1
|
Peng C, Shi Y, Wang S, Zhang J, Wan X, Yin Y, Wang D, Wang W. Genetic and functional characterization of multiple thermophilic organosulfur-removal systems reveals desulfurization potentials for waste residue oil cleaning. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130706. [PMID: 36603426 DOI: 10.1016/j.jhazmat.2022.130706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Heavy oil and petroleum refining residues usually contain high concentrations of recalcitrant hazardous organosulfur compounds, causing long-term serious global environmental pollution during leakage and combustion. Research conducted here identified a unique thermophilic bacterium Parageobacillus thermoglucosidasius W-36 with the notable ability of waste residue oil desulfurization, utilization and tolerance of multiplex hazardous organosulfur pollutants. Genome information mining revealed multiple desulfurization systems in three organosulfur-utilizing gene clusters. Enzymatic characterization, phylogenetic relationships, transcriptional performance and structural prediction indicated four novel key monooxygenases for diverse organosulfur removal. Importantly, all monooxygenases shared obvious commonalities in the predicted tertiary structure backbone and catalytic characteristics of C-S bond cleavage, implying the potential of genetic engineering for broad-spectrum hazardous organosulfur removal. Therefore, this work demonstrated the important application potential of thermophilic bacteria as a promising alternative biodesulfurization way for waste residue oil cleaning.
Collapse
Affiliation(s)
- Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yukun Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Shuo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xuehua Wan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yalin Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Dongxu Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Lin Y, Newcombe CE, Brennan RA. Crab shell amendments enhance the abundance and diversity of key microbial groups in sulfate-reducing columns treating acid mine drainage. Appl Microbiol Biotechnol 2020; 104:8505-8516. [PMID: 32820375 DOI: 10.1007/s00253-020-10833-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Substrate amendments composed of crab shell (CS) waste materials have been shown to significantly improve the longevity and performance of acid mine drainage (AMD) treatment systems containing spent mushroom compost (SMC), yet the development of key microbial populations within these systems has not been investigated. To better understand the effects of CS on microbial dynamics in these systems, clone libraries and real-time quantitative PCR (qPCR) were performed on materials from a laboratory-scale AMD treatment system containing SMC and 0 to 100% CS substrate after receiving a continuous flow of AMD for 148 days (428 pore volumes). The proportion of CS in the substrate positively correlated with the diversity of sulfate-reducing bacteria (SRB) and archaeal clones, but negatively correlated with fungal diversity. CS also impacted microbial community structure, as revealed in Unifrac significance and principal coordinate analysis tests. The column containing 100% CS substrate supported 7 different genera of SRB-the most ever observed in an AMD treatment system. Moreover, the copy numbers of functional genes representing fermenters, sulfate reducers, and chitin degraders increased with increasing proportions of CS. These observations agree well with the chemical performance data, further validating that by supporting more abundant key microbial groups, chitinous substrates may provide benefits for improving both the longevity and performance of AMD treatment systems, and may provide similar benefits for the treatment of other environmental contaminants that are amenable to anaerobic bioremediation.Key points• Crab shell improves the longevity and performance of acid mine drainage treatment.• The diversity of sulfate-reducing bacteria is enhanced with crab shell amendments.• Crab shell supports more abundant key microbial groups than spent mushroom compost.
