1
|
Liu J, Mandlaa, Wang J, Sun Z, Chen Z. A strategy to enhance and modify fatty acid synthesis in Corynebacterium glutamicum and Escherichia coli: overexpression of acyl-CoA thioesterases. Microb Cell Fact 2023; 22:191. [PMID: 37735384 PMCID: PMC10512533 DOI: 10.1186/s12934-023-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Fatty acid (FA) is an important platform compound for the further synthesis of high-value biofuels and oleochemicals, but chemical synthesis of FA has many limitations. One way to meet the future demand for FA could be to use microbial cell factories for FA biosynthesis. RESULTS Thioesterase (TE; TesA, TesB, and TE9) of Corynebacterium glutamicum (CG) can potentially improve FA biosynthesis, and tesA, tesB, and te9 were overexpressed in C. glutamicum and Escherichia coli (EC), respectively, in this study. The results showed that the total fatty acid (TFA) production of CGtesB and ECtesB significantly increased to 180.52 mg/g dry cell weight (DCW) and 123.52 mg/g DCW, respectively (P < 0.05). Overexpression strains CG and EC could increase the production of C16:0, C18:1(t), C18:2, C20:1, C16:1, C18:0, and C18:1(c) (P < 0.05), respectively, and the changes of long-chain FA resulted in the enhancement of TFA production. The enzymatic properties of TesA, TesB, and TE9 in vitro were determined: they were specific for long-, broad and short-chain substrates, respectively; the optimal temperature was 30.0 °C and the optimal acid-base (pH) were 8.0, 8.0, and 9.0, respectively; they were inhibited by Fe2+, Cu2+, Zn2+, Mg2+, and K+. CONCLUSION Overexpression TE enhances and modifies FA biosynthesis with multiple productive applications, and the enzyme properties provided useful clues for optimizing FA synthesis.
Collapse
Affiliation(s)
- Jin Liu
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Mandlaa
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Jia Wang
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Ziyu Sun
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| | - Zhongjun Chen
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
2
|
Courtney DK, Su Y, Jacobson T, Khana D, Ailiani A, Amador-Noguez D, Pfleger BF. Relative Activities of the β-ketoacyl-CoA and Acyl-CoA Reductases Influence Product Profile and Flux in a Reversed β-Oxidation Pathway. ACS Catal 2023; 13:5914-5925. [PMID: 38094510 PMCID: PMC10718561 DOI: 10.1021/acscatal.3c00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The β-Oxidation pathway, normally involved in the catabolism of fatty acids, can be functionally made to act as a fermentative, iterative, elongation pathway when driven by the activity of a trans-enoyl-CoA reductase. The terminal acyl-CoA reduction to alcohol can occur on substrates with varied chain lengths, leading to a broad distribution of fermentation products in vivo. Tight control of the average chain length and product profile is desirable as chain length greatly influences molecular properties and commercial value. Lacking a termination enzyme with a narrow chain length preference, we sought alternative factors that could influence the product profile and pathway flux in the iterative pathway. In this study, we reconstituted the reversed β-oxidation (R-βox) pathway in vitro with a purified tri-functional complex (FadBA) responsible for the thiolase, enoyl-CoA hydratase and hydroxyacyl-CoA dehydrogenase activities, a trans-enoyl-CoA reductase (TER), and an acyl-CoA reductase (ACR). Using this system, we determined the rate limiting step of the elongation cycle and demonstrated that by controlling the ratio of these three enzymes and the ratio of NADH and NADPH, we can influence the average chain length of the alcohol product profile.
