1
|
Durante-Rodríguez G, de Francisco-Polanco S, García JL, Díaz E. Characterization of a MHYT domain-coupled transcriptional regulator that responds to carbon monoxide. Nucleic Acids Res 2024; 52:8849-8860. [PMID: 38966994 PMCID: PMC11347149 DOI: 10.1093/nar/gkae575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
The MHYT domain, identified over two decades ago for its potential to detect diatomic gases like CO, O2 or NO, has awaited experimental validation as a protein sensory domain. Here, we characterize the MHYT domain-containing transcriptional regulator CoxC, which governs the expression of the cox genes responsible for aerobic CO oxidation in the carboxidotrophic bacterium Afipia carboxidovorans OM5. The C-terminal LytTR-type DNA-binding domain of CoxC binds to an operator region consisting of three direct repeats sequences overlapping the -35 box at the target PcoxB promoter, which is consistent with the role of CoxC as a specific transcriptional repressor of the cox genes. Notably, the N-terminal transmembrane MHYT domain endows CoxC with the ability to sense CO as an effector molecule, as demonstrated by the relief of CoxC-mediated repression and binding to the PcoxB promoter upon CO exposure. Furthermore, copper serves as the essential divalent cation for the interaction of CO with CoxC, thereby confirming previous hypothesis regarding the role of copper in the gas-sensing mechanism of MHYT domains. CoxC represents the prototype of a novel subfamily of single-component LytTR transcriptional regulators, characterized by the fusion of a DNA-binding domain with a membrane-bound MHYT sensor domain.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| | - Sofía de Francisco-Polanco
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| | - José Luis García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| |
Collapse
|
2
|
Krukenberg V, Kohtz AJ, Jay ZJ, Hatzenpichler R. Methyl-reducing methanogenesis by a thermophilic culture of Korarchaeia. Nature 2024; 632:1131-1136. [PMID: 39048017 DOI: 10.1038/s41586-024-07829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Methanogenesis mediated by archaea is the main source of methane, a strong greenhouse gas, and thus is critical for understanding Earth's climate dynamics. Recently, genes encoding diverse methanogenesis pathways have been discovered in metagenome-assembled genomes affiliated with several archaeal phyla1-7. However, all experimental studies on methanogens are at present restricted to cultured representatives of the Euryarchaeota. Here we show methanogenic growth by a member of the lineage Korarchaeia within the phylum Thermoproteota (TACK superphylum)5-7. Following enrichment cultivation of 'Candidatus Methanodesulfokora washburnenis' strain LCB3, we used measurements of metabolic activity and isotope tracer conversion to demonstrate methanol reduction to methane using hydrogen as an electron donor. Analysis of the archaeon's circular genome and transcriptome revealed unique modifications in the energy conservation pathways linked to methanogenesis, including enzyme complexes involved in hydrogen and sulfur metabolism. The cultivation and characterization of this new group of archaea is critical for a deeper evaluation of the diversity, physiology and biochemistry of methanogens.
Collapse
Affiliation(s)
- Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
3
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Yang JI, Jung HC, Oh HM, Choi BG, Lee HS, Kang SG. NADP + or CO 2 reduction by frhAGB-encoded hydrogenase through interaction with formate dehydrogenase 3 in the hyperthermophilic archaeon Thermococcus onnurineus NA1. Appl Environ Microbiol 2023; 89:e0147423. [PMID: 37966269 PMCID: PMC10734459 DOI: 10.1128/aem.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/23/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.
