1
|
Chen X, Zhou Y, Mai Z, Cheng H, Wang X. Mangroves increased the mercury methylation potential in the sediment by producing organic matters and altering microbial methylators community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178457. [PMID: 39799656 DOI: 10.1016/j.scitotenv.2025.178457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation. MeHg concentrations in the sediments from the mangrove interior (1.03 ± 0.34 ng g-1 dw) were significantly higher than those in mudflats (0.26 ± 0.08 ng g-1 dw) and mangrove fringe (0.45 ± 0.10 ng g-1 dw). Mangrove vegetation also promoted the accumulation of organic matters in sediments, which stimulated the growth of methylators, ultimately leading to an elevated MeHg level in the sediment. The data from 16S sequencing and random forest analysis further indicated that the increased abundances of Desulfococcus and Desulfosarcina, which belong to complete-oxidizing microbes with acetyl-CoA pathway and are favored by mangrove vegetation, were the primary contributors to MeHg production. Besides, syntrophic partners of methylators (e.g. Syntrophus) also play a considerable role in MeHg production. The present findings provide a deep understanding of Hg-methylation in mangrove wetlands, and offers valuable insights into of the interactions between mangrove plants and soil microbiome in the presence of Hg contamination.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanwu Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhimao Mai
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Huang X, Huang K, Chen S, Yin X, Pérez-Lorenzo M, Teira E, Fernández E, Wang X. A Diverse Vibrio Community in Ría de Vigo (Northwestern Spain). BIOLOGY 2024; 13:986. [PMID: 39765653 PMCID: PMC11726738 DOI: 10.3390/biology13120986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/15/2025]
Abstract
The genus Vibrio is genetically and ecologically diverse, resulting in severe economic losses in aquacultural macroalgae and animals. Studies on vibrios will contribute to the conservation of aquatic aquaculture in Ría de Vigo (Spain), which is famous for its shellfish farming activity. However, limited research focused on the diversity and distribution of Vibrio spp. in Ría de Vigo has been reported. Here, a slight increase in the abundance of Vibrio spp. was recorded from inshore to the open sea by quantitative PCR (qPCR). Vibrios were more abundant in the free-living (FL) than in the particle-associated (PA) fraction, showing that FL might be their preferential lifestyle. Photobacterium piscicola, Vibrio japonicus and Vibrio harveyi, which are serious pathogens for fish and invertebrates in mariculture, were found to be the dominant species across all samples by high-throughput sequencing and analyses and were mainly affected by stochastic processes. More colony-forming units and species of vibrios were recorded at 16 °C (18 species) than at 28 °C (6 species), and five isolates (5.05% of the total isolates) showed low 16S rRNA gene similarity (<98.65%) to the known strains. The results indicate that culture conditions closer to the in situ temperature may help to isolate more Vibrio species. Our findings may contribute to local aquatic aquaculture research, providing background information and novel insights for management and pathogen prevention in aquaculture, and more studies should focus on Ría de Vigo to acquire novel or pathogenic microbes in the future.
Collapse
Affiliation(s)
- Xiaoyun Huang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.H.); (K.H.); (S.C.); (X.Y.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Keyi Huang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.H.); (K.H.); (S.C.); (X.Y.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Sihan Chen
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.H.); (K.H.); (S.C.); (X.Y.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Xinglan Yin
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.H.); (K.H.); (S.C.); (X.Y.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - María Pérez-Lorenzo
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Galicia, Spain; (M.P.-L.); (E.T.)
| | - Eva Teira
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Galicia, Spain; (M.P.-L.); (E.T.)
| | - Emilio Fernández
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Galicia, Spain; (M.P.-L.); (E.T.)