Collapse
Affiliation(s)
- Dylan K. Courtney
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | - Yun Su
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | - Tyler Jacobson
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | - Daven Khana
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | - Aditya Ailiani
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | | | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| |
Collapse
|
3
|
Yang T, Yang Y, Yang M, Ren J, Xue C, Feng Y, Xue S. Conformational Changes of Acyl Carrier Protein Switch the Chain Length Preference of Acyl-ACP Thioesterase ChFatB2. Int J Mol Sci 2023; 24:ijms24076864. [PMID: 37047837 PMCID: PMC10095102 DOI: 10.3390/ijms24076864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Microbial fatty acids are synthesized by Type II fatty acid synthase and could be tailored by acyl-ACP thioesterase. With the prospects of medium-chain fatty-acid-derivative biofuels, the selectivity of thioesterase has been studied to control the fatty acid product chain length. Here, we report an alternative approach by manipulating the acyl carrier protein portion of acyl-ACP to switch the chain length propensity of the thioesterase. It was demonstrated that ChFatB2 from Cuphea hookeriana preferred C10-ACP to C8-ACP with ACP from E. coli, while converting preference to C8-ACP with ACP from Cuphea lanceolate. Circular dichroism (CD) results indicated that the C8-EcACP encountered a 34.4% α-helix increment compared to C10-EcACP, which resulted in an approximate binding affinity decrease in ChFatB2 compared to C10-EcACP. Similarly, the C10-ClACP2 suffered a 45% decrease in helix content compared to C8–ClACP2, and the conformational changes resulted in an 18% binding affinity decline with ChFatB2 compared with C10-ClACP2. In brief, the study demonstrates that the ACP portion of acyl-ACP contributes to the selectivity of acyl-ACP thioesterase, and the conformational changes of EcACP and ClACP2 switch the chain length preference of ChFatB2 between C8 and C10. The result provides fundamentals for the directed synthesis of medium-chain fatty acids based on regulating the conformational changes of ACPs.
Collapse
Affiliation(s)
- Tianxiang Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Yunlong Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Ming Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Jiangang Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Yanbin Feng
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
4
|
Kalinger RS, Rowland O. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants. BMC PLANT BIOLOGY 2023; 23:1. [PMID: 36588156 PMCID: PMC9806908 DOI: 10.1186/s12870-022-04003-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/13/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND ACYL-LIPID THIOESTERASES (ALTs) are a subclass of plastid-localized, fatty acyl-acyl carrier protein (ACP) thioesterase enzymes from plants. They belong to the single hot dog-fold protein family. ALT enzymes generate medium-chain (C6-C14) and C16 fatty acids, methylketone precursors (β-keto fatty acids), and 3-hydroxy fatty acids when expressed heterologously in E. coli. The diverse substrate chain-length and oxidation state preferences of ALTs set them apart from other plant acyl-ACP thioesterases, and ALTs show promise as metabolic engineering tools to produce high-value medium-chain fatty acids and methylketones in bacterial or plant systems. Here, we used a targeted motif-swapping approach to explore connections between ALT protein sequence and substrate specificity. Guided by comparative motif searches and computational modelling, we exchanged regions of amino acid sequence between ALT-type thioesterases from Arabidopsis thaliana, Medicago truncatula, and Zea mays to create chimeric ALT proteins. RESULTS Comparing the activity profiles of chimeric ALTs in E. coli to their wild-type counterparts led to the identification of interacting regions within the thioesterase domain that shape substrate specificity and enzyme activity. Notably, the presence of a 31-CQH[G/C]RH-36 motif on the central α-helix was shown to shift chain-length specificity towards 12-14 carbon chains, and to be a core determinant of substrate specificity in ALT-type thioesterases with preference for 12-14 carbon 3-hydroxyacyl- and β-ketoacyl-ACP substrates. For an ALT containing this motif to be functional, an additional 108-KXXA-111 motif and compatible sequence spanning aa77-93 of the surrounding β-sheet must also be present, demonstrating that interactions between residues in these regions of the catalytic domain are critical to thioesterase activity. The behaviour of chimeric enzymes in E. coli also indicated that aa77-93 play a significant role in dictating whether an ALT will prefer ≤10-carbon or ≥ 12-carbon acyl chain-lengths, and aa91-96 influence selectivity for substrates of fully or partially reduced oxidation states. Additionally, aa64-67 on the hot dog-fold β-sheet were shown to be important for enabling an ALT to act on 3-hydroxy fatty acyl-ACP substrates. CONCLUSIONS By revealing connections between thioesterase sequence and substrate specificity, this study is an advancement towards engineering recombinant ALTs with product profiles suited for specific applications.