Collapse
Affiliation(s)
- Ji-in Yang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Hae-Chang Jung
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | | | - Bo Gyoung Choi
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
5
|
Dent MR, Weaver BR, Roberts MG, Burstyn JN. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol 2023; 205:e0033222. [PMID: 37154694 PMCID: PMC10210986 DOI: 10.1128/jb.00332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Carbon monoxide (CO) serves as a source of energy and carbon for a diverse set of microbes found in anaerobic and aerobic environments. The enzymes that bacteria and archaea use to oxidize CO depend upon complex metallocofactors that require accessory proteins for assembly and proper function. This complexity comes at a high energetic cost and necessitates strict regulation of CO metabolic pathways in facultative CO metabolizers to ensure that gene expression occurs only when CO concentrations and redox conditions are appropriate. In this review, we examine two known heme-dependent transcription factors, CooA and RcoM, that regulate inducible CO metabolism pathways in anaerobic and aerobic microorganisms. We provide an analysis of the known physiological and genomic contexts of these sensors and employ this analysis to contextualize known biochemical properties. In addition, we describe a growing list of putative transcription factors associated with CO metabolism that potentially use cofactors other than heme to sense CO.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian R. Weaver
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Madeleine G. Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Bioconversion of CO to formate by artificially designed carbon monoxide:formate oxidoreductase in hyperthermophilic archaea. Commun Biol 2022; 5:539. [PMID: 35660788 PMCID: PMC9166738 DOI: 10.1038/s42003-022-03513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractFerredoxin-dependent metabolic engineering of electron transfer circuits has been developed to enhance redox efficiency in the field of synthetic biology, e.g., for hydrogen production and for reduction of flavoproteins or NAD(P)+. Here, we present the bioconversion of carbon monoxide (CO) gas to formate via a synthetic CO:formate oxidoreductase (CFOR), designed as an enzyme complex for direct electron transfer between non-interacting CO dehydrogenase and formate dehydrogenase using an electron-transferring Fe-S fusion protein. The CFOR-introduced Thermococcus onnurineus mutant strains showed CO-dependent formate production in vivo and in vitro. The maximum formate production rate from purified CFOR complex and specific formate productivity from the bioreactor were 2.2 ± 0.2 μmol/mg/min and 73.1 ± 29.0 mmol/g-cells/h, respectively. The CO-dependent CO2 reduction/formate production activity of synthetic CFOR was confirmed, indicating that direct electron transfer between two unrelated dehydrogenases was feasible via mediation of the FeS-FeS fusion protein.
Collapse
|
7
|
Yang JI, Lee SH, Ryu JY, Lee HS, Kang SG. A Novel NADP-Dependent Formate Dehydrogenase From the Hyperthermophilic Archaeon Thermococcus onnurineus NA1. Front Microbiol 2022; 13:844735. [PMID: 35369452 PMCID: PMC8965080 DOI: 10.3389/fmicb.2022.844735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The genome of the hyperthermophilic archaeon Thermococcus onnurineus NA1 contains three copies of the formate dehydrogenase (FDH) gene, fdh1, fdh2, and fdh3. Previously, we reported that fdh2, clustered with genes encoding the multimeric membrane-bound hydrogenase and cation/proton antiporter, was essential for formate-dependent growth with H2 production. However, the functionality of the other two FDH-coding genes has not yet been elucidated. Herein, we purified and characterized cytoplasmic Fdh3 to understand its functionality. The purified Fdh3 was identified to be composed of a tungsten-containing catalytic subunit (Fdh3A), an NAD(P)-binding protein (Fdh3B), and two Fe-S proteins (Fdh3G1 and Fdh3G2). Fdh3 oxidized formate with specific activities of 241.7 U/mg and 77.4 U/mg using methyl viologen and NADP+ as electron acceptors, respectively. While most FDHs exhibited NAD+-dependent formate oxidation activity, the Fdh3 of T. onnurineus NA1 showed a strong preference for NADP+ over NAD+ as a cofactor. The catalytic efficiency (k cat /K m) of Fdh3 for NADP+ was measured to be 5,281 mM-1 s-1, which is the highest among NADP-dependent FDHs known to date. Structural modeling suggested that Arg204 and Arg205 of Fdh3B may contribute to the stabilization of the 2'-phosphate of NADP(H). Fdh3 could also use ferredoxin as an electron acceptor to oxidize formate with a specific activity of 0.83 U/mg. Furthermore, Fdh3 showed CO2 reduction activity using reduced ferredoxin or NADPH as an electron donor with a specific activity of 0.73 U/mg and 1.0 U/mg, respectively. These results suggest a functional role of Fdh3 in disposing of reducing equivalents by mediating electron transfer between formate and NAD(P)H or ferredoxin.
