1
|
Song J, Chen Y, Han Y, Li Y, Liu Z, Li X, Lu D, Chen C. Analysis of Microbial Community Heterogeneity and Carbon Fixation Capabilities in Oil-Contaminated Soils in Chinese Onshore Oilfields. Microorganisms 2024; 12:2379. [PMID: 39597767 PMCID: PMC11596683 DOI: 10.3390/microorganisms12112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
This study selected 27 soil samples from four representative horizontally distributed onshore oilfields in China to explore the diversity of soil microbial communities and their carbon fixation capacity, with a focus on the potential interaction between pollution and carbon fixation under oil pollution stress. The analysis of the soil physicochemical properties and microbial community structures from these oilfield samples confirmed a clear biogeographic isolation effect, indicating spatial heterogeneity in the microbial communities. Additionally, the key factors influencing microbial community composition differed across regions. The dominant bacterial phyla of soil microorganisms under soil pollution stress were Proteobacteria, Actinobacteriota, Chloroflexi, Acidobacteriota, Firmicutes, Bacteroidota, and Gemmatimonadota. A correlation network analysis identified Immundisolibacter, Acinetobacter, Blastococcus, Truepera, and Kocuria as key players in the microbial network, with most showing positive correlations. The results of the KEGG database functional annotation showed that degradation and carbon fixation metabolic pathways coexist in soil samples and maintain a balanced relative abundance. These metabolic pathways highlight the functional diversity of microorganisms. Among them, prokaryotic and eukaryotic carbon fixation pathways, along with benzoate degradation pathways, are predominant. These findings establish a theoretical basis for further exploration of the synergistic mechanisms underlying pollution reduction and carbon sequestration by microorganisms in petroleum-contaminated soils.
Collapse
Affiliation(s)
- Jiayu Song
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China; (J.S.); (X.L.)
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Yakui Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (Y.C.); (Z.L.)
| | - Yilei Han
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (Y.C.); (Z.L.)
| | - Yunzhao Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102206, China; (Y.L.); (C.C.)
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (Y.C.); (Z.L.)
| | - Xingchun Li
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China; (J.S.); (X.L.)
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (Y.C.); (Z.L.)
| | - Chunmao Chen
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102206, China; (Y.L.); (C.C.)
| |
Collapse
|
2
|
Wang F, Liu J, Qin G, Zhang J, Zhou J, Wu J, Zhang L, Thapa P, Sanders CJ, Santos IR, Li X, Lin G, Weng Q, Tang J, Jiao N, Ren H. Coastal blue carbon in China as a nature-based solution toward carbon neutrality. Innovation (N Y) 2023; 4:100481. [PMID: 37636281 PMCID: PMC10451025 DOI: 10.1016/j.xinn.2023.100481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/09/2023] [Indexed: 08/29/2023] Open
Abstract
To achieve the Paris Agreement, China pledged to become "Carbon Neutral" by the 2060s. In addition to massive decarbonization, this would require significant changes in ecosystems toward negative CO2 emissions. The ability of coastal blue carbon ecosystems (BCEs), including mangrove, salt marsh, and seagrass meadows, to sequester large amounts of CO2 makes their conservation and restoration an important "nature-based solution (NbS)" for climate adaptation and mitigation. In this review, we examine how BCEs in China can contribute to climate mitigation. On the national scale, the BCEs in China store up to 118 Tg C across a total area of 1,440,377 ha, including over 75% as unvegetated tidal flats. The annual sedimental C burial of these BCEs reaches up to 2.06 Tg C year-1, of which most occurs in salt marshes and tidal flats. The lateral C flux of mangroves and salt marshes contributes to 1.17 Tg C year-1 along the Chinese coastline. Conservation and restoration of BCEs benefit climate change mitigation and provide other ecological services with a value of $32,000 ha-1 year-1. The potential practices and technologies that can be implemented in China to improve BCE C sequestration, including their constraints and feasibility, are also outlined. Future directions are suggested to improve blue carbon estimates on aerial extent, carbon stocks, sequestration, and mitigation potential. Restoring and preserving BCEs would be a cost-effective step to achieve Carbon Neutral by 2060 in China despite various barriers that should be removed.
