1
|
Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y. Overexpression of chaperones GroEL/ES from Escherichia coli enhances indigo biotransformation production of cytochrome P450 BM3 mutant. Biotechnol Lett 2023:10.1007/s10529-023-03397-5. [PMID: 37243776 DOI: 10.1007/s10529-023-03397-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 04/08/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The self-sufficient cytochrome P450 BM3 mutant (A74G/F87V/D168H/L188Q) can serve as a biocatalyst for whole-cell catalysis process of indigo. Nevertheless, the bioconversion yield of indigo is generally low under normal cultivation conditions (37 °C, 250 rpm). In this study, a recombinant E. coli BL21(DE3) strain was constructed to co-express the P450 BM3 mutant gene and GroEL/ES genes to investigate whether GroEL/ES can promote the indigo bioconversion yield in E. coli. The results revealed that the GroEL/ES system could significantly increase the indigo bioconversion yield, and the indigo bioconversion yield of the strain co-expressing P450 BM3 mutant and GroEL/ES was about 21-fold that of the strain only expressing the P450 BM3 mutant. In addition, the P450 BM3 enzyme content and in vitro indigo bioconversion yield were determined to explore the underlying mechanism for the improvement of indigo bioconversion yield. The results revealed that GroEL/ES did not increase indigo bioconversion yield by increasing the content of P450 BM3 enzyme and its enzymatic transformation efficiency. Moreover, GroEL/ES could improve the intracellular nicotinamide adenine dinucleotide phosphate (NADPH)/NADP+ ratio. Given that NADPH is an important coenzyme in the catalytic process of indigo, the underlying mechanism for the improvement of indigo bioconversion yield is probably related to an increase in the intracellular NADPH/NADP+ ratio.
Collapse
Affiliation(s)
- Shuaiying Peng
- Department of Biological Sciences and Biotechnology, Jiangxi Agricultural University, NO.1101 Fangzhimin Avenue, Nanchang, 330045, China.
| | - Zhongmei Chu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Jianfeng Lu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Dongxiao Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengli Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Yi Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Yanagawa K, Kajikawa A, Sakakibara S, Kumeta H, Tomita H, Matsumoto K. Real-time NMR analysis of polyhydroxyalkanoate synthase reaction that synthesizes block copolymer comprising glycolate and 3-hydroxybutyrate. Biophys Chem 2023; 296:107001. [PMID: 36913888 DOI: 10.1016/j.bpc.2023.107001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The sequence-regulating polyhydroxyalkanoate (PHA) synthase PhaCAR spontaneously synthesizes the homo-random block copolymer, poly[3-hydroxybutyrate (3HB)]-b-poly[glycolate (GL)-ran-3HB]. In this study, a real-time in vitro chasing system was established using a high-resolution 800 MHz nuclear magnetic resonance (NMR) and 13C-labeled monomers to monitor the polymerization of GL-CoA and 3HB-CoA into this atypical copolymer. Consequently, PhaCAR initially consumed only 3HB-CoA and subsequently consumed both substrates. The structure of the nascent polymer was analyzed by extracting it with deuterated hexafluoro-isopropanol. In the primary reaction product, a 3HB-3HB dyad was detected, and GL-3HB linkages were subsequently formed. According to these results, the P(3HB) homopolymer segment is synthesized prior to the random copolymer segment. This is the first report of its kind which proposes the application of real-time NMR to a PHA synthase assay, paving the way for elucidating the mechanisms of PHA block copolymerization.