Collapse
Affiliation(s)
- Ji-In Yang
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Seong Hyuk Lee
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Ji-Young Ryu
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Park GW, Moon M, Park JH, Jo JH, Kim HJ, Lee JY, Lee HS, Lee JP, Lee S, Lee SY, Lee J, Na JG, Kim MS, Lee JS. Improving hydrogen production by pH adjustment in pressurized gas fermentation. BIORESOURCE TECHNOLOGY 2022; 346:126605. [PMID: 34953994 DOI: 10.1016/j.biortech.2021.126605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Gas fermentation utilizes syngas converted from biomass or waste as feedstock. A bubble column reactor for pressurizing was designed to increase the mass transfer rate between gas and liquid, and reduce energy consumption by medium agitation. Thermococcus onnurineus, a hydrogenic CO-oxidizer, was cultured initially under ambient pressure with the initial inlet gas composition; 60% CO and 40% N2. The maximum H2 productivity was 363 mmol/l/h, without pH adjustment. When additional pressure was applied, the pH rapidly declined; this may be attributed to the increased CO2 solubility under pressure. By controlling pH, H2 productivity increased up to 450 mmol/l/h; which is comparable to the previously reported H2 productivity in a continuous stirred tank reactor. The results may suggest energy saving potentials of bubble column reactors in gas fermentation. This finding may be applied to other gas fermentation processes, as syngas itself contains CO2 and many microbial processes also release CO2.
Collapse
Affiliation(s)
- Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jeong-Ho Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea; Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Hwan Jo
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea; Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyouck Ju Kim
- Energy ICT Convergence Research Department, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Jae Yong Lee
- Energy ICT Convergence Research Department, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Marine Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
9
|
Biohydrogen production beyond the Thauer limit by precision design of artificial microbial consortia. Commun Biol 2020; 3:443. [PMID: 32796915 PMCID: PMC7429504 DOI: 10.1038/s42003-020-01159-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023] Open
Abstract
Dark fermentative biohydrogen (H2) production could become a key technology for providing renewable energy. Until now, the H2 yield is restricted to 4 moles of H2 per mole of glucose, referred to as the "Thauer limit". Here we show, that precision design of artificial microbial consortia increased the H2 yield to 5.6 mol mol-1 glucose, 40% higher than the Thauer limit. In addition, the volumetric H2 production rates of our defined artificial consortia are superior compared to any mono-, co- or multi-culture system reported to date. We hope this study to be a major leap forward in the engineering of artificial microbial consortia through precision design and provide a breakthrough in energy science, biotechnology and ecology. Constructing artificial consortia with this drawing-board approach could in future increase volumetric production rates and yields of other bioprocesses. Our artificial consortia engineering blueprint might pave the way for the development of a H2 production bioindustry.
Collapse
|
10
|
Lee SH, Lee SM, Lee JH, Lee HS, Kang SG. Biological process for coproduction of hydrogen and thermophilic enzymes during CO fermentation. BIORESOURCE TECHNOLOGY 2020; 305:123067. [PMID: 32120234 DOI: 10.1016/j.biortech.2020.123067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
To develop a thermophilic cell factory system that uses CO gas, we attempted to engineer a hyperthermophilic carboxydotrophic hydrogenic archaeon Thermococcus onnurineus NA1 to be capable of producing thermophilic enzymes along with hydrogen (H2). The mutant strains 156T-AM and 156T-POL were constructed to have another copy of a gene encoding α-amylase or DNA polymerase, respectively, and exhibited growth rates and H2 production rates distinct from those of the parental strain, 156T, in gas fermentation using 100% CO or coal-gasified syngas. Purified α-amylase displayed starch-hydrolyzing activity, and whole-cell extracts of 156T-AM showed saccharifying activity for potato peel waste. PCR amplification was used to demonstrate that purified DNA polymerase was free from bacterial DNA contamination, in contrast to commercial bacteria-made enzymes. This study demonstrated that this archaeal strain could coproduce enzymes and H2 using CO-containing gas, providing a basis for cell factories to upcycle industrial waste gas.