Collapse
Affiliation(s)
- Yishan Lin
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.,State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Caroline E Newcombe
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.,Hewlett Packard Enterprises, Minneapolis, MN, USA
| | - Rachel A Brennan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Otwell AE, Callister SJ, Sherwood RW, Zhang S, Goldman AR, Smith RD, Richardson RE. Physiological and proteomic analyses of Fe(III)-reducing co-cultures of Desulfotomaculum reducens MI-1 and Geobacter sulfurreducens PCA. GEOBIOLOGY 2018; 16:522-539. [PMID: 29905980 DOI: 10.1111/gbi.12295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
We established Fe(III)-reducing co-cultures of two species of metal-reducing bacteria, the Gram-positive Desulfotomaculum reducens MI-1 and the Gram-negative Geobacter sulfurreducens PCA. Co-cultures were given pyruvate, a substrate that D. reducens can ferment and use as electron donor for Fe(III) reduction. G. sulfurreducens relied upon products of pyruvate oxidation by D. reducens (acetate, hydrogen) for use as electron donor in the co-culture. Co-cultures reduced Fe(III) to Fe(II) robustly, and Fe(II) was consistently detected earlier in co-cultures than pure cultures. Notably, faster cell growth, and correspondingly faster pyruvate oxidation, was observed by D. reducens in co-cultures. Global comparative proteomic analysis was performed to observe differential protein abundance during co-culture vs. pure culture growth. Proteins previously associated with Fe(III) reduction in G. sulfurreducens, namely c-type cytochromes and type IV pili proteins, were significantly increased in abundance in co-cultures relative to pure cultures. D. reducens ribosomal proteins were significantly increased in co-cultures, likely a reflection of faster growth rates observed for D. reducens cells while in co-culture. Furthermore, we developed multiple reaction monitoring (MRM) assays to quantitate specific biomarker peptides. The assays were validated in pure and co-cultures, and protein abundance ratios from targeted MRM and global proteomic analysis correlate significantly.
Collapse
Affiliation(s)
- Anne E Otwell
- Department of Microbiology, Cornell University, Ithaca, New York
| | | | - Robert W Sherwood
- Proteomics and Mass Spectrometry Facility, Cornell University, Ithaca, New York
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, Ithaca, New York
| | - Abby R Goldman
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York
| | | | - Ruth E Richardson
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
4
|
Jewell TNM, Karaoz U, Brodie EL, Williams KH, Beller HR. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. THE ISME JOURNAL 2016; 10:2106-17. [PMID: 26943628 PMCID: PMC4989316 DOI: 10.1038/ismej.2016.25] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 11/29/2022]
Abstract
Groundwater ecosystems are conventionally thought to be fueled by surface-derived allochthonous organic matter and dominated by heterotrophic microbes living under often-oligotrophic conditions. However, in a 2-month study of nitrate amendment to a perennially suboxic aquifer in Rifle (CO), strain-resolved metatranscriptomic analysis revealed pervasive and diverse chemolithoautotrophic bacterial activity relevant to C, S, N and Fe cycling. Before nitrate injection, anaerobic ammonia-oxidizing (anammox) bacteria accounted for 16% of overall microbial community gene expression, whereas during the nitrate injection, two other groups of chemolithoautotrophic bacteria collectively accounted for 80% of the metatranscriptome: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Notably, the proportion of the metatranscriptome accounted for by these three groups was considerably greater than the proportion of the metagenome coverage that they represented. Transcriptional analysis revealed some unexpected metabolic couplings, in particular, putative nitrate-dependent Fe(II) and S oxidation among nominally microaerophilic Gallionellaceae strains, including expression of periplasmic (NapAB) and membrane-bound (NarGHI) nitrate reductases. The three most active groups of chemolithoautotrophic bacteria in this study had overlapping metabolisms that allowed them to occupy different yet related metabolic niches throughout the study. Overall, these results highlight the important role that chemolithoautotrophy can have in aquifer biogeochemical cycling, a finding that has broad implications for understanding terrestrial carbon cycling and is supported by recent studies of geochemically diverse aquifers.
Collapse
Affiliation(s)
- Talia N M Jewell
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenneth H Williams
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Harry R Beller
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
5
|
Sánchez-Andrea I, Sanz JL, Bijmans MFM, Stams AJM. Sulfate reduction at low pH to remediate acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:98-109. [PMID: 24444599 DOI: 10.1016/j.jhazmat.2013.12.032] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 05/25/2023]
Abstract
Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.