| | - Xiaolei Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.H.); (K.H.); (S.C.); (X.Y.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Liu M, Yin F, Zhao W, Tian P, Zhou Y, Jia Z, Huang K, Ding Y, Xiao J, Niu W, Wang X. Diversity of Culturable Bacteria from the Coral Reef Areas in the South China Sea and Their Agar-Degrading Abilities. Microorganisms 2024; 12:187. [PMID: 38258013 PMCID: PMC10818321 DOI: 10.3390/microorganisms12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The South China Sea (SCS) is abundant in marine microbial resources with high primary productivity, which is crucial for sustaining the coral reef ecosystem and the carbon cycle. Currently, research on the diversity of culturable bacteria in the SCS is relatively extensive, yet the culturable bacteria in coral reefs has been poorly understood. In this study, we analyzed the bacterial community structure of seawater samples among Daya Bay (Fujian Province), Qionghai (Hainan Province), Xisha Islands, and the southern South China Sea based on culturable methods and detected their abilities for agar degradation. There were 441 bacterial strains, belonging to three phyla, five classes, 43 genera, and 101 species, which were isolated by marine agar 2216E (MA; Becton Dickinson). Strains within Gammaproteobacteria were the dominant group, accounting for 89.6% of the total bacterial isolates. To investigate vibrios, which usually correlated with coral health, 348 isolates were obtained from TCBS agar, and all isolates were identified into three phylum, three classes, 14 orders, 25 families, and 48 genera. Strains belonging to the genus Vibrio had the greatest number (294 strains), indicating the high selectivity of TCBS agar for vibrios. Furthermore, nineteen strains were identified as potentially novel species according to the low 16S rRNA gene similarity (<98.65%), and 28 strains (15 species) had agar-degrading ability. These results indicate a high diversity of culturable bacteria in the SCS and a huge possibility to find novel and agar-degrading species. Our study provides valuable microbial resources to maintain the stability of coral ecosystems and investigate their roles in the marine carbon cycle.
Collapse
Affiliation(s)
- Mei Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Fu Yin
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Wenbin Zhao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Yi Zhou
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Zhiyu Jia
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Keyi Huang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunqi Ding
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Jiaguang Xiao
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Xiaolei Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
4
|
Johnson LA, Dufour SC, Smith DDN, Manning AJ, Ahmed B, Binette S, Hamoutene D. Descriptive analyses of bacterial communities in marine sediment microcosms spiked with fish wastes, emamectin benzoate, and oxytetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115683. [PMID: 37976931 DOI: 10.1016/j.ecoenv.2023.115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
In marine sediments surrounding salmon aquaculture sites, organic matter (OM) enrichment has been shown to influence resident bacterial community composition; however, additional effects on these communities due to combined use of the sea-lice therapeutant emamectin benzoate (EMB) and the widely used antibiotic oxytetracycline (OTC) are unknown. Here, we use sediment microcosms to assess the influence of OM, EMB, and OTC on benthic bacterial communities. Microcosms consisted of mud or sand sediments enriched with OM (fish and feed wastes) and spiked with EMB and OTC at environmentally-relevant concentrations. Samples were collected from initial matrices at the initiation of the trial and after 110 days for 16 S rRNA gene sequencing of the V3-V4 region and microbiome profiling. The addition of OM in both mud and sand sediments reduced alpha diversities; for example, an average of 1106 amplicon sequence variants (ASVs) were detected in mud with no OM addition, while only 729 and 596 ASVs were detected in mud with low OM and high OM, respectively. Sediments enriched with OM had higher relative abundances of Spirochaetota, Firmicutes, and Bacteroidota. For instance, Spirochaetota were detected in sediments with no OM with a relative abundance range of 0.01-1.2%, while in sediments enriched with OM relative abundance varied from 0.16% to 26.1%. In contrast, the addition of EMB (60 ng/g) or OTC (150 ng/g) did not result in distinct taxonomic shifts in the bacterial communities compared to un-spiked sediments during the timeline of this experiment. EMB and OTC concentrations may have been below effective inhibitor concentrations for taxa in these communities; further work should explore gene content and the presence of antibiotic resistance genes (ARGs) in sediment-dwelling bacteria.