Collapse
Affiliation(s)
- Kengo Yanagawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Japan
| | - Ayaka Kajikawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Japan
| | - Sayaka Sakakibara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Japan
| | - Hiroya Tomita
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan.
| |
Collapse
|
3
|
Estabragh AM, Sadeghi HMM, Akbari V. Co-Expression of Chaperones for Improvement of Soluble Expression and Purification of An Anti-HER2 scFv in Escherichia Coli. Adv Biomed Res 2022; 11:117. [PMID: 36798911 PMCID: PMC9926028 DOI: 10.4103/abr.abr_351_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/28/2022] Open
Abstract
Background Single-chain fragment variable (scFv) is one of the most commonly used antibody fragments. They offer some advantages over full-length antibodies, including better penetration to target tissues. However, their functional production has been a challenge for manufacturers due to the potential misfolding and formation of inclusion bodies. Here we evaluated the soluble expression and purification of molecular chaperone co-expression. Materials and Methods E. coli BL21(DE3) cells were co-transformed with the mixture of plasmids pKJE7 and pET22b-scFv by the electroporation method. First, L-arabinose was added to induce the expression of molecular chaperones, and then IPTG was used as an inducer to start the expression of anti-HER2 scFv. The effect of cultivation temperature and IPTG concentration on soluble expression of the protein with or without chaperones was evaluated. The soluble expressed protein was subjected to native purification using the Ni-NTA affinity column. Results SDS-PAGE analysis confirmed the successful co-expression of anti-HER2-scFv and DnaK/DnaJ/GrpE chaperones. Co-expression with chaperones and low-temperature cultivation synergistically improved the soluble expression of anti-HER2 scFv. Co-expression with chaperone also exhibited an approximately four-fold increase in the final yield of purified soluble protein. Conclusion The combination of co-expression with chaperones and low temperature presented in this work may be useful for the improvement of commercial production of other scFvs in E. coli as functionally bioactive and soluble form.
Collapse
Affiliation(s)
- Amir Mirzapour Estabragh
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Vajihe Akbari, Department of Pharmaceutical Biotechnology, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
4
|
Goto S, Miyahara Y, Taguchi S, Tsuge T, Hiroe A. Enhanced Production of (R)-3-Hydroxybutyrate Oligomers by Coexpression of Molecular Chaperones in Recombinant Escherichia coli Harboring a Polyhydroxyalkanoate Synthase Derived from Bacillus cereus YB-4. Microorganisms 2022; 10:microorganisms10020458. [PMID: 35208913 PMCID: PMC8878867 DOI: 10.3390/microorganisms10020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
The biodegradable polyester poly-(R)-3-hydroxybutyrate [P(3HB)] is synthesized by a polymerizing enzyme called polyhydroxyalkanoate (PHA) synthase and accumulates in a wide variety of bacterial cells. Recently, we demonstrated the secretory production of a (R)-3HB oligomer (3HBO), a low-molecular-weight P(3HB), by using recombinant Escherichia coli expressing PHA synthases. The 3HBO has potential value as an antibacterial substance and as a building block for various polymers. In this study, to construct an efficient 3HBO production system, the coexpression of molecular chaperones and a PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4) was examined. First, genes encoding enzymes related to 3HBO biosynthesis (phaRCYB4, phaA and phaB derived from Ralstonia eutropha H16) and two types of molecular chaperones (groEL, groES, and tig) were introduced into the E. coli strains BW25113 and BW25113ΔadhE. As a result, coexpression of the chaperones promoted the enzyme activity of PHA synthase (approximately 2–3-fold) and 3HBO production (approximately 2-fold). The expression assay of each chaperone and PHA synthase subunit (PhaRYB4 and PhaCYB4) indicated that the combination of the two chaperone systems (GroEL-GroES and TF) supported the folding of PhaRYB4 and PhaCYB4. These results suggest that the utilization of chaperone proteins is a valuable approach to enhance the formation of active PHA synthase and the productivity of 3HBO.