Collapse
Affiliation(s)
- Irene Sánchez-Andrea
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | - Jose Luis Sanz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Martijn F M Bijmans
- Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Xu M, Zhang Q, Xia C, Zhong Y, Sun G, Guo J, Yuan T, Zhou J, He Z. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME JOURNAL 2014; 8:1932-44. [PMID: 24671084 DOI: 10.1038/ismej.2014.42] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 02/02/2023]
Abstract
Nitrate is an important nutrient and electron acceptor for microorganisms, having a key role in nitrogen (N) cycling and electron transfer in anoxic sediments. High-nitrate inputs into sediments could have a significant effect on N cycling and its associated microbial processes. However, few studies have been focused on the effect of nitrate addition on the functional diversity, composition, structure and dynamics of sediment microbial communities in contaminated aquatic ecosystems with persistent organic pollutants (POPs). Here we analyzed sediment microbial communities from a field-scale in situ bioremediation site, a creek in Pearl River Delta containing a variety of contaminants including polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs), before and after nitrate injection using a comprehensive functional gene array (GeoChip 4.0). Our results showed that the sediment microbial community functional composition and structure were markedly altered, and that functional genes involved in N-, carbon (C)-, sulfur (S)-and phosphorus (P)- cycling processes were highly enriched after nitrate injection, especially those microorganisms with diverse metabolic capabilities, leading to potential in situ bioremediation of the contaminated sediment, such as PBDE and PAH reduction/degradation. This study provides new insights into our understanding of sediment microbial community responses to nitrate addition, suggesting that indigenous microorganisms could be successfully stimulated for in situ bioremediation of POPs in contaminated sediments with nitrate addition.
Collapse
Affiliation(s)
- Meiying Xu
- 1] Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China [2] State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Qin Zhang
- 1] Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China [2] College of Environmental Sciences and Engineering, Guilin University of Technology, Guilin, China
| | - Chunyu Xia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuming Zhong
- 1] Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China [2] State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Guoping Sun
- 1] Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China [2] State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Jun Guo
- 1] Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China [2] State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Tong Yuan
- Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Zhili He
- Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
7
|
Stucker VK, Williams KH, Robbins MJ, Ranville JF. Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1216-1223. [PMID: 23401165 DOI: 10.1002/etc.2155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/23/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
Stimulating microbial growth through the use of acetate injection wells at the former uranium mill site in Rifle, Colorado, USA, has been shown to decrease dissolved uranium (VI) concentrations through bacterial reduction to immobile uranium (IV). Bioreduction also changed the redox chemistry of site groundwater, altering the mobility of several other redox-sensitive elements present in the subsurface, including iron, sulfur, and arsenic. Following acetate amendment at the site, elevated concentrations of arsenic in the groundwater were observed. Ion chromatography-inductively coupled plasma-mass spectrometry was used to determine the aqueous arsenic speciation. Upgradient samples, unexposed to acetate, showed low levels of arsenic (≈1 μM), with greater than 90% as arsenate (As[V]) and a small amount of arsenite (As[III]). Downgradient acetate-stimulated water samples had much higher levels of arsenic (up to 8 μM), and 4 additional thioarsenic species were present under sulfate-reducing conditions. These thioarsenic species demonstrate a strong correlation between arsenic release and sulfide concentrations in groundwater, and their formation may explain the elevated total arsenic concentrations. An alternative remediation approach, enhanced flushing of uranium, was accomplished by addition of bicarbonate and did not result in highly elevated arsenic concentrations.
Collapse
Affiliation(s)
- Valerie K Stucker
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USA
| | | | | | | |
Collapse
|
8
|
Liang C, Zou M, Guo L, Gui W, Zhu G. Development of a bead-based immunoassay for detection of triazophos and application validation. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2011.639065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
9
|
Akondi K, Lakshmi V. Emerging Trends in Genomic Approaches for Microbial Bioprospecting. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:61-70. [DOI: 10.1089/omi.2012.0082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K.B. Akondi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| | - V.V. Lakshmi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| |
Collapse
|
10
|
Profiling in situ microbial community structure with an amplification microarray. Appl Environ Microbiol 2012; 79:799-807. [PMID: 23160129 DOI: 10.1128/aem.02664-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO(3)(-)) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO(3), but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications.