Collapse
Affiliation(s)
- Lisa A Johnson
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada
| | - Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Derek D N Smith
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON K1V 1C7, Canada
| | - Anthony J Manning
- Research & Productivity Council (RPC), Fredericton, NB E3B 6Z9, Canada
| | - Bulbul Ahmed
- Research & Productivity Council (RPC), Fredericton, NB E3B 6Z9, Canada
| | - Sherry Binette
- Research & Productivity Council (RPC), Fredericton, NB E3B 6Z9, Canada
| | - Dounia Hamoutene
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada.
| |
Collapse
|
5
|
Zhu S, Wang X, Zhao W, Zhang Y, Song D, Cheng H, Zhang XH. Vertical dynamics of free-living and particle-associated vibrio communities in the eastern tropical Indian Ocean. Front Microbiol 2023; 14:1285670. [PMID: 37928659 PMCID: PMC10620696 DOI: 10.3389/fmicb.2023.1285670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Members of the family Vibrionaceae (vibrios) are widely distributed in estuarine, offshore, and marginal seas and perform an important ecological role in the marine organic carbon cycle. Nevertheless, there is little knowledge about whether vibrios play ecological roles in the oligotrophic pelagic area, which occupies a larger water volume. In this study, we investigated the abundance, diversity, and composition of free-living and particle-associated vibrios and their relationships with environmental factors along the water depth in the eastern tropical Indian Ocean (ETIO). The abundance of vibrios in free-living fractions was significantly higher than that of particle-associated fractions on the surface. Still, both were similar at the bottom, indicating that vibrios may shift from free-living lifestyles on the surface to mixed lifestyles at the bottom. Vibrio-specific 16S rRNA gene amplicon sequencing revealed that Paraphotobacterium marinum and Vibrio rotiferianus were dominant species in the water column, and Vibrio parahaemolyticus (a clinically important pathogen) was recorded in 102 samples of 111 seawater samples in 10 sites, which showed significant difference from the marginal seas. The community composition also shifted, corresponding to different depths in the water column. Paraphotobacterium marinum decreased with depth, and V. rotiferianus OTU1528 was mainly distributed in deeper water, which significantly correlated with the alteration of environmental factors (e.g., temperature, salinity, and dissolved oxygen). In addition to temperature and salinity, dissolved oxygen (DO) was an important factor that affected the composition and abundance of Vibrio communities in the ETIO. Our study revealed the vertical dynamics and preferential lifestyles of vibrios in the ETIO, helping to fill a knowledge gap on their ecological distribution in oligotrophic pelagic areas and fully understanding the response of vibrios in a global warming environment.
Collapse
Affiliation(s)
- Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Fu S, Wang R, Zhang J, Xu Z, Yang X, Yang Q. Temporal variability of microbiome in the different plankton hosts revealed distinct environmental persistence of Vibrio parahaemolyticus in shrimp farms. Microbiol Res 2023; 275:127464. [PMID: 37544074 DOI: 10.1016/j.micres.2023.127464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Plankton-bacteria interactions may play essential roles in maintaining the persistence of pathogenic Vibrio spp. However, the actual plankton host of the toxigenic Vibrio parahaemolyticus that harbors thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) remains unclear. To answer this question, we measured the abundance of toxigenic and nontoxigenic Vibrio parahaemolyticus in different types of plankton by most probable number (MPN)-PCR. We next investigated the dynamics of the microbiomes of rearing water, copepods, Chlorella, four predominant diatom genera (Nitzschia, Melosira, Skeletonema and Chaetoceros) and the gut of the shrimp in two recirculated shrimp farming systems from April to September using high-throughput 16 S rRNA amplicon sequencing. The survival of trh-positive and trh-negative V. parahaemolyticus in seawater and different plankton hosts was examined under low temperature and starvation conditions. The results showed that copepods harbored the highest proportion of trh-positive V. parahaemolyticus, followed by diatoms. Chitinous diatoms (CD) harbored a high proportion of Vibrionaceae, of which a high abundance of V. parahaemolyticus was found in summer. In contrast, Vibrio spp. is rarely found in Chlorella and nonchitinous diatoms. Taxon-specific associations were also observed, including a relatively high abundance of Vibrio and Halodesulfovibrio on copepods and covariation of Aeromonas and Bacillus inside the Chlorella. The survival assays showed that, in comparison to trh-negative V. parahaemolyticus, trh-positive V. parahaemolyticus showed better survival in copepods and CD under starvation conditions and maintained high persistence in the above hosts at low temperature. In conclusion, the results herein suggested that chitinous plankton might provide protection for V. parahaemolyticus, especially trh-positive V. parahaemolyticus, and improve their persistence under harsh conditions. Our study provided in-depth insights into the persistence of V. parahaemolyticus in the environment, which would promote targeted disease prevention measures.