Collapse
Affiliation(s)
- Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
5
|
Heterologous Expression of Jatropha curcas Fatty Acyl-ACP Thioesterase A (JcFATA) and B (JcFATB) Affects Fatty Acid Accumulation and Promotes Plant Growth and Development in Arabidopsis. Int J Mol Sci 2022; 23:ijms23084209. [PMID: 35457027 PMCID: PMC9029028 DOI: 10.3390/ijms23084209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.
Collapse
|
6
|
Mains K, Peoples J, Fox JM. Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metab Eng 2021; 69:209-220. [PMID: 34826644 DOI: 10.1016/j.ymben.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
Cellular metabolism is a nonlinear reaction network in which dynamic shifts in enzyme concentration help regulate the flux of carbon to different products. Despite the apparent simplicity of these biochemical adjustments, their influence on metabolite biosynthesis tends to be context-dependent, difficult to predict, and challenging to exploit in metabolic engineering. This study combines a detailed kinetic model with a systematic set of in vitro and in vivo analyses to explore the use of enzyme concentration as a control parameter in fatty acid synthesis, an essential metabolic process with important applications in oleochemical production. Compositional analyses of a modeled and experimentally reconstituted fatty acid synthase (FAS) from Escherichia coli indicate that the concentration ratio of two native enzymes-a promiscuous thioesterase and a ketoacyl synthase-can tune the average length of fatty acids, an important design objective of engineered pathways. The influence of this ratio is sensitive to the concentrations of other FAS components, which can narrow or expand the range of accessible chain lengths. Inside the cell, simple changes in enzyme concentration can enhance product-specific titers by as much as 125-fold and elicit shifts in overall product profiles that rival those of thioesterase mutants. This work develops a kinetically guided approach for using ratiometric adjustments in enzyme concentration to control the product profiles of FAS systems and, broadly, provides a detailed framework for understanding how coordinated shifts in enzyme concentration can afford tight control over the outputs of nonlinear metabolic pathways.
Collapse
Affiliation(s)
- Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jackson Peoples
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
7
|
Kalinger RS, Williams D, Ahmadi Pirshahid A, Pulsifer IP, Rowland O. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases. Lipids 2021; 56:327-344. [PMID: 33547664 DOI: 10.1002/lipd.12299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 11/07/2022]
Abstract
ACYL-LIPID THIOESTERASES (ALT) are a type of plant acyl-acyl carrier protein thioesterase that generate a wide range of medium-chain fatty acids and methylketone (MK) precursors when expressed heterologously in Escherichia coli. While this makes ALT-type thioesterases attractive as metabolic engineering targets to increase production of high-value medium-chain fatty acids and MKs in plant systems, the behavior of ALT enzymes in planta was not well understood before this study. To profile the substrate specificities of ALT-type thioesterases in different plant tissue types, AtALT1-4 from Arabidopsis thaliana, which have widely varied chain length and oxidation state preferences in E. coli, were overexpressed in Arabidopsis seeds, Camelina sativa seeds, and Nicotiana benthamiana leaves. Seed-specific overexpression of ALT enzymes led to medium-chain fatty acid accumulation in Arabidopsis and Camelina seed triacylglycerols, and transient overexpression in N. benthamiana demonstrated that the substrate preferences of ALT-type thioesterases in planta generally agree with those previously determined in E. coli. AtALT1 and AtALT4 overexpression in leaves and seeds resulted in the accumulation of 12-14 carbon-length fatty acids and 6-8 carbon-length fatty acids, respectively. While it was difficult to completely profile the products of ALT-type thioesterases that generate MK precursors (i.e. β-keto fatty acids), our results nonetheless demonstrate that ALT enzymes are catalytically diverse in planta. The knowledge gained from this study is a significant step towards being able to use ALT-type thioesterases as metabolic engineering tools to modify the fatty acid profiles of oilseed crops, other plants, and microorganisms.