Collapse
|
11
|
Peacock AD, Hedrick DB, Long PE, Nevin KP, Resch CT, Lovley DR, White DC. Field-scale uranium (VI) bioimmobilization monitored by lipid biomarkers and 13C-acetate incorporation. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/rem.20301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Chandler DP, Kukhtin A, Mokhiber R, Knickerbocker C, Ogles D, Rudy G, Golova J, Long P, Peacock A. Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5516-5522. [PMID: 20560650 DOI: 10.1021/es1006498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objective of this study was to develop and validate a simple, field-portable, microarray system for monitoring microbial community structure and dynamics in groundwater and subsurface environments, using samples representing site status before acetate injection, during Fe-reduction, in the transition from Fe- to SO(4)(2-)-reduction, and into the SO(4)(2-)-reduction phase. Limits of detection for the array are approximately 10(2)-10(3) cell equivalents of DNA per reaction. Sample-to-answer results for the field deployment were obtained in 4 h. Retrospective analysis of 50 samples showed the expected progression of microbial signatures from Fe- to SO(4)(2-) -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R(2) = 0.84). Microarray results were in concordance with quantitative PCR data, aqueous chemistry, site lithology, and the expected microbial community response, indicating that the field-portable microarray is an accurate indicator of microbial presence and response to in situ remediation of a uranium-contaminated site.
Collapse
|
13
|
Mayali X, Palenik B, Burton RS. Dynamics of marine bacterial and phytoplankton populations using multiplex liquid bead array technology. Environ Microbiol 2010; 12:975-89. [DOI: 10.1111/j.1462-2920.2004.02142.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Junier P, Frutschi M, Wigginton NS, Schofield EJ, Bargar JR, Bernier-Latmani R. Metal reduction by spores of Desulfotomaculum reducens. Environ Microbiol 2009; 11:3007-17. [PMID: 19601961 DOI: 10.1111/j.1462-2920.2009.02003.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bioremediation of uranium-contaminated sites is designed to stimulate the activity of microorganisms able to catalyze the reduction of soluble U(VI) to the less soluble mineral UO(2). U(VI) reduction does not necessarily support growth in previously studied bacteria, but it typically involves viable vegetative cells and the presence of an appropriate electron donor. We characterized U(VI) reduction by the sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1 grown fermentatively on pyruvate and observed that spores were capable of U(VI) reduction. Hydrogen gas - a product of pyruvate fermentation - rather than pyruvate, served as the electron donor. The presence of spent growth medium was required for the process, suggesting that an unknown factor produced by the cells was necessary for reduction. Ultrafiltration of the spent medium followed by U(VI) reduction assays revealed that the factor's molecular size was below 3 kDa. Pre-reduced spent medium displayed short-term U(VI) reduction activity, suggesting that the missing factor may be an electron shuttle, but neither anthraquinone-2,6-disulfonic acid nor riboflavin rescued spore activity in fresh medium. Spores of D. reducens also reduced Fe(III)-citrate under experimental conditions similar to those for U(VI) reduction. This is the first report of a bacterium able to reduce metals while in a sporulated state and underscores the novel nature of the mechanism of metal reduction by strain MI-1.
Collapse
Affiliation(s)
- Pilar Junier
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH 1015, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Pandey J, Chauhan A, Jain RK. Integrative approaches for assessing the ecological sustainability ofin situbioremediation. FEMS Microbiol Rev 2009; 33:324-75. [PMID: 19178567 DOI: 10.1111/j.1574-6976.2008.00133.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Liu N, Su P, Gao Z, Zhu M, Yang Z, Pan X, Fang Y, Chao F. Simultaneous detection for three kinds of veterinary drugs: Chloramphenicol, clenbuterol and 17-beta-estradiol by high-throughput suspension array technology. Anal Chim Acta 2009; 632:128-34. [DOI: 10.1016/j.aca.2008.10.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/18/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
17
|
Stenuit B, Eyers L, Schuler L, George I, Agathos SN. Molecular Tools for Monitoring and Validating Bioremediation. SOIL BIOLOGY 2009. [DOI: 10.1007/978-3-540-89621-0_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 2008; 62:375-401. [PMID: 18544040 DOI: 10.1146/annurev.micro.030608.101423] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial communities comprise an interwoven matrix of biological diversity modified by physical and chemical variation over space and time. Although these communities are the major drivers of biosphere processes, relatively little is known about their structure and function, and predictive modeling is limited by a dearth of comprehensive ecological principles that describe microbial community processes. Here we discuss working definitions of central ecological terms that have been used in various fashions in microbial ecology, provide a framework by focusing on different types of interactions within communities, review the status of the interface between evolutionary and ecological study, and highlight important similarities and differences between macro- and microbial ecology. We describe current approaches to study microbial ecology and progress toward predictive modeling.
