, University of YorkPO Box 373, York, YO10 5YW, UK
- Food and Environment Research AgencySand Hutton, York, YO41 1LZ, UK
| | - Thorunn Helgason
- Biology Department, University of YorkPO Box 373, York, YO10 5YW, UK
| | - Lena Poppinga
- Institute for Bee ResearchFiedrich-Engels-Str. 32, Hohen Neuendorf, 16540, Germany
| | - Anne Fünfhaus
- Institute for Bee ResearchFiedrich-Engels-Str. 32, Hohen Neuendorf, 16540, Germany
| | - Elke Genersch
- Institute for Bee ResearchFiedrich-Engels-Str. 32, Hohen Neuendorf, 16540, Germany
- Institute of Microbiology and Epizootics, Freie Universität BerlinRobert-von-Ostertag-Str. 7–13, Berlin, 14163, Germany
| | - Giles E Budge
- Food and Environment Research AgencySand Hutton, York, YO41 1LZ, UK
| |
Collapse
|
46
|
Guo J, Wu J, Chen Y, Evans JD, Dai R, Luo W, Li J. Characterization of gut bacteria at different developmental stages of Asian honey bees, Apis cerana. J Invertebr Pathol 2015; 127:110-4. [PMID: 25805518 DOI: 10.1016/j.jip.2015.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Previous surveys have shown that adult workers of the Asian honey bee Apis cerana harbor four major gut microbes (Bifidobacterium, Snodgrassella alvi, Gilliamella apicola, and Lactobacillus). Using quantitative PCR we characterized gut bacterial communities across the life cycle of A. cerana from larvae to workers. Our results indicate that the presence and quantity of these four bacteria were low on day 1, increased rapidly after day 5, and then peaked during days 10-20. They stabilized from days 20-25 or days 25-30, then dropped to a low level at day 30. In addition, the larvae infected by Sacbrood virus or European foulbrood had significantly lower copies of 16S rRNA genes than healthy individuals.
Collapse
Affiliation(s)
- Jun Guo
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China; Institute of Economic Animals, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Jie Wu
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China.
| | - Yanping Chen
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Jay D Evans
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Rongguo Dai
- Institute of Economic Animals, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wenhua Luo
- Institute of Economic Animals, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Jilian Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China.
| |
Collapse
|
47
|
Müller S, Garcia-Gonzalez E, Genersch E, Süssmuth RD. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat Prod Rep 2015; 32:765-78. [DOI: 10.1039/c4np00158c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-positive spore-forming bacterium Paenibacillus larvae is the causative agent of the fatal disease American Foulbrood of the western honey bee. This article highlights recent findings on secondary metabolites synthesized by P. larvae.
Collapse
Affiliation(s)
| | - Eva Garcia-Gonzalez
- Institute for Bee Research
- Department of Molecular Microbiology and Bee Diseases
- Hohen Neuendorf
- Germany
| | - Elke Genersch
- Institute for Bee Research
- Department of Molecular Microbiology and Bee Diseases
- Hohen Neuendorf
- Germany
| | | |
Collapse
|
48
|
Bassi S, Formato G, Milito M, Trevisiol K, Salogni C, Carra E. Phenotypic characterization and ERIC-PCR based genotyping of Paenibacillus larvae isolates recovered from American foulbrood outbreaks in honey bees from Italy. Vet Q 2014; 35:27-32. [PMID: 25431956 DOI: 10.1080/01652176.2014.993095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Paenibacillus larvae is the etiological agent of American foulbrood (AFB), a widespread and severe bacterial brood disease of honey bees. The genomic characterization of P. larvae strains by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) is able to differentiate four genotypes (ERIC I, ERIC II, ERIC III, ERIC IV). The information on the presence of P. larvae ERIC genotypes worldwide is few. OBJECTIVES We have characterized P. larvae strains isolated in Italy from AFB outbreaks to obtain information on ERIC genotypes and phenotypes of the strains circulating in the country. METHODS A total of 117 P. larvae isolates from 115 AFB outbreaks occurring in 2008-2012 were subjected to phenotypic and genetic characterization. RESULTS The genomic characterization allowed the identification of ERIC I and ERIC II genotypes. Examining the data of Northern and Central Italy separately it was noted that in Northern Italy most outbreaks were caused by the ERIC I genotype (78.6%), followed by the ERIC II genotype (18.6%) and by co-infections (ERIC I + ERIC II) (2.6%). In Central Italy, only outbreaks caused by the ERIC I genotype were observed. With regard to phenotypic characteristics all examined strains of ERIC II genotype fermented fructose while no strains of ERIC I genotype possessed this ability. CONCLUSION Both P. larvae ERIC I and ERIC II genotypes were isolated from the AFB outbreaks, but ERIC II genotype was isolated only in Northern Italy. The fermentation of fructose seems to be a genotype-specific biochemical marker.
Collapse
Affiliation(s)
- Stefano Bassi
- a Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna , Sezione di Modena , Modena , Italy
| | | | | | | | | | | |
Collapse
|
49
|
Garcia-Gonzalez E, Müller S, Hertlein G, Heid N, Süssmuth RD, Genersch E. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiologyopen 2014; 3:642-56. [PMID: 25044543 PMCID: PMC4234257 DOI: 10.1002/mbo3.195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 11/11/2022] Open
Abstract
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development.
Collapse
Affiliation(s)
- Eva Garcia-Gonzalez
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee ResearchFriedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Sebastian Müller
- Institut für Chemie, Technische Universität Berlin10623, Berlin, Germany
| | - Gillian Hertlein
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee ResearchFriedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Nina Heid
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee ResearchFriedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | | | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee ResearchFriedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
- Institute of Microbiology and Epizootics, Freie Universität BerlinRobert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
50
|
Hertlein G, Müller S, Garcia-Gonzalez E, Poppinga L, Süssmuth RD, Genersch E. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS One 2014; 9:e108272. [PMID: 25237888 PMCID: PMC4169593 DOI: 10.1371/journal.pone.0108272] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/27/2014] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria.
Collapse
Affiliation(s)
- Gillian Hertlein
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Sebastian Müller
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | - Eva Garcia-Gonzalez
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Lena Poppinga
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | | | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
- Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| |
Collapse
|