Collapse
Affiliation(s)
- Saki Goto
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
| | - Yuki Miyahara
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
| | - Takeharu Tsuge
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Correspondence:
| |
Collapse
|
5
|
Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters. Metab Eng 2021; 69:262-274. [PMID: 34883244 DOI: 10.1016/j.ymben.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/02/2023]
Abstract
Short-chain esters have broad utility as flavors, fragrances, solvents, and biofuels. Controlling selectivity of ester microbial biosynthesis has been an outstanding metabolic engineering problem. In this study, we enabled the de novo fermentative microbial biosynthesis of butyryl-CoA-derived designer esters (e.g., butyl acetate, ethyl butyrate, butyl butyrate) in Escherichia coli with controllable selectivity. Using the modular design principles, we generated the butyryl-CoA-derived ester pathways as exchangeable production modules compatible with an engineered chassis cell for anaerobic production of designer esters. We designed these modules derived from an acyl-CoA submodule (e.g., acetyl-CoA, butyryl-CoA), an alcohol submodule (e.g., ethanol, butanol), a cofactor regeneration submodule (e.g., NADH), and an alcohol acetyltransferase (AAT) submodule (e.g., ATF1, SAAT) for rapid module construction and optimization by manipulating replication (e.g., plasmid copy number), transcription (e.g., promoters), translation (e.g., codon optimization), pathway enzymes, and pathway induction conditions. To further enhance production of designer esters with high selectivity, we systematically screened various strategies of protein solubilization using protein fusion tags and chaperones to improve the soluble expression of multiple pathway enzymes. Finally, our engineered ester-producing strains could achieve 19-fold increase in butyl acetate production (0.64 g/L, 96% selectivity), 6-fold increase in ethyl butyrate production (0.41 g/L, 86% selectivity), and 13-fold increase in butyl butyrate production (0.45 g/L, 54% selectivity) as compared to the initial strains. Overall, this study presented a generalizable framework to engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designer esters from renewable feedstocks.
Collapse
|
6
|
Boontip T, Waditee-Sirisattha R, Honda K, Napathorn SC. Strategies for Poly(3-hydroxybutyrate) Production Using a Cold-Shock Promoter in Escherichia coli. Front Bioeng Biotechnol 2021; 9:666036. [PMID: 34150730 PMCID: PMC8211017 DOI: 10.3389/fbioe.2021.666036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The present study attempted to increase poly(3-hydroxybutyrate) (PHB) production by improving expression of PHB biosynthesis operon derived from Cupriavidus necator strain A-04 using various types of promoters. The intact PHB biosynthesis operon of C. necator A-04, an alkaline tolerant strain isolated in Thailand with a high degree of 16S rRNA sequence similarity with C. necator H16, was subcloned into pGEX-6P-1, pColdI, pColdTF, pBAD/Thio-TOPO, and pUC19 (native promoter) and transformed into Escherichia coli JM109. While the phaCA–04 gene was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that the cold-shock cspA promoter enhanced phaCA–04 protein expression and the chaperone function of TF play critical roles in increasing soluble phaCA–04 protein. Induction strategies and parameters in flask experiments were optimized to obtain high expression of soluble PhaCA–04 protein with high YP/S and PHB productivity. Soluble phaCA–04 was purified through immobilized metal affinity chromatography (IMAC). The results demonstrated that the soluble phaCA–04 from pColdTF-phaCABA–04 was expressed at a level of as high as 47.4 ± 2.4% of total protein and pColdTF-phaCABA–04 enhanced soluble protein formation to approximately 3.09−4.1 times higher than that from pColdI-phaCABA–04 by both conventional method and short induction method developed in this study. Cultivation in a 5-L fermenter led to PHB production of 89.8 ± 2.3% PHB content, a YP/S value of 0.38 g PHB/g glucose and a productivity of 0.43 g PHB/(L.h) using pColdTF-phaCABA–04. The PHB film exhibited high optical transparency and possessed Mw 5.79 × 105 Da, Mn 1.86 × 105 Da, and PDI 3.11 with normal melting temperature and mechanical properties.