Collapse
Affiliation(s)
- Ainslie E F Little
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, 53706, USA.
| | | | | | | | | |
Collapse
|
19
|
Stenuit B, Eyers L, Schuler L, Agathos SN, George I. Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 2008; 26:561-75. [DOI: 10.1016/j.biotechadv.2008.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 07/27/2008] [Accepted: 07/28/2008] [Indexed: 12/01/2022]
|
20
|
Shelobolina ES, Vrionis HA, Findlay RH, Lovley DR. Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. Int J Syst Evol Microbiol 2008; 58:1075-8. [PMID: 18450691 DOI: 10.1099/ijs.0.65377-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, rod-shaped, motile bacterium, strain Rf4T, which conserves energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation, was isolated from subsurface sediment undergoing uranium bioremediation. The 16S rRNA gene sequence of strain Rf4T matched sequences recovered in 16S rRNA gene clone libraries constructed from DNA extracted from groundwater sampled at the same time as the source sediment. Cells of strain Rf4T were regular, motile rods, 1.2-2.0 microm long and 0.5-0.6 microm in diameter, with rounded ends. Cells had one lateral flagellum. Growth was optimal at pH 6.5-7.0 and 32 degrees C. With acetate as the electron donor, strain Rf4T used Fe(III), Mn(IV), anthraquinone-2,6-disulfonate, malate and fumarate as electron acceptors and reduced U(VI) in cell suspensions. With poorly crystalline Fe(III) oxide as the electron acceptor, strain Rf4T oxidized the following electron donors: acetate, lactate, pyruvate and ethanol. Phylogenetic analysis of the 16S rRNA gene sequence of strain Rf4T placed it in the genus Geobacter. Strain Rf4T was most closely related to 'Geobacter humireducens' JW3 (95.9 % sequence similarity), Geobacter bremensis Dfr1T (95.4 %) and Geobacter bemidjiensis BemT (95.1 %). Based on phylogenetic analysis and phenotypic differences between strain Rf4T and closely related Geobacter species, this strain is described as a representative of a novel species, Geobacter uraniireducens sp. nov. The type strain is Rf4T (=ATCC BAA-1134T =JCM 13001T).
Collapse
Affiliation(s)
- Evgenya S Shelobolina
- Department of Microbiology, University of Massachusetts, Morrill Science Center IVN, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
21
|
Hiibel SR, Pereyra LP, Inman LY, Tischer A, Reisman DJ, Reardon KF, Pruden A. Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Environ Microbiol 2008; 10:2087-97. [PMID: 18430021 DOI: 10.1111/j.1462-2920.2008.01630.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The microbial communities of two field-scale pilot sulfate-reducing bioreactors treating acid mine drainage (AMD), Luttrell and Peerless Jenny King (PJK), were compared using biomolecular tools and multivariate statistical analyses. The two bioreactors were well suited for this study because their geographic locations and substrate compositions were similar while the characteristics of influent AMD, configuration and degree of exposure to oxygen were distinct. The two bioreactor communities were found to be functionally similar, including cellulose degraders, fermenters and sulfate-reducing bacteria (SRB). Significant differences were found between the two bioreactors in phylogenetic comparisons of cloned 16S rRNA genes and adenosine 5'-phosphosulfate reductase (apsA) genes. The apsA gene clones from the Luttrell bioreactor were dominated by uncultured SRB most closely related to Desulfovibrio spp., while those of the PJK bioreactor were dominated by Thiobacillus spp. The fraction of the SRB genus Desulfovibrio was also higher at Luttrell than at PJK as determined by quantitative real-time polymerase chain reaction analysis. Oxygen exposure at PJK is hypothesized to be the primary cause of these differences. This study is the first rigorous phylogenetic investigation of field-scale bioreactors treating AMD and the first reported application of multivariate statistical analysis of remediation system microbial communities applying UniFrac software.