Collapse
Affiliation(s)
- Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education (Dalian Ocean University), Dalian 116023, China.
| | - Rui Wang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education (Dalian Ocean University), Dalian 116023, China
| | - Jin Zhang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education (Dalian Ocean University), Dalian 116023, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen 518081, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xuelin Yang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education (Dalian Ocean University), Dalian 116023, China
| | - Qian Yang
- Center for Microbial Ecology and Technology, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
7
|
Wang W, Zhao W, Cao B, Liu R, Cheng H, Tian P, Xiao J, Xu Z, Wang X, Niu W. Vibrio sinus sp. nov., a marine bacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748685 DOI: 10.1099/ijsem.0.005676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A Gram-straining-negative, facultatively anaerobic, motile by means of a polar flagellum and rod-shaped marine bacterium, designated S4M6T, was isolated from surface seawater collected in Dongshan Bay (Fujian, PR China). Phylogenetic analysis based on 16S rRNA genes, phylogenomic analysis of single-copy gene families and whole genome data indicated that S4M6T represented a member of the genus Vibrio. The closest phylogenetic relatives of S4M6T were Vibrio marisflavi CGMCC 1.8994T (97.8 % 16S rRNA gene sequence pairwise similarity), Vibrio variabilis LMG 25438T (96.9 %), Vibrio gangliei SZDIS-1T (96.2 %) and Vibrio aestivus M22T (96.1 %). The growth of S4M6T occurred at 15-35 °C (optimum 28 °C), pH 4.0-9.0 (optimum 5.0-7.0) and in the presence of 2-5 % (w/v) NaCl (optimum 3 %). The predominant fatty acids (>10 %) are C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The DNA G+C content of the assembled genomic sequences was 43.4 % for S4M6T. Average nucleotide identity (ANI) values between S4M6T and the reference species were lower than the threshold for species delineation (95-96 %); in silico DNA-DNA hybridization further indicated that S4M6T had less than 70 % similarity to its relatives. On the basis of the polyphasic evidence, strain S4M6T is proposed to represent a novel species of the genus Vibrio, for which the name Vibrio sinus sp. nov. is proposed. The type strain is S4M6T (= KCTC 92312T= MCCC 1K06167T).