Collapse
Affiliation(s)
- Thanawat Boontip
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Mizuno S, Sakurai T, Nabasama M, Kawakami K, Hiroe A, Taguchi S, Tsuge T. The influence of medium composition on the microbial secretory production of hydroxyalkanoate oligomers. J GEN APPL MICROBIOL 2021; 67:134-141. [PMID: 33952784 DOI: 10.2323/jgam.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the aid of a chain transfer (CT) reaction, hydroxyalkanoate (HA) oligomers can be secreted by recombinant Escherichia coli carrying the gene encoding a lactate-polymerizing enzyme (PhaC1PsSTQK) using Luria-Bertani (LB) medium supplemented with a carbon source and CT agent. In this study, HA oligomers were produced through microbial secretion using a mineral-based medium instead of LB medium, and the impact of medium composition on HA oligomer secretion was investigated. The focused targets were medium composition and NaCl concentration related to osmotic conditions. It was observed that 4.21 g/L HA oligomer was secreted by recombinant E. coli in LB medium, but the amount secreted in the mineral-based modified R (MR) medium was negligible. However, when the MR medium was supplemented with 5 g/L yeast extract, 3.75 g/L HA oligomer was secreted. This can be accounted for by the enhanced expression and activity of PhaC1PsSTQK upon supplementation with growth-activated nutrients as supplementation with yeast extract also promoted cell growth and intracellular growth-associated polymer accumulation. Furthermore, upon adding 10 g/L NaCl to the yeast extract-supplemented MR medium, HA oligomer secretion increased to 6.86 g/L, implying that NaCl-induced osmotic pressure promotes HA oligomer secretion. These findings may facilitate the secretory production of HA oligomers using an inexpensive medium.
Collapse
Affiliation(s)
- Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology.,MIRAI, JST
| | - Tetsuo Sakurai
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Mikito Nabasama
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Kyouhei Kawakami
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture.,MIRAI, JST
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology.,MIRAI, JST
| |
Collapse
|
8
|
Pu N, Wang MR, Li ZJ. Characterization of polyhydroxyalkanoate synthases from the marine bacterium Neptunomonas concharum JCM17730. J Biotechnol 2020; 319:69-73. [PMID: 32526261 DOI: 10.1016/j.jbiotec.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
Neptunomonas concharum JCM17730 was isolated from an ark clam sample and characterized as a mesophilic bacterium. The genome of N. concharum JCM17730 contains thirteen genes related to polyhydroxyalkanoates (PHA) metabolism. Three PHA synthase encoding genes were identified, and phylogenetic analysis of enzyme sequences suggested the presence of two class I PHA synthases and one class III PHA synthase. The PHA synthases of N. concharum were heterologously expressed with acetyl-CoA acetyltransferase and acetoacetyl-CoA reductase in Escherichia coli to confirm the catalytic activity of each PHA synthase. Recombinants harboring different PHA synthase exhibit important distinctions in poly-3-hydroxybutyrate synthesis ability under various temperatures. Decreased cultivation temperature (≤30 °C) significantly improved PHB titer and content. This is the first report on characterization of PHA synthases from the marine genus Neptunomonas and would provide molecular basis for PHA production using Neptunomonas species.
Collapse
Affiliation(s)
- Nan Pu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng-Ru Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng-Jun Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Shi M, Cheng T, Zou H, Zhang N, Huang J, Xian M. The Preparation and Biomedical Application of Biopolyesters. Mini Rev Med Chem 2019; 20:331-340. [PMID: 31644401 DOI: 10.2174/1389557519666191015211156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
Biopolyesters represent a large family that can be obtained by polymerization of variable bio-derived hydroxyalkanoic acids. The monomer composition, molecular weight of the biopolyesters can affect the properties and applications of the polyesters. The majority of biopolyesters can either be biosynthesized from natural biofeedstocks or semi-synthesized (biopreparation of monomers followed by the chemical polymerization of the monomers). With the fast development of synthetic biology and biosynthesis techniques, the biosynthesis of unnatural biopolyesters (like lactate containing and aromatic biopolyesters) with improved performance and function has been a tendency. The presence of novel preparation methods, novel monomer composition has also significantly affected the properties, functions and applications of the biopolyesters. Due to the properties of biodegradability and biocompatibility, biopolyesters have great potential in biomedical applications (as implanting or covering biomaterials, drug carriers). Moreover, biopolyesters can be fused with other functional ingredients to achieve novel applications or improved functions. This study summarizes and compares the updated preparation methods of representative biopolyesters, also introduces the current status and future trends of their applications in biomedical fields.