Collapse
Affiliation(s)
- Sage R Hiibel
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Weiss JV, Cozzarelli IM. Biodegradation in contaminated aquifers: incorporating microbial/molecular methods. GROUND WATER 2008; 46:305-322. [PMID: 18194318 DOI: 10.1111/j.1745-6584.2007.00409.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In order to evaluate natural attenuation in contaminated aquifers, there has been a recent recognition that a multidisciplinary approach, incorporating microbial and molecular methods, is required. Observed decreases in contaminant mass and identified footprints of biogeochemical reactions are often used as evidence of intrinsic bioremediation, but characterizing the structure and function of the microbial populations at contaminated sites is needed. In this paper, we review the experimental approaches and microbial methods that are available as tools to evaluate the controls on microbially mediated degradation processes in contaminated aquifers. We discuss the emerging technologies used in biogeochemical studies and present a synthesis of recent studies that serve as models of integrating microbiological approaches with more traditional geochemical and hydrogeologic approaches in order to address important biogeochemical questions about contaminant fate.
Collapse
Affiliation(s)
- Johanna V Weiss
- Biotechnology Program, Northern Virginia Community College, Manassas, VA 20109, USA
| | | |
Collapse
|
23
|
Malik S, Beer M, Megharaj M, Naidu R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. ENVIRONMENT INTERNATIONAL 2008; 34:265-276. [PMID: 18083233 DOI: 10.1016/j.envint.2007.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/16/2007] [Accepted: 09/02/2007] [Indexed: 05/25/2023]
Abstract
Traditionally, the identification and characterization of microbial communities in contaminated soil and water has previously been limited to those microorganisms that are culturable. The application of molecular techniques to study microbial populations at contaminated sites without the need for culturing has led to the discovery of unique and previously unrecognized microorganisms as well as complex microbial diversity in contaminated soil and water which shows an exciting opportunity for bioremediation strategies. Nucleic acid extraction from contaminated sites and their subsequent amplification by polymerase chain reaction (PCR) has proved extremely useful in assessing the changes in microbial community structure by several microbial community profiling techniques. This review examines the current application of molecular techniques for the characterization of microbial communities in contaminated soil and water. Techniques that identify and quantify microbial population and catabolic genes involved in biodegradation are examined. In addition, methods that directly link microbial phylogeny to its ecological function at contaminated sites as well as high throughput methods for complex microbial community studies are discussed.
Collapse
Affiliation(s)
- Seidu Malik
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, South Australia 5095, Australia
| | | | | | | |
Collapse
|
24
|
Kumar R, Singh S, Singh OV. Bioremediation of Radionuclides: Emerging Technologies. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:295-304. [PMID: 17883340 DOI: 10.1089/omi.2007.0013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A large quantity of radioactive waste is being generated as the byproduct of atomic energy and related programs worldwide. There are multiple radioactive waste dumping sites, that, if exposed to the general population, may cause serious life-threatening disorders. Currently, no efficient technology is available that can store the radioactive wastes with adequate safety. Therefore, bioremediation of radionuclides/radioactive waste is an unavoidable necessity that has been tried using biotransformation, bioaccumulation, biosorption, biostimulation, and bioaugmentaion, with limited success. Genetic engineering has been implemented to develop an organism that can effectively detoxify radionuclides along with other organic pollutants present as co-contaminants in the radioactive waste sites. However, the lack of system-wide information regarding factors regulating growth and metabolism of microbial communities can be conquered by newly seeded "-omics"-based technologies, viz. transcriptomics and proteomics. Studies combining functional transcriptomics and proteomics would create a system-wide approach studying the microbial metabolism in radionuclides detoxification.
Collapse
Affiliation(s)
- Raj Kumar
- Division of Radiation Biology and Radiation Protection, Institute of Nuclear Medicine and Allied Sciences, New Delhi-100 054, India.
| | | | | |
Collapse
|