Collapse
Affiliation(s)
- Faming Wang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
| | - Jihua Liu
- Marine Research Institute, Shandong University, Qingdao 266237, China
| | - Guoming Qin
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfan Zhang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinge Zhou
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtao Wu
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
| | - Lulu Zhang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
| | - Poonam Thapa
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
| | - Christian J. Sanders
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Isaac R. Santos
- Department of Marine Sciences, University of Gothenburg, 41319 Gothenburg, Sweden
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research and Institute of Eco-Chongming, East China Normal University, Shanghai 201100, China
| | - Guanghui Lin
- Key Laboratory for Earth System Modeling, Ministry of Education, Department of Earth System Science, Tsinghua University, Beijing 100084, China
- Laboratory of Stable Isotope and Gulf Ecology, Institute of Ocean Engineering, Tsinghua’s Shenzhen International Graduate School, Shenzhen 518055, China
| | - Qihao Weng
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hongkong 999077, China
| | - Jianwu Tang
- State Key Laboratory of Estuarine and Coastal Research and Institute of Eco-Chongming, East China Normal University, Shanghai 201100, China
| | - Nianzhi Jiao
- Innovative Research Center for Carbon Neutralization, Global ONCE Program, Xiamen 361005, China
| | - Hai Ren
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510650, China
| |
Collapse
|
3
|
Yabe S, Muto K, Abe K, Yokota A, Staudigel H, Tebo BM. Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum "Eremiobacterota", is a metabolically versatile aerobic anoxygenic phototroph. ISME COMMUNICATIONS 2022; 2:120. [PMID: 37749227 PMCID: PMC9758169 DOI: 10.1038/s43705-022-00201-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 09/27/2023]
Abstract
The previously uncultured phylum "Candidatus Eremiobacterota" is globally distributed and often abundant in oligotrophic environments. Although it includes lineages with the genetic potential for photosynthesis, one of the most important metabolic pathways on Earth, the absence of pure cultures has limited further insights into its ecological and physiological traits. We report the first successful isolation of a "Ca. Eremiobacterota" strain from a fumarolic ice cave on Mt. Erebus volcano (Antarctica). Polyphasic analysis revealed that this organism is an aerobic anoxygenic photoheterotrophic bacterium with a unique lifestyle, including bacteriochlorophyll a production, CO2 fixation, a high CO2 requirement, and phototactic motility using type IV-pili, all of which are highly adapted to polar and fumarolic environments. The cells are rods or filaments with a vesicular type intracytoplasmic membrane system. The genome encodes novel anoxygenic Type II photochemical reaction centers and bacteriochlorophyll synthesis proteins, forming a deeply branched monophyletic clade distinct from known phototrophs. The first cultured strain of the eighth phototrophic bacterial phylum which we name Vulcanimicrobium alpinus gen. nov., sp. nov. advances our understanding of ecology and evolution of photosynthesis.
Collapse
Affiliation(s)
- Shuhei Yabe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan.
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., Sendai, Miyagi, 989-1311, Japan.
| | - Kiyoaki Muto
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Keietsu Abe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Akira Yokota
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hubert Staudigel
- Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bradley M Tebo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Tong H, Zheng C, Li B, Swanner ED, Liu C, Chen M, Xia Y, Liu Y, Ning Z, Li F, Feng X. Microaerophilic Oxidation of Fe(II) Coupled with Simultaneous Carbon Fixation and As(III) Oxidation and Sequestration in Karstic Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3634-3644. [PMID: 33411520 DOI: 10.1021/acs.est.0c05791] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microaerophilic Fe(II)-oxidizing bacteria are often chemolithoautotrophs, and the Fe(III) (oxyhydr)oxides they form could immobilize arsenic (As). If such microbes are active in karstic paddy soils, their activity would help increase soil organic carbon and mitigate As contamination. We therefore used gel-stabilized gradient systems to cultivate microaerophilic Fe(II)-oxidizing bacteria from karstic paddy soil to investigate their capacity for Fe(II) oxidation, carbon fixation, and As sequestration. Stable isotope probing demonstrated the assimilation of inorganic carbon at a maximum rate of 8.02 mmol C m-2 d-1. Sequencing revealed that Bradyrhizobium, Cupriavidus, Hyphomicrobium, Kaistobacter, Mesorhizobium, Rhizobium, unclassified Phycisphaerales, and unclassified Opitutaceas were fixing carbon. Fe(II) oxidation produced Fe(III) (oxyhydr)oxides, which can absorb and/or coprecipitate As. Adding As(III) decreased the diversity of functional bacteria involved in carbon fixation, the relative abundance of predicted carbon fixation genes, and the amount of carbon fixed. Although the rate of Fe(II) oxidation was also lower in the presence of As(III), over 90% of the As(III) was sequestered after oxidation. The potential for microbially mediated As(III) oxidation was revealed by the presence of arsenite oxidase gene (aioA), denoting the potential of the Fe(II)-oxidizing and autotrophic microbial community to also oxidize As(III). Thisstudy demonstrates that carbon fixation coupled to Fe(II) oxidation can increase the carbon content in soils by microaerophilic Fe(II)-oxidizing bacteria, as well as accelerate As(III) oxidation and sequester it in association with Fe(III) (oxyhydr)oxides.