Collapse
Affiliation(s)
- Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Danielle Williams
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Ali Ahmadi Pirshahid
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Ian P Pulsifer
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
8
|
Wang Q, Feng Y, Lu Y, Xin Y, Shen C, Wei L, Liu Y, Lv N, Du X, Zhu W, Jeong BR, Xue S, Xu J. Manipulating fatty-acid profile at unit chain-length resolution in the model industrial oleaginous microalgae Nannochloropsis. Metab Eng 2021; 66:157-166. [PMID: 33823272 DOI: 10.1016/j.ymben.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 03/28/2021] [Indexed: 12/01/2022]
Abstract
The chain length (CL) of fatty acids (FAs) is pivotal to oil property, yet to what extent it can be customized in industrial oleaginous microalgae is unknown. In Nannochloropsis oceanica, to modulate long-chain FAs (LCFAs), we first discovered a fungi/bacteria-originated polyketide synthase (PKS) system which involves a cytoplasmic acyl-ACP thioesterase (NoTE1). NoTE1 hydrolyzes C16:0-, C16:1- and C18:1-ACP in vitro and thus intercepts the specific acyl-ACPs elongated by PKS for polyunsaturated FA biosynthesis, resulting in elevation of C16/C18 monounsaturated FAs when overproduced and increase of C20 when knocked out. For medium-chain FAs (MCFAs; C8-C14), C8:0 and C10:0 FAs are boosted by introducing a Cuphea palustris acyl-ACP TE (CpTE), whereas C12:0 elevated by rationally engineering CpTE enzyme's substrate-binding pocket to shift its CL preference towards C12:0. A mechanistic model exploiting both native and engineered PKS and type II FAS pathways was thus proposed for manipulation of carbon distribution among FAs of various CL. The ability to tailor FA profile at the unit CL resolution from C8 to C20 in Nannochloropsis spp. lays the foundation for scalable production of designer lipids via industrial oleaginous microalgae.
Collapse
Affiliation(s)
- Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanbin Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yandu Lu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxue Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Byeong-Ryool Jeong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Song Xue
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metab Eng 2020; 62:207-220. [DOI: 10.1016/j.ymben.2020.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
|
10
|
Cahoon EB, Li-Beisson Y. Plant unusual fatty acids: learning from the less common. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:66-73. [PMID: 32304939 DOI: 10.1016/j.pbi.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The plant kingdom contains an abundance of structurally diverse fatty acids referred to as unusual fatty acids. Unusual fatty acids on plant surfaces can form polyesters that contribute to the function of cutin as a barrier for water loss and pathogen protection. Unusual fatty acids are also found as abundant components of seed oils of selected species and often confer desirable properties for industrial and nutritional applications. Here, we review recent findings on the biosynthesis and metabolism of unusual fatty acids in cutin and seed oils and use of this information for enzyme structure-function studies and seed oil metabolic engineering. We also highlight the recent discovery of unusual fatty acids that are formed from a previously undescribed variation of fatty acid elongation.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
11
|
Curran SC, Pereira JH, Baluyot MJ, Lake J, Puetz H, Rosenburg DJ, Adams P, Keasling JD. Structure and Function of BorB, the Type II Thioesterase from the Borrelidin Biosynthetic Gene Cluster. Biochemistry 2020; 59:1630-1639. [PMID: 32250597 DOI: 10.1021/acs.biochem.0c00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α/β hydrolases make up a large and diverse protein superfamily. In natural product biosynthesis, cis-acting thioesterase α/β hydrolases can terminate biosynthetic assembly lines and release products by hydrolyzing or cyclizing the biosynthetic intermediate. Thioesterases can also act in trans, removing aberrant intermediates and restarting stalled biosynthesis. Knockout of this "editing" function leads to reduced product titers. The borrelidin biosynthetic gene cluster from Streptomyces parvulus Tü4055 contains a hitherto uncharacterized stand-alone thioesterase, borB. In this work, we demonstrate that purified BorB cleaves acyl substrates with a preference for propionate, which supports the hypothesis that it is also an editing thioesterase. The crystal structure of BorB shows a wedgelike hydrophobic substrate binding crevice that limits substrate length. To investigate the structure-function relationship, we made chimeric BorB variants using loop regions from characterized homologues with different specificities. BorB chimeras slightly reduced activity, arguing that the modified region is a not major determinant of substrate preference. The structure-function relationships described here contribute to the process of elimination for understanding thioesterase specificity and, ultimately, engineering and applying trans-acting thioesterases in biosynthetic assembly lines.