Collapse
Affiliation(s)
- Seong Hyuk Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Sung-Mok Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Marine Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Marine Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Marine Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
The two CO-dehydrogenases of Thermococcus sp. AM4. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148188. [PMID: 32209322 DOI: 10.1016/j.bbabio.2020.148188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Ni-containing CO-dehydrogenases (CODHs) allow some microorganisms to couple ATP synthesis to CO oxidation, or to use either CO or CO2 as a source of carbon. The recent detailed characterizations of some of them have evidenced a great diversity in terms of catalytic properties and resistance to O2. In an effort to increase the number of available CODHs, we have heterologously produced in Desulfovibrio fructosovorans, purified and characterized the two CooS-type CODHs (CooS1 and CooS2) from the hyperthermophilic archaeon Thermococcus sp. AM4 (Tc). We have also crystallized CooS2, which is coupled in vivo to a hydrogenase. CooS1 and CooS2 are homodimers, and harbour five metalloclusters: two [Ni4Fe-4S] C clusters, two [4Fe-4S] B clusters and one interfacial [4Fe-4S] D cluster. We show that both are dependent on a maturase, CooC1 or CooC2, which is interchangeable. The homologous protein CooC3 does not allow Ni insertion in either CooS. The two CODHs from Tc have similar properties: they can both oxidize and produce CO. The Michaelis constants (Km) are in the microM range for CO and in the mM range (CODH 1) or above (CODH 2) for CO2. Product inhibition is observed only for CO2 reduction, consistent with CO2 binding being much weaker than CO binding. The two enzymes are rather O2 sensitive (similarly to CODH II from Carboxydothermus hydrogenoformans), and react more slowly with O2 than any other CODH for which these data are available.
Collapse
|
12
|
Prathiviraj R, Chellapandi P. Modeling a global regulatory network of Methanothermobacter thermautotrophicus strain ∆H. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s13721-020-0223-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Kochetkova TV, Mardanov AV, Sokolova TG, Bonch-Osmolovskaya EA, Kublanov IV, Kevbrin VV, Beletsky AV, Ravin NV, Lebedinsky AV. The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H2 production. Syst Appl Microbiol 2020; 43:126064. [DOI: 10.1016/j.syapm.2020.126064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
|
14
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Formulation of a Low-cost Medium for Improved Cost-effectiveness of Hydrogen Production by Thermococcus onnurineus NA1. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0240-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Fukuyama Y, Omae K, Yoshida T, Sako Y. Transcriptome analysis of a thermophilic and hydrogenogenic carboxydotroph Carboxydothermus pertinax. Extremophiles 2019; 23:389-398. [PMID: 30941583 PMCID: PMC6557876 DOI: 10.1007/s00792-019-01091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
A thermophilic and hydrogenogenic carboxydotroph, Carboxydothermus pertinax, performs hydrogenogenic CO metabolism in which CODH-II couples with distally encoded ECH. To enhance our knowledge of its hydrogenogenic CO metabolism, we performed whole transcriptome analysis of C. pertinax grown under 100% CO or 100% N2 using RNA sequencing. Of the 2577 genes, 36 and 64 genes were differentially expressed genes (DEGs) with false discovery rate adjusted P value < 0.05 when grown under 100% CO or 100% N2, respectively. Most of the DEGs were components of 23 gene clusters, suggesting switch between metabolisms via intensive expression changes in a relatively low number of gene clusters. Of the 9 significantly expressed gene clusters under 100% CO, CODH-II and ECH gene clusters were found. Only the ECH gene cluster was regulated by the CO-responsive transcriptional factor CooA, suggesting that others were separately regulated in the same transcriptional cascade as the ECH gene cluster. Of the 14 significantly expressed gene clusters under 100% N2, ferrous iron transport gene cluster involved in anaerobic respiration and prophage region were found. Considering that the expression of the temperate phage was strictly repressed under 100% CO, hydrogenogenic CO metabolism might be stable for C. pertinax.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kimiho Omae
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