Collapse
Affiliation(s)
- Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames50011, Iowa, United States
| | - Chunju Zheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames50011, Iowa, United States
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an710061, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an710061, China
| |
Collapse
|
5
|
Song X, Huang L, Lu H, Zhou P, Wang M, Li N. An external magnetic field for efficient acetate production from inorganic carbon in Serratia marcescens catalyzed cathode of microbial electrosynthesis system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Hou J, Huang L, Zhou P, Qian Y, Li N. Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems. CHEMOSPHERE 2020; 243:125317. [PMID: 31722262 DOI: 10.1016/j.chemosphere.2019.125317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Metallurgical microbial electrosynthesis systems (MES) are holding great promise for simultaneous heavy metal removal and acetate production from heavy metal-contaminated and organics-barren waters. How critical parameters of strain of electrotroph, cathode potential and initial heavy metal concentration affect MES performance, however, is not yet fully understood. Heavy metal of Cu(II) and four Cu(II)-tolerant electrotrophs (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) were employed to evaluate MES performance at various cathode potentials (-900 or -600 mV vs. standard hydrogen electrode) and initial Cu(II) concentrations (60-120 mg L-1). Each electrotrophs exhibited incremental Cu(II) removals with increased Cu(II) at -900 mV, higher than at -600 mV or in the abiotic controls. Acetate production by JY1 and JY6 decreased with the increase in initial Cu(II), compared to an initial increase and a decrease thereafter for JY3 and JY5. For each electrotrophs, the biofilms than the planktonic cells released more amounts of extracellular polymeric substances (EPS) with a compositional diversity and stronger Cu(II) complexation at -900 mV. These were higher than at -600 mV, or in the controls either under open circuit conditions or in the absence of Cu(II). This work demonstrates the interdependence of strain of electrotroph, cathode potential and initial Cu(II) on simultaneous Cu(II) removal and acetate production through the release of different amounts of EPS with diverse composites, contributing to enhancing the controlled MES for efficient recovery of value-added products from Cu(II)-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Jiaxin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Hou X, Huang L, Zhou P, Tian F, Tao Y, Li Puma G. Electrosynthesis of acetate from inorganic carbon (HCO 3-) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:463-473. [PMID: 30875574 DOI: 10.1016/j.jhazmat.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The simultaneous production of acetate from bicarbonate (from CO2 sequestration) and hydrogen gas, with concomitant removal of Cd(II) heavy metal in water is demonstrated in multifunctional metallurgical microbial electrosynthesis systems (MES) incorporating Cd(II) tolerant electrochemically active bacteria (EAB) (Ochrobactrum sp. X1, Pseudomonas sp. X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7). Strain X5 favored the production of acetate, while X7 preferred the production of hydrogen. The rate of Cd(II) removal by all EAB (1.20-1.32 mg/L/h), and the rates of acetate production by X5 (29.4 mg/L/d) and hydrogen evolution by X7 (0.0187 m3/m3/d) increased in the presence of a circuital current. The production of acetate and hydrogen was regulated by the release of extracellular polymeric substances (EPS), which also exhibited invariable catalytic activity toward the reduction of Cd(II) to Cd(0). The intracellular activities of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and dehydrogenase were altered by the circuital current and Cd(II) concentration, and these regulated the products distribution. Such understanding enables the targeted manipulation of the MES operational conditions that favor the production of acetate from CO2 sequestration with simultaneous hydrogen production and removal/recovery of Cd(II) from metal-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Xia Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ye Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
8
|