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Wenbin Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Bingbing Cao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Ronghua Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Haojin Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Ziqing Xu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Xiaolei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| |
Collapse
|
8
|
Characterization of Multiple Alginate Lyases in a Highly Efficient Alginate-Degrading Vibrio Strain and Its Degradation Strategy. Appl Environ Microbiol 2022; 88:e0138922. [PMID: 36409133 PMCID: PMC9746302 DOI: 10.1128/aem.01389-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alginate is an important polysaccharide in the ocean that supports the growth of marine microorganisms. Many widespread Vibrio species possess alginate lyases and can utilize alginate as a carbon source, but the detailed alginate degradation mechanism in Vibrio remains to be further explored. In this study, we obtained a highly efficient alginate-degrading strain, Vibrio pelagius WXL662, with 11 alginate lyases (VpAly-I to -XI) and further elucidated its molecular mechanism of alginate degradation. Three alginate utilization loci (AUL) were identified in different parts of WXL662's genome, comprising six alginate lyases (VpAly-I, -II, -VIII, -IX, -X, and -XI) and other genes related to alginate degradation. Most of the alginate-degrading genes are strongly induced when alginate is provided as the sole carbon source. Ten alginate lyases (VpAly-I to -X) had been purified and characterized, including six from polysaccharide lyase family 7 (PL7), three from PL17, and one from PL6. These recombinant alginate lyases existing in different cellular locations were active at a wide temperature (10 to 50°C) and pH (4.0 to 9.0) range, with different substrate preferences and diverse degradation products, enabling WXL662 to efficiently utilize alginate in a changing marine environment. Importantly, outer membrane vesicles (OMVs) can act as vectors for alginate lyases (VpAly-II, -V, and -VI) in WXL662. Further investigations of public Vibrio genomes revealed that most alginate-degrading vibrios possess one AUL instead of previously reported "scattered" system. These results emphasize the specific alginate degradation strategy in Vibrio pelagius WXL662, which can be used as a model strain to study the ecological importance of effective alginate-degrading vibrios in the ocean. IMPORTANCE Alginate is an important carbon source in the marine environment, and vibrios are major alginate utilizers. Previous studies focused only on the characteristics of individual alginate lyases in vibrios, but few of them discussed the comprehensive alginate-degrading strategy. Here, we depicted the alginate utilization mechanism and its ecological implications of a highly efficient alginate-degrading Vibrio strain, WXL662, which contained 11 alginate lyases with distinct enzymatic characteristics. Importantly, unlike other vibrios with only one alginate utilization locus (AUL) or the previously reported "scattered" system, three AUL were identified in WXL662. Additionally, the involvement of outer membrane vesicles (OMVs) in the secretion of alginate lyases is proposed for the first time.
Collapse
|
9
|
Fine-Scale Structuring of Planktonic Vibrio spp. in the Chinese Marginal Seas. Appl Environ Microbiol 2022; 88:e0126222. [PMID: 36346224 PMCID: PMC9746320 DOI: 10.1128/aem.01262-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vibrio is ubiquitous in marine environments with high metabolism flexibility and genome plasticity. Studies have investigated the ecological distribution of Vibrio spp. in several narrow zones, but a broad scale pattern of distribution and community assembly is still lacking. Here, we elucidated the distribution of Vibrio spp. in seawater along the Chinese marginal seas with a high spatial range. Comparison of Vibrio abundance between 3- and 0.2-μm-pore-size membranes showed distinction in preferential lifestyle. Vibrio spp. in the Yellow Sea (YS) was low in abundance and adopted a particle-associated lifestyle, whereas that in the East China Sea (ECS) and South China Sea (SCS) was more abundant and was likely in a temporary free-living state as a strategy to cope with nutrient limitation. Vibrio community compositions were also separated by sampling area, with different dominant groups in YS (Vibrio chagasii and Vibrio harveyi), ECS and SCS (Vibrio japonicus and V. chagasii). The community niche breadth was significantly wider in ECS and SCS than that of YS. Among species, V. chagasii and V. harveyi had the largest niche breadths likely reflecting strong competitive positions. Stochastic processes played important roles in shaping the geographical pattern of the vibrionic community. Environmental selection (e.g., temperature, salinity, and dissolved oxygen) had a much greater impact on the community in surface than in bottom water. The large proportions of unexplained variations (78.9%) imply complex mechanisms in their community assembly. Our study provides insights into the spatial distribution patterns and underlying assembly mechanisms of Vibrio at a broad spatial scale. IMPORTANCE Vibrio spp. may exert large impacts on biogeochemical cycling in coastal habitats, and their ecological importance has drawn increasing attention. Here, we investigated the spatial distribution pattern and community assembly of Vibrio populations along the Chinese marginal seas, spanning a wide spatial scale. Our results showed that the abundances of the Vibrio population increased with decreasing latitude and their preferential lifestyle differed among adjacent coastal areas. The compositions of Vibrio spp. were also separated by geographical location, which was mainly attributable to stochastic processes. Overall, this work contributes to the understanding of the ecological distribution patterns and the community assembly mechanisms of marine vibrios at a high spatial range. The large proportion of unexplained variations indicates the existence of complex mechanisms in the assembly of vibrionic community which should be considered comprehensively in future.