17
|
A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1. Appl Microbiol Biotechnol 2019; 103:3477-3485. [DOI: 10.1007/s00253-019-09724-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022]
|
18
|
Lee SH, Kim MS, Kang SG, Lee HS. Biohydrogen production of obligate anaerobic archaeon Thermococcus onnurineus NA1 under oxic conditions via overexpression of frhAGB-encoding hydrogenase genes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:24. [PMID: 30774712 PMCID: PMC6367845 DOI: 10.1186/s13068-019-1365-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/29/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND The production of biohydrogen (H2) as a promising future fuel in anaerobic hyperthermophiles has attracted great attention because H2 formation is more thermodynamically feasible at elevated temperatures and fewer undesired side products are produced. However, these microbes require anoxic culture conditions for growth and H2 production, thereby necessitating costly and time-consuming physical or chemical methods to remove molecular oxygen (O2). Therefore, the development of an O2-tolerant strain would be useful for industrial applications. RESULTS In this study, we found that the overexpression of frhAGB-encoding hydrogenase genes in Thermococcus onnurineus NA1, an obligate anaerobic archaeon and robust H2 producer, enhanced O2 tolerance. When the recombinant FO strain was exposed to levels of O2 up to 20% in the headspace of a sealed bottle, it showed significant growth. Whole transcriptome analysis of the FO strain revealed that several genes involved in the stress response such as chaperonin β subunit, universal stress protein, peroxiredoxin, and alkyl hydroperoxide reductase subunit C, were significantly up-regulated. The O2 tolerance of the FO strain enabled it to grow on formate and produce H2 under oxic conditions, where prior O2-removing steps were omitted, such as the addition of reducing agent Na2S, autoclaving, and inert gas purging. CONCLUSIONS Via the overexpression of frhAGB genes, the obligate anaerobic archaeon T. onnurineus NA1 gained the ability to overcome the inhibitory effect of O2. This O2-tolerant property of the strain may provide another advantage to this hyperthermophilic archaeon as a platform for biofuel H2 production.
Collapse
Affiliation(s)
- Seong Hyuk Lee
- Korea Institute of Ocean Science and Technology, Busan, 49111 Republic of Korea
| | - Min-Sik Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon, 34129 Republic of Korea
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Busan, 49111 Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Busan, 49111 Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Quitzke V, Fersch J, Seyhan D, Rother M. Selenium-dependent gene expression in Methanococcus maripaludis: Involvement of the transcriptional regulator HrsM. Biochim Biophys Acta Gen Subj 2018; 1862:2441-2450. [DOI: 10.1016/j.bbagen.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
|
20
|
Martinez-Pastor M, Tonner PD, Darnell CL, Schmid AK. Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks. Annu Rev Genet 2018; 51:143-170. [PMID: 29178818 DOI: 10.1146/annurev-genet-120116-023413] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are major contributors to biogeochemical cycles, possess unique metabolic capabilities, and resist extreme stress. To regulate the expression of genes encoding these unique programs, archaeal cells use gene regulatory networks (GRNs) composed of transcription factor proteins and their target genes. Recent developments in genetics, genomics, and computational methods used with archaeal model organisms have enabled the mapping and prediction of global GRN structures. Experimental tests of these predictions have revealed the dynamical function of GRNs in response to environmental variation. Here, we review recent progress made in this area, from investigating the mechanisms of transcriptional regulation of individual genes to small-scale subnetworks and genome-wide global networks. At each level, archaeal GRNs consist of a hybrid of bacterial, eukaryotic, and uniquely archaeal mechanisms. We discuss this theme from the perspective of the role of individual transcription factors in genome-wide regulation, how these proteins interact to compile GRN topological structures, and how these topologies lead to emergent, high-level GRN functions. We conclude by discussing how systems biology approaches are a fruitful avenue for addressing remaining challenges, such as discovering gene function and the evolution of GRNs.