Qian Y, Huang L, Zhou P, Tian F, Puma GL. Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia Marcescens biofilms and plankton cells in microbial electrosynthesis systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:114-125. [PMID: 30798222 DOI: 10.1016/j.scitotenv.2019.02.267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous Cu(II) reduction (6.42 ± 0.02 mg/L/h), acetate production (1.13 ± 0.02 mg/L/h) from inorganic carbon (i.e., CO2 sequestration), and hydrogen evolution (0.0315 ± 0.0005 m3/m3/d) were achieved in a Serratia marcescens Q1 catalyzed microbial electrosynthesis system (MES). The biofilms released increasing amounts of extracellular polymeric substances (EPS) with a higher compositional diversity and stronger Cu(II) complexation, compared to the plankton cells, at higher Cu(II) concentrations (up to 80 mg/L) and circuital currents (cathodic potential of -900 mV vs. standard hydrogen electrode (SHE)). Moreover, the biofilms reduced Cu(II) to Cu(0) more effectively than the plankton cells. At Cu(II) concentrations below 80 mg/L, the dehydrogenase activity in the biofilms was higher than in the plankton cells, and increased with circuital current, which was converse to the lower activities of catalase (CAT), superoxide dismutase (SOD) and antioxidative glutathione (GSH) in the biofilms than the plankton cells, although all these physiological activities were positively correlated with the concentration of Cu(II). This is the first study that evaluates the EPS constituents and the physiological activities of the biofilms and the plankton cells in the MESs, that favors the production of acetate from CO2 sequestration and the simultaneous reduction of Cu(II) from organics-barren waters contaminated with heavy metals.
Collapse
Affiliation(s)
- Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
9
|
Hunt KA, Jennings RM, Inskeep WP, Carlson RP. Multiscale analysis of autotroph-heterotroph interactions in a high-temperature microbial community. PLoS Comput Biol 2018; 14:e1006431. [PMID: 30260956 PMCID: PMC6177205 DOI: 10.1371/journal.pcbi.1006431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/09/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Interactions among microbial community members can lead to emergent properties, such as enhanced productivity, stability, and robustness. Iron-oxide mats in acidic (pH 2-4), high-temperature (> 65 °C) springs of Yellowstone National Park contain relatively simple microbial communities and are well-characterized geochemically. Consequently, these communities are excellent model systems for studying the metabolic activity of individual populations and key microbial interactions. The primary goals of the current study were to integrate data collected in situ with in silico calculations across process-scales encompassing enzymatic activity, cellular metabolism, community interactions, and ecosystem biogeochemistry, as well as to predict and quantify the functional limits of autotroph-heterotroph interactions. Metagenomic and transcriptomic data were used to reconstruct carbon and energy metabolisms of an important autotroph (Metallosphaera yellowstonensis) and heterotroph (Geoarchaeum sp. OSPB) from the studied Fe(III)-oxide mat communities. Standard and hybrid elementary flux mode and flux balance analyses of metabolic models predicted cellular- and community-level metabolic acclimations to simulated environmental stresses, respectively. In situ geochemical analyses, including oxygen depth-profiles, Fe(III)-oxide deposition rates, stable carbon isotopes and mat biomass concentrations, were combined with cellular models to explore autotroph-heterotroph interactions important to community structure-function. Integration of metabolic modeling with in situ measurements, including the relative population abundance of autotrophs to heterotrophs, demonstrated that Fe(III)-oxide mat communities operate at their maximum total community growth rate (i.e. sum of autotroph and heterotroph growth rates), as opposed to net community growth rate (i.e. total community growth rate subtracting autotroph consumed by heterotroph), as predicted from the maximum power principle. Integration of multiscale data with ecological theory provides a basis for predicting autotroph-heterotroph interactions and community-level cellular organization.
Collapse
Affiliation(s)
- Kristopher A. Hunt
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Ryan M. Jennings
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - William P. Inskeep
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (WPI); (RPC)
| | - Ross P. Carlson
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (WPI); (RPC)
| |
Collapse
|
10
|
Rodionova IA, Vetting MW, Li X, Almo SC, Osterman AL, Rodionov DA. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea. Nucleic Acids Res 2017; 45:3785-3799. [PMID: 28073944 PMCID: PMC5397151 DOI: 10.1093/nar/gkw1331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro. The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.