Collapse
|
10
|
Disentangling the abundance and structure of Vibrio communities in a semi-enclosed Bay with mariculture (Dongshan Bay, Southern China). Comput Struct Biotechnol J 2021; 19:4381-4393. [PMID: 34429854 PMCID: PMC8365367 DOI: 10.1016/j.csbj.2021.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
The genus Vibrio contains a diverse group of heterotrophic bacteria, which are members of ubiquitous and abundant microbial communities in coastal ecosystems. Vibrio has been frequently found in a wide range of marine environments either by employing Vibrio-specific 16S rRNA sequencing or culturing methods. A combination of molecular and cultivation-dependent methods was developed to more precisely discriminate between different members of the genus Vibrio in seawater. This newly developed assay was subsequently applied to characterize Vibrio community composition in surface water at 18 mariculture sites. It Substantially improved the taxonomic resolution of Vibrio species when compared to traditional 16S rRNA analysis. Our qPCR and cultivation analyses revealed that average Vibrio abundance (Vibrio 16S rRNA gene copy numbers: 3.46 × 106 to 6.70 × 106 copies L−1) and live cell numbers (5.65 × 104–5.75 × 105 cfu mL−1) are significantly related to pH. Total bacteria and Vibrio-specific 16S rRNA metabarcode sequenceing resulted in a total of 10 and 32 operational taxonomic units (OTUs), respectively, and 15 Vibrio species were identified by targeted cultivation of Vibrio strains, with Vibrio fortis and V. brasiliensis dominating in the mariculture areas. The purpose of this study was to combine several analytical methods to improve current sequence-based Vibrio community surveys, and to prove for the effectiveness of this methodological approach comprehensively testing for Vibrio dynamics in different coastal environments.
Collapse
|
11
|
Wang X, Guo F, Tian P, Yu S, Xue CX, Wang W, Xiao J, Niu W. Vibrio agarilyticus sp. nov., an agar-digesting marine bacterium isolated from coastal seawater in Daya Bay (Guangdong, China). Int J Syst Evol Microbiol 2021; 71. [PMID: 33480834 DOI: 10.1099/ijsem.0.004647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-strain-negative, facultatively anaerobic, motile, rod-shaped and flagellated marine bacterium, designated SM6T, was isolated from surface seawater collected in Daya Bay (Guangdong, China). Phylogenetic analysis based on 16S rRNA gene sequences, multilocus sequence analysis, phylogenomic analysis of single-copy gene families and whole genome data showed that strain SM6T belonged to the genus Vibrio. The closest phylogenetic relatives of SM6T were Vibrio plantisponsor MSSRF60T (97.38 % 16S rRNA gene sequence pairwise similarity), Vibrio variabilis R-40492T (97.27 %), Vibrio aestuarianus ATCC 35048T (97.21 %) and Vibrio sagamiensis LC2-047T (97.3 %). Growth of strain SM6T occurred at 10-45 °C (optimum 30 °C), at pH 6.0-9.0 (optimum 6.0) and in the presence of 0-10 % (w/v) NaCl (optimum 3-8 %). The predominant fatty acids (>10 %) were summed feature 3 (C16 : 1 ω7c or/and C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c or/and C18 : 1 ω6c). The DNA G+C content of the assembled genomic sequences was 47.37 % for strain SM6T. Average nucleotide identity values between SM6T and its reference species were lower than the threshold for species delineation (95-96 %); in silico DNA-DNA hybridization further showed that the strains shared less than 70 % similarity. On the basis of evidence from the present polyphasic study, strain SM6T is considered to represent a novel species of the genus Vibrio, for which the name Vibrio agarilyticus sp. nov. is proposed. The type strain is SM6T (=KCTC 82076T=MCCC 1K04327 T).