Collapse
Affiliation(s)
- Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Tao Cheng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
10
|
Malekian R, Sima S, Jahanian-Najafabadi A, Moazen F, Akbari V. Improvement of soluble expression of GM-CSF in the cytoplasm of Escherichia coli using chemical and molecular chaperones. Protein Expr Purif 2019; 160:66-72. [PMID: 30998976 DOI: 10.1016/j.pep.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
The most common approaches to improve soluble expression of heterologous proteins are applications of molecular chaperones such as DnaK, DnaJ, GrpE, GroEL and GroES. The aim of present study was to enhance soluble expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in Escherichia coli by different approaches including modification of cultivation and induction conditions, and thermally, genetically and chemically enhancement of expression of cellular chaperones. To genetically enhance amount of molecular chaperones, co-expression of pET28-GM-CSF and pKJE7 plasmids was performed. The soluble expressed protein was affinity purified and subjected to endotoxin removal. Co-expression with molecular chaperones significantly increased soluble expression of GM-CSF. Addition of chemical chaperones and osmolytes like NaCl (0.5 M), sucrose (0.5 M), sorbitol (0.5 M) and MgCl2 (1 mM) to growing media could improve solubility of GM-CSF. Biological activity of purified GM-CSF was confirmed based on its proliferative effect on HL-60 cell lines. The approach developed in the present study can be applied to improve soluble expression of other recombinant protein proteins.
Collapse
Affiliation(s)
- Raziyeh Malekian
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Sima
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Moazen
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Li Y, Zhou Z, Chen Z. High-level production of ChSase ABC I by co-expressing molecular chaperones in Escherichia coli. Int J Biol Macromol 2018; 119:779-784. [DOI: 10.1016/j.ijbiomac.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
|
12
|
Dong W, Liu K, Liu J, Shi Z, Xin F, Zhang W, Ma J, Wu H, Wang F, Jiang M. Expression and characterization of the key enzymes involved in 2-benzoxazolinone degradation by Pigmentiphaga sp. DL-8. BIORESOURCE TECHNOLOGY 2018; 248:153-159. [PMID: 28684178 DOI: 10.1016/j.biortech.2017.06.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the key enzymes involved in 2-benzoxazolinone (BOA) degradation by Pigmentiphaga sp. DL-8 were further verified and characterized in Escherichia coli. By codon optimization and co-expression of molecular chaperones in a combined strategy, recombinant BOA amidohydrolase (rCbaA) and 2-aminophenol (2-AP) 1,2-dioxygenase (rCnbCαCβ) were expressed and purified with the highest activity of 1934.6U·mgprotein-1 and 32.80U·mgprotein-1, respectively. BOA could be hydrolyzed to 2AP by rCbaA, which was further transformed to picolinic acid by rCnbCαCβ based on identified catalytic product. The optimal pH and temperature for rCbaA are 9.0 and 55°C with excellent stability for catalytic environments, and the residual activity was >50% after incubation at temperatures <45°C or at pH between 6.0 and 10.0 for 24h. On the contrary, rCnbCαCβ composed of α-subunit (33kDa) and β-subunit (38kDa) showed poor stability against environmental factors, including temperature, pH, metal ions and chemicals.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
13
|
Sharma A, Chaudhuri TK. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin. Microb Cell Fact 2017; 16:173. [PMID: 28982367 PMCID: PMC5629808 DOI: 10.1186/s12934-017-0784-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Human serum albumin (HSA)-one of the most demanded therapeutic proteins with immense biotechnological applications-is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple subst-rates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. RESULTS In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~ 60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. CONCLUSION In the present case, we have filled in the gap in the literature by exploiting the E. coli host system, which is fast-growing and scalable at the low cost of fermentation, as a microbial factory for the enhancement of functional production of rHSA, a crucial protein for therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Ashima Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