Collapse
Affiliation(s)
- Irina A Rodionova
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoqing Li
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei L Osterman
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
| |
Collapse
|
11
|
Jennings RDM, Moran JJ, Jay ZJ, Beam JP, Whitmore LM, Kozubal MA, Kreuzer HW, Inskeep WP. Integration of Metagenomic and Stable Carbon Isotope Evidence Reveals the Extent and Mechanisms of Carbon Dioxide Fixation in High-Temperature Microbial Communities. Front Microbiol 2017; 8:88. [PMID: 28217111 PMCID: PMC5289995 DOI: 10.3389/fmicb.2017.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
Although the biological fixation of CO2 by chemolithoautotrophs provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs as a carbon and energy source, the relative amounts of autotrophic C in chemotrophic microbial communities are not well-established. The extent and mechanisms of CO2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous “streamer” communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeota and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum fractions of autotrophic C in microbial biomass were >50% in the majority of communities analyzed. The significance of CO2 as a C source in these communities provides a foundation for understanding community assembly and succession, and metabolic linkages among early-branching thermophilic autotrophs and heterotrophs.
Collapse
Affiliation(s)
- Ryan de Montmollin Jennings
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| | - James J Moran
- Pacific Northwest National Laboratories Richland, WA, USA
| | - Zackary J Jay
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| | - Jacob P Beam
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| | | | - Mark A Kozubal
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | | | - William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
12
|
A Novel Transcriptional Regulator Related to Thiamine Phosphate Synthase Controls Thiamine Metabolism Genes in Archaea. J Bacteriol 2017; 199:JB.00743-16. [PMID: 27920295 DOI: 10.1128/jb.00743-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023] Open
Abstract
Thiamine (vitamin B1) is a precursor of thiamine pyrophosphate (TPP), an essential coenzyme in the central metabolism of all living organisms. Bacterial thiamine biosynthesis and salvage genes are controlled at the RNA level by TPP-responsive riboswitches. In Archaea, TPP riboswitches are restricted to the Thermoplasmatales order. Mechanisms of transcriptional control of thiamine genes in other archaeal lineages remain unknown. Using the comparative genomics approach, we identified a novel family of transcriptional regulators (named ThiR) controlling thiamine biosynthesis and transport genes in diverse lineages in the Crenarchaeota phylum as well as in the Halobacteria and Thermococci classes of the Euryarchaeota ThiR regulators are composed of an N-terminal DNA-binding domain and a C-terminal ligand-binding domain, which is similar to the archaeal thiamine phosphate synthase ThiN. By using comparative genomics, we predicted ThiR-binding DNA motifs and reconstructed ThiR regulons in 67 genomes representing all above-mentioned lineages. The predicted ThiR-binding motifs are characterized by palindromic symmetry with several distinct lineage-specific consensus sequences. In addition to thiamine biosynthesis genes, the reconstructed ThiR regulons include various transporters for thiamine and its precursors. Bioinformatics predictions were experimentally validated by in vitro DNA-binding assays with the recombinant ThiR protein from the hyperthermophilic archaeon Metallosphaera yellowstonensis MK1. Thiamine phosphate and, to some extent, TPP and hydroxyethylthiazole phosphate were required for the binding of ThiR to its DNA targets, suggesting that ThiR is derepressed by limitation of thiamine phosphates. The thiamine phosphate-binding residues previously identified in ThiN are highly conserved in ThiR regulators, suggesting a conserved mechanism for effector recognition. IMPORTANCE Thiamine pyrophosphate is a cofactor for many essential enzymes for glucose and energy metabolism. Thiamine or vitamin B1 biosynthesis and its transcriptional regulation in Archaea are poorly understood. We applied the comparative genomics approach to identify a novel family of regulators for the transcriptional control of thiamine metabolism genes in Archaea and reconstructed the respective regulons. The predicted ThiR regulons in archaeal genomes control the majority of thiamine biosynthesis genes. The reconstructed regulon content suggests that numerous uptake transporters for thiamine and/or its precursors are encoded in archaeal genomes. The ThiR regulon was experimentally validated by DNA-binding assays with Metallosphaera spp. These discoveries contribute to our understanding of metabolic and regulatory networks involved in vitamin homeostasis in diverse lineages of Archaea.