Collapse
Affiliation(s)
| | - Peter D Tonner
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Cynthia L Darnell
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
21
|
Jung HC, Lee SH, Lee SM, An YJ, Lee JH, Lee HS, Kang SG. Adaptive evolution of a hyperthermophilic archaeon pinpoints a formate transporter as a critical factor for the growth enhancement on formate. Sci Rep 2017; 7:6124. [PMID: 28733620 PMCID: PMC5522443 DOI: 10.1038/s41598-017-05424-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/30/2017] [Indexed: 11/26/2022] Open
Abstract
Previously, we reported that the hyperthermophilic archaeon Thermococcus onnurineus NA1 could grow on formate and produce H2. Formate conversion to hydrogen was mediated by a formate-hydrogen lyase complex and was indeed a part of chemiosmotic coupling to ATP generation. In this study, we employed an adaptation approach to enhance the cell growth on formate and investigated molecular changes. As serial transfer continued on formate-containing medium at the serum vial, cell growth, H2 production and formate consumption increased remarkably. The 156 times transferred-strain, WTF-156T, was demonstrated to enhance H2 production using formate in a bioreactor. The whole-genome sequencing of the WTF-156T strain revealed eleven mutations. While no mutation was found among the genes encoding formate hydrogen lyase, a point mutation (G154A) was identified in a formate transporter (TON_1573). The TON_1573 (A52T) mutation, when introduced into the parent strain, conferred increase in formate consumption and H2 production. Another adaptive passage, carried out by culturing repeatedly in a bioreactor, resulted in a strain, which has a mutation in TON_1573 (C155A) causing amino acid change, A52E. These results implicate that substitution of A52 residue of a formate transporter might be a critical factor to ensure the increase in formate uptake and cell growth.
Collapse
Affiliation(s)
- Hae-Chang Jung
- Korea Institute of Ocean Science and Technology, Ansan, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seong Hyuk Lee
- Korea Institute of Ocean Science and Technology, Ansan, Republic of Korea
| | - Sung-Mok Lee
- Korea Institute of Ocean Science and Technology, Ansan, Republic of Korea
| | - Young Jun An
- Korea Institute of Ocean Science and Technology, Ansan, Republic of Korea
| | - Jung-Hyun Lee
- Korea Institute of Ocean Science and Technology, Ansan, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Ansan, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Ansan, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
22
|
Ainala SK, Seol E, Kim JR, Park S. Citrobacter amalonaticus Y19 for constitutive expression of carbon monoxide-dependent hydrogen-production machinery. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:80. [PMID: 28360938 PMCID: PMC5371261 DOI: 10.1186/s13068-017-0770-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Citrobacter amalonaticus Y19 is a good biocatalyst for production of hydrogen (H2) from oxidation of carbon monoxide (CO) via the so-called water-gas-shift reaction (WGSR). It has a high H2-production activity (23.83 mmol H2 g-1 cell h-1) from CO, and can grow well to a high density on various sugars. However, its H2-production activity is expressed only when CO is present as an inducer and in the absence of glucose. RESULTS In order to avoid dependency on CO and glucose, in the present study, the native CO-inducible promoters of WGSR operons (CO dehydrogenase, CODH, and CODH-dependent hydrogenase, CO-hyd) in Y19 were carefully analyzed and replaced with strong and constitutive promoters screened from Y19. One engineered strain (Y19-PR1), selected from three positive ones after screening ~10,000 colonies, showed a similar CO-dependent H2-production activity to that of wild-type Y19, without being affected by glucose and/or CO. Compared with wild-type Y19, transcription of the CODH operon in Y19-PR1 increased 1.5-fold, although that of the CO-hyd operon remained at a similar level. To enhance the activity of CO-Hyd in Y19-PR1, further modifications, including an increase in gene copy number and engineering of the 5' untranslated region, were attempted, but without success. CONCLUSIONS Convenient recombinant Y19-PR1 that expresses CO-dependent H2-production activity without being limited by CO and glucose was obtained.