14
|
Zou H, Shi M, Zhang T, Li L, Li L, Xian M. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production. Appl Microbiol Biotechnol 2017; 101:7417-7426. [DOI: 10.1007/s00253-017-8485-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 01/30/2023]
|
15
|
Dangi AK, Rishi P, Tewari R. Enhancing the Yield of Active Recombinant Chitobiase by Physico-Chemical and In Vitro Refolding Studies. Protein J 2016; 35:72-9. [PMID: 26831864 DOI: 10.1007/s10930-016-9648-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chitobiase (CHB) is an important enzyme for the production of N-acetyl-D-glucosamine from the chitin biopolymer in the series of chitinolytic enzymes. Majority of over-expressed CHB (58%) in E. coli expression system led to formation of inclusion bodies. The production and soluble yield of active CHB was enhanced by co-expression with GroEL/ES chaperonin, optimizing culture conditions and solubilization followed by refolding of remaining inactive chitobiase present in the form of inclusion bodies. The growth of recombinant E. coli produced 42% CHB in soluble form and the rest (~58%) as inclusion bodies. The percentage of active CHB was enhanced to 71% by co-expression with GroEL/ES chaperonin system and optimizing culture conditions (37 °C, 200 rpm, IPTG--0.5 mM, L-arabinose--13.2 mM). Of the remaining inactive CHB present in inclusion bodies, 37% could be recovered in active form using pulsatile dilution method involving denaturants (2 M urea, pH 12.5) and protein refolding studies (1.0 M L-arginine, 5% glycerol). Using combinatorial approach, 80% of the total CHB expressed, could be recovered from cells grown in one litre of LB medium is a step forward in replacing hazardous chemical technology by biotechnological process for the production of NAG from chitinous waste.
Collapse
Affiliation(s)
- Arun Kumar Dangi
- Department of Microbial Biotechnology, Panjab University, Sector 14, Chandigarh, 160014, India.
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India.
| | - Rupinder Tewari
- Department of Microbial Biotechnology, Panjab University, Sector 14, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Tsuge T. Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym J 2016. [DOI: 10.1038/pj.2016.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Pan D, Zha X, Yu X, Wu Y. Enhanced expression of soluble human papillomavirus L1 through coexpression of molecular chaperonin in Escherichia coli. Protein Expr Purif 2015; 120:92-8. [PMID: 26732286 DOI: 10.1016/j.pep.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
The major recombinant capsid protein L1 of human papillomavirus (HPV) is widely used to produce HPV prophylactic vaccines. However, the quality of soluble and active expression of L1 in Escherichia coli was below the required amount. Coexpression with the chaperonin GroEL/ES enhanced L1 expression. Overexpressing GroEL/ES increased the soluble expression level of glutathione S-transferase-fused L1 (GST-L1) by approximately ∼3 fold. The yield of HPV type 16 L1 pentamer (L1-p) was ∼2 fold higher than that in a single expression system after purification through size-exclusion chromatograph. The expression and purification conditions were then optimized. The yield of L1-p was enhanced by ∼5 fold, and those of HPV types 18 and 58 L1-p increased by ∼3 and ∼2 folds, respectively, compared with that in the single expression system. Coexpressing the mono-site mutant HPV16 L1 L469A with GroEL/ES increased L1-p yield by ∼7 fold compared with strains expressing the wild-type L1 gene. L1-p was then characterized using circular dichroism spectra, UV-vis cloud point, dynamic light scattering and transmission electron microscope analyses. Results indicated that the conformation and biological characteristics of L1-p were identical to that of native L1. Hence, overexpressing chaperonin in E. coli can increase the expression level of GST-L1 and L1-p production after purification. This finding may contribute to the development of a platform for prophylactic HPV vaccines.