Collapse
Affiliation(s)
- Xiaolei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Feng Guo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Shuangen Yu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Chun-Xu Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Wei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| |
Collapse
|
12
|
Chen X, Zhao H, Jiang G, Tang J, Xu Q, Huang L, Chen S, Zou S, Dong K, Li N. Responses of Free-Living Vibrio Community to Seasonal Environmental Variation in a Subtropical Inland Bay. Front Microbiol 2020; 11:610974. [PMID: 33381102 PMCID: PMC7767907 DOI: 10.3389/fmicb.2020.610974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Vibrio are widely distributed in aquatic environments and strongly associated with eutrophic environments and human health through the consumption of contaminated seafood. However, the response of the Vibrio community to seasonal variation in eutrophic environments is poorly understood. In this study, we used a Vibrio-specific 16S rRNA sequencing approach to reveal the seasonal distribution pattern and diversity of the Vibrio community in the Maowei Sea, Beibu Gulf of China. The Shannon diversity of the Vibrio community was highest in the summer, while β-diversity analysis showed that Vibrio community structures were significantly different between seasons. Distance-based redundancy analysis (dbRDA) and Mantel test analysis suggested that total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), dissolved inorganic nitrogen (DIN), salinity, and temperature were the key environmental factors shaping the Vibrio community structure, indicating a strong filtering effect of trophic condition on Vibrio communities. Furthermore, through random forest analysis, V. fluvialis, V. alginolyticus, V. proteolyticus, V. splendidus, and the other eight Vibrio species were more sensitive to eutrophic changes. This study revealed seasonal changes in Vibrio communities and the influence of environmental variation on Vibrio community composition, contributing to a better understanding of their potential ecological roles in a subtropical inland bay.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Lengjinghua Huang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Si Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, Suwon-si, South Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon-si, South Korea
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| |
Collapse
|
13
|
Sun Y, Song Z, Zhang H, Liu P, Hu X. Seagrass vegetation affect the vertical organization of microbial communities in sediment. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105174. [PMID: 33099080 DOI: 10.1016/j.marenvres.2020.105174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Seagrasses represent high primary productivity and provide important ecosystem services to the marine environment. Seagrass-associated microbial communities are playing essential ecological functional roles in biogeochemical cycles. However, little is known about the effect of seagrass vegetation on microbial communities in sediment. In the present study, the sediment cores of seagrass bed (dominated by Zostera japonica and Zostera marine) and degradation area in Swan Lake (China) were sampled; then, biogeochemical parameters were analyzed, and microbial community composition was investigated by using high-throughput sequencing of the 16S rRNA gene. The results showed that the presence of seagrass could lead to a decrease in the richness and diversity of the microbial community. In the vertical direction, a pronounced shift from Proteobacteria-dominated upper layers to Chloroflexi and Crenarchaeota-dominated deep layers in all sediment cores were observed. Besides, Bathyarchaeia is more abundant at degradation area, while Vibrionaceae, Sulfurovum and Lokiarchaeial overrepresent at the seagrass bed area. Vibrionaceae was abundant in the rhizosphere of Z. marina and Z. japonica, and the proportions reached 84.45% and 63.89%, respectively. This enrichment of Vibrio spp. may be caused by the macrobenthic species near the seagrass rhizosphere, and these Vibrio spp. reduced the diversity and stability of microbial community, which may lead to the degradation of seagrass. This study would provide clues for the distribution patterns and niche preferences of seagrass microbiome. The conservation strategy of seagrass would be further elucidated from the perspective of the microbiome.
Collapse
Affiliation(s)
- Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenglei Song
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Pengyuan Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
14
|
Li B, Li Y, Liu R, Xue C, Zhu X, Tian X, Wang X, Liang J, Zheng Y, Zhang XH. Vibrio ouci sp. nov. and Vibrio aquaticus sp. nov., two marine bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2020; 70:172-179. [DOI: 10.1099/ijsem.0.003732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bei Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yuying Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ronghua Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chunxu Xue
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoyu Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaorong Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaolei Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinchang Liang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanfen Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|