Collapse
Affiliation(s)
- Satish Kumar Ainala
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan, 609-735 Republic of Korea
| | - Eunhee Seol
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan, 609-735 Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan, 609-735 Republic of Korea
| | - Sunghoon Park
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan, 609-735 Republic of Korea
| |
Collapse
|
23
|
Lee SH, Kim MS, Kim YJ, Kim TW, Kang SG, Lee HS. Transcriptomic profiling and its implications for the H 2 production of a non-methanogen deficient in the frhAGB-encoding hydrogenase. Appl Microbiol Biotechnol 2017; 101:5081-5088. [PMID: 28341885 DOI: 10.1007/s00253-017-8234-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
The F420-reducing hydrogenase of methanogens functions in methanogenesis by providing reduced coenzyme F420 (F420H2) as an electron donor. In non-methanogens, however, their physiological function has not been identified yet. In this study, we constructed an ΔfrhA mutant, whose frhA gene encoding the hydrogenase α subunit was deleted, in the non-methanogenic Thermococcus onnurineus NA1 as a model organism. There was no significant difference in the formate-dependent growth between the mutant and the wild-type strains. Interestingly, the mutation in the frhA gene affected the expression of genes involved in various cellular functions such as H2 oxidation, chemotactic signal transduction, and carbon monoxide (CO) metabolism. Among these genes, the CO oxidation gene cluster, enabling CO-dependent growth and H2 production, showed a 2.8- to 7.0-fold upregulation by microarray-based whole transcriptome expression profiling. The levels of proteins produced by this gene cluster were also significantly increased not only under the formate condition but also under the CO condition. In a controlled bioreactor, where 100% CO was continuously fed, the ΔfrhA mutant exhibited significant increases in cell growth (2.8-fold) and H2 production (3.4-fold). These findings strongly imply that this hydrogenase is functional in non-methanogens and is related to various cellular metabolic processes through an unidentified mechanism. An understanding of the mechanism by which the frhA gene deletion affected the expression of other genes will provide insights that can be applied to the development of strategies for the enhancement of H2 production using CO as a substrate.
Collapse
Affiliation(s)
- Seong Hyuk Lee
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Min-Sik Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Yun Jae Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Tae Wan Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
24
|
Lee JH, Park SW, Kim YM, Oh JI. Identification and characterization of the genes encoding carbon monoxide dehydrogenase in Terrabacter carboxydivorans. Res Microbiol 2017; 168:431-442. [PMID: 28161485 DOI: 10.1016/j.resmic.2017.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 11/28/2022]
Abstract
Terrabacter carboxydivorans is able to grow aerobically at low concentrations of carbon monoxide (CO) as a sole source of carbon and energy. The genes for carbon monoxide dehydrogenase (CO-DH) were cloned from T. carboxydivorans and analyzed. The operon encoding T. carboxydivorans CO-DH was composed of three structural genes with the transcriptional order of cutB, cutC and cutA, as well as an additional accessory gene (orf4). Phylogenetic analysis of CutA revealed that T. carboxydivorans CO-DH was classified into a group distinct from previously characterized CO-DHs. Expression of antisense RNA for the cutB or cutA gene in T. carboxydivorans led to a decrease in CO-DH activity, confirming that cutBCA genes are the functional genes encoding CO-DH. The CO-DH operon was expressed even in the absence of CO and further inducible by CO. In addition, CO-DH synthesis was increased in the stationary phase compared to the exponential phase during heterotrophic growth on glucose and glycerol. Point mutations of a partially inverted repeat sequence (TCGGA-N6-GCCCA) in the upstream region of the cutB gene almost abolished expression of the CO-DH operon, indicating that the inverted-repeat sequence might be a cis-acting regulatory site for the positive regulation of the CO-DH operon.