Collapse
Affiliation(s)
- Samuel C Curran
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Jose H Pereira
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Marian-Joy Baluyot
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Julie Lake
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Hendrik Puetz
- Department of Biochemistry, University of Cologne, 50923 Albertus-Magnus-Platz, Cologne 51149, Germany.,Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | | | - Paul Adams
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| |
Collapse
|
12
|
Kalinger RS, Pulsifer IP, Hepworth SR, Rowland O. Fatty Acyl Synthetases and Thioesterases in Plant Lipid Metabolism: Diverse Functions and Biotechnological Applications. Lipids 2020; 55:435-455. [PMID: 32074392 DOI: 10.1002/lipd.12226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
Plants use fatty acids to synthesize acyl lipids for many different cellular, physiological, and defensive roles. These roles include the synthesis of essential membrane, storage, or surface lipids, as well as the production of various fatty acid-derived metabolites used for signaling or defense. Fatty acids are activated for metabolic processing via a thioester linkage to either coenzyme A or acyl carrier protein. Acyl synthetases metabolically activate fatty acids to their thioester forms, and acyl thioesterases deactivate fatty acyl thioesters to free fatty acids by hydrolysis. These two enzyme classes therefore play critical roles in lipid metabolism. This review highlights the surprisingly complex and varying roles of fatty acyl synthetases in plant lipid metabolism, including roles in the intracellular trafficking of fatty acids. This review also surveys the many specialized fatty acyl thioesterases characterized to date in plants, which produce a great diversity of fatty acid products in a tissue-specific manner. While some acyl thioesterases produce fatty acids that clearly play roles in plant-insect or plant-microbial interactions, most plant acyl thioesterases have yet to be fully characterized both in terms of their substrate specificities and their functions. The biotechnological applications of plant acyl thioesterases and synthetases are also discussed, as there is significant interest in these enzymes as catalysts for the sustainable production of fatty acids and their derivatives for industrial uses.
Collapse
Affiliation(s)
- Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Ian P Pulsifer
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Shelley R Hepworth
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
13
|
Hernández Lozada NJ, Lai RY, Simmons TR, Thomas KA, Chowdhury R, Maranas CD, Pfleger BF. Highly Active C 8-Acyl-ACP Thioesterase Variant Isolated by a Synthetic Selection Strategy. ACS Synth Biol 2018; 7:2205-2215. [PMID: 30064208 DOI: 10.1021/acssynbio.8b00215] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbial metabolism is an attractive route for producing medium chain length fatty acids, e.g., octanoic acid, used in the oleochemical industry. One challenge to this strategy is the lack of enzymes that are both highly active in a microbial host and selective toward substrates with desired chain length. Of the many steps in fatty acid biosynthesis, the thioesterase is the most widely used enzyme for controlling chain length. Thioesterases hydrolyze the thioester bond between fatty acids and the acyl-carrier protein (ACP) or coenzyme A (CoA) cofactor. The functional role of thioesterases varies between organisms ( i.e., bacteria vs plant) and therefore so do the substrate specificities. As a result, microbial biocatalysts that utilize a heterologous thioesterase either produce high titers of fatty acids with mixed chain lengths or low titers of products with a narrow chain length distribution. To search for highly active enzymes that selectively hydrolyze octanoyl-ACP, we developed a genetic selection based on the lipoic acid requirement of Escherichia coli. We used the selection to identify variants in a randomly mutagenized library of the C8-specific Cuphea palustris FatB1 thioesterase. After optimizing expression of the thioesterase, E. coli cultures produced 1.7 g/L of octanoic acid with >90% specificity from a single chromosomal copy of this thioesterase. In vitro studies confirmed the mutant thioesterase possessed a 15-fold increase in kcat compared to its native sequence. The high level of specific activity allowed for low levels of expression while maintaining fatty acid titer. The low expression requirement will allow metabolic engineers to use more cellular resources to address other limitations in the pathway and maximize overall productivity.
Collapse
Affiliation(s)
- Néstor J. Hernández Lozada
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Rung-Yi Lai
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Trevor R. Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Kelsey A. Thomas
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|