Collapse
Affiliation(s)
- Dong Pan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | - Xiao Zha
- Sichuan Tumor Hospital & Institute, 55, Renmin Nanlu, Section 4, Chengdu, 610041, China
| | - Xianghui Yu
- The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
18
|
Goyal M, Chaudhuri TK. GroEL–GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli. Int J Biochem Cell Biol 2015; 64:277-86. [DOI: 10.1016/j.biocel.2015.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
|
19
|
Kazaks A, Makrecka-Kuka M, Kuka J, Voronkova T, Akopjana I, Grinberga S, Pugovics O, Tars K. Expression and purification of active, stabilized trimethyllysine hydroxylase. Protein Expr Purif 2014; 104:1-6. [PMID: 25220864 DOI: 10.1016/j.pep.2014.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022]
|
20
|
Yang Y, Huang L, Wang J, Xu Z. Expression, characterization and mutagenesis of an FAD-dependent glucose dehydrogenase from Aspergillus terreus. Enzyme Microb Technol 2014; 68:43-9. [PMID: 25435504 DOI: 10.1016/j.enzmictec.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022]
Abstract
An FAD-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus terreus NIH2624 was expressed in Escherichia coli with a yield of 228±16U/L of culture. Co-expression with chaperones DnaK/DnaJ/GrpE and osmotic stress induced by simple carbon sources enhanced productivity significantly, improving the yield to 23883±563U/L after optimization. FAD-GDH was purified in two steps with the specific activity of 604U/mg. Using d-glucose as substrate, the optimal pH and temperature for FAD-GDH were determined to be 7.5 and 50°C, respectively. Activity was stable across the pH range 3.5-9.0, and the half-life was 52min at 42°C. Km and Vmax were calculated as 86.7±5.3mM and 928±35U/mg, and the molecular weight was approximately 65.6kDa based on size exclusion chromatography, indicating a monomeric structure. The 3D structure of FAD-GDH was simulated by homology modelling using the structure of A. niger glucose oxidase (GOD) as template. From the model, His551, His508, Asn506 and Arg504 were identified as key residues, and their importance was verified by site-directed mutagenesis. Furthermore, three additional mutants (Arg84Ala, Tyr340Phe and Tyr406Phe) were generated and all exhibited a higher degree of substrate specificity than the native enzyme. These results extend our understanding of the structure and function of FAD-GDH, and could assist potential commercial applications.
Collapse
Affiliation(s)
- Yufeng Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China; Zunyi Medical College (Zhuhai Campus), Zhuhai, 519041, PR China
| | - Lei Huang
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhinan Xu
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
21
|
Castellanos-Mendoza A, Castro-Acosta RM, Olvera A, Zavala G, Mendoza-Vera M, García-Hernández E, Alagón A, Trujillo-Roldán MA, Valdez-Cruz NA. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. Microb Cell Fact 2014; 13:137. [PMID: 25213001 PMCID: PMC4177172 DOI: 10.1186/s12934-014-0137-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Inclusion bodies (IBs) are aggregated proteins that form clusters when protein is overexpressed in heterologous expression systems. IBs have been considered as non-usable proteins, but recently they are being used as functional materials, catalytic particles, drug delivery agents, immunogenic structures, and as a raw material in recombinant therapeutic protein purification. However, few studies have been made to understand how culture conditions affect the protein aggregation and the physicochemical characteristics that lead them to cluster. The objective of our research was to understand how pH affects the physicochemical properties of IBs formed by the recombinant sphingomyelinase-D of tick expressed in E. coli BL21-Gold (DE3) by evaluating two pH culture strategies. RESULTS Uncontrolled pH culture conditions favored recombinant sphingomyelinase-D aggregation and IB formation. The IBs of sphingomyelinase-D produced under controlled pH at 7.5 and after 24 h were smaller (<500 nm) than those produced under uncontrolled pH conditions (>500 nm). Furthermore, the composition, conformation and β-structure formation of the aggregates were different. Under controlled pH conditions in comparison to uncontrolled conditions, the produced IBs presented higher resistance to denaturants and proteinase-K degradation, presented β-structure, but apparently as time passes the IBs become compacted and less sensitive to amyloid dye binding. CONCLUSIONS The manipulation of the pH has an impact on IB formation and their physicochemical characteristics. Particularly, uncontrolled pH conditions favored the protein aggregation and sphingomyelinase-D IB formation. The evidence may lead to find methodologies for bioprocesses to obtain biomaterials with particular characteristics, extending the application possibilities of the inclusion bodies.
Collapse
|