Collapse
Affiliation(s)
- Jae Ho Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sae Woong Park
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Young Min Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
25
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
26
|
Kozhevnikova DA, Taranov EA, Lebedinsky AV, Bonch-Osmolovskaya EA, Sokolova TG. Hydrogenogenic and sulfidogenic growth of Thermococcus archaea on carbon monoxide and formate. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716040135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters. Sci Rep 2016; 6:24538. [PMID: 27087658 PMCID: PMC4834489 DOI: 10.1038/srep24538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators.
Collapse
|
28
|
Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis. Sci Rep 2016; 6:22896. [PMID: 26975345 PMCID: PMC4791640 DOI: 10.1038/srep22896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/23/2016] [Indexed: 01/03/2023] Open
Abstract
The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. In this study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.
Collapse
|
29
|
Liu Y, Wan J, Han S, Zhang S, Luo G. Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture. BIORESOURCE TECHNOLOGY 2016; 202:1-7. [PMID: 26692523 DOI: 10.1016/j.biortech.2015.11.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 05/28/2023]
Abstract
A new method for the conversion of CO to H2 was developed by anaerobic mixed culture in the current study. Higher CO consumption rate was obtained by anaerobic granular sludge (AGS) compared to waste activated sludge (WAS) at 55 °C and pH 7.5. However, H2 was the intermediate and CH4 was the final product. Fermentation at pH 5.5 by AGS inhibited CH4 production, while the lower CO consumption rate (50% of that at pH 7.5) and the production of acetate were found. Fermentation at pH 7.5 with the addition of chloroform achieved efficient and selective conversion of CO to H2. Stable and efficient H2 production was achieved in a continuous reactor inoculated with AGS, and gas recirculation was crucial to increase the CO conversion efficiency. Microbial community analysis showed that high abundance (44%) of unclassified sequences and low relative abundance (1%) of known CO-utilizing bacteria Desulfotomaculum were enriched in the reactor.
Collapse
Affiliation(s)
- Yafeng Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433 Shanghai, China; School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Jingjing Wan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433 Shanghai, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433 Shanghai, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433 Shanghai, China.
| |
Collapse
|
30
|
Jeong Y, Jang N, Yasin M, Park S, Chang IS. Intrinsic kinetic parameters of Thermococcus onnurineus NA1 strains and prediction of optimum carbon monoxide level for ideal bioreactor operation. BIORESOURCE TECHNOLOGY 2016; 201:74-79. [PMID: 26638136 DOI: 10.1016/j.biortech.2015.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
This study determines and compares the intrinsic kinetic parameters (Ks and Ki) of selected Thermococcus onnurineus NA1 strains (wild-type (WT), and mutants MC01, MC02, and WTC156T) using the substrate inhibition model. Ks and Ki values were used to find the optimum dissolved CO (CL) conditions inside the reactor. The results showed that in terms of the maximum specific CO consumption rates (qCO(max)) of WT, MC01, MC02, and WTC156T the optimum activities can be achieved by maintaining the CL levels at 0.56mM, 0.52mM, 0.58mM, and 0.75mM, respectively. The qCO(max) value of WTC156T at 0.75mM was found to be 1.5-fold higher than for the WT strain, confirming its superiority. Kinetic modeling was then used to predict the conditions required to maintain the optimum CL levels and high cell concentrations in the reactor, based on the kinetic parameters of the WTC156T strain.
Collapse
Affiliation(s)
- Yeseul Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Nulee Jang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Muhammad Yasin
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Chemical Engineering, COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Shinyoung Park
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|