Collapse
|
13
|
Hunt KA, Jennings RD, Inskeep WP, Carlson RP. Stoichiometric modelling of assimilatory and dissimilatory biomass utilisation in a microbial community. Environ Microbiol 2016; 18:4946-4960. [PMID: 27387069 PMCID: PMC5629010 DOI: 10.1111/1462-2920.13444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/30/2016] [Indexed: 11/26/2022]
Abstract
Assimilatory and dissimilatory utilisation of autotroph biomass by heterotrophs is a fundamental mechanism for the transfer of nutrients and energy across trophic levels. Metagenome data from a tractable, thermoacidophilic microbial community in Yellowstone National Park was used to build an in silico model to study heterotrophic utilisation of autotroph biomass using elementary flux mode analysis and flux balance analysis. Assimilatory and dissimilatory biomass utilisation was investigated using 29 forms of biomass-derived dissolved organic carbon (DOC) including individual monomer pools, individual macromolecular pools and aggregate biomass. The simulations identified ecologically competitive strategies for utilizing DOC under conditions of varying electron donor, electron acceptor or enzyme limitation. The simulated growth environment affected which form of DOC was the most competitive use of nutrients; for instance, oxygen limitation favoured utilisation of less reduced and fermentable DOC while carbon-limited environments favoured more reduced DOC. Additionally, metabolism was studied considering two encompassing metabolic strategies: simultaneous versus sequential use of DOC. Results of this study bound the transfer of nutrients and energy through microbial food webs, providing a quantitative foundation relevant to most microbial ecosystems.
Collapse
Affiliation(s)
- Kristopher A. Hunt
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Ryan deM. Jennings
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - William P. Inskeep
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Ross P. Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
14
|
Adrian L, Marco-Urrea E. Isotopes in geobiochemistry: tracing metabolic pathways in microorganisms of environmental relevance with stable isotopes. Curr Opin Biotechnol 2016; 41:19-25. [DOI: 10.1016/j.copbio.2016.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/18/2016] [Indexed: 11/25/2022]
|
15
|
Jay ZJ, Beam JP, Kozubal MA, Jennings RD, Rusch DB, Inskeep WP. The distribution, diversity and function of predominant Thermoproteales in high-temperature environments of Yellowstone National Park. Environ Microbiol 2016; 18:4755-4769. [PMID: 27130276 DOI: 10.1111/1462-2920.13366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/25/2016] [Indexed: 12/01/2022]
Abstract
High-temperature environments (> 70°C) contain diverse and abundant members of the crenarchaeal order Thermoproteales. However, a comprehensive study of the distribution and function of diverse members of this group across different habitat types has not been conducted. Consequently, the goals of this study were to determine the distribution of different Thermoproteales genera across geochemically distinct geothermal habitats of Yellowstone National Park, and to identify key functional attributes of major genera that correlate with environmental parameters. Curated sequence assemblies belonging to five genera were characterized in replicate samples of 11 high-temperature communities ranging in pH from 3 to 9. Thermocladium, Vulcanisaeta and Caldivirga spp. were the primary Thermoproteales populations present in low pH (pH < 5) habitats, whereas Thermoproteus populations were found in mildly-acidic (pH 5-6) sulfur sediments, and Pyrobaculum populations were confined to higher pH (pH > 6) sulfur sediments and/or filamentous 'streamer' communities. Metabolic reconstruction and comparative genomics among assemblies show that these populations are primarily chemoorganotrophs that utilize different electron acceptors depending on geochemical conditions. The presence of potential CO2 fixation pathways in some Thermoproteales populations appears to be linked with NiFe hydrogenases, which combined with high levels of H2 in many sulfidic systems, may provide the energy required to fix inorganic C.
Collapse
Affiliation(s)
- Zackary J Jay
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Jacob P Beam
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Mark A Kozubal
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Ryan deM Jennings
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - William P Inskeep
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| |
Collapse
|
16
|
Moran JJ, Whitmore LM, Isern NG, Romine MF, Riha KM, Inskeep WP, Kreuzer HW. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park. Extremophiles 2016; 20:291-9. [PMID: 26995682 DOI: 10.1007/s00792-016-0821-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/01/2016] [Indexed: 11/26/2022]
Abstract
The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.
Collapse
Affiliation(s)
- James J Moran
- Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Laura M Whitmore
- Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Marine Science, University of Southern Mississippi, Stennis Space Center, MS, 39529, USA
| | - Nancy G Isern
- Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margaret F Romine
- Microbiology Department, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Krystin M Riha
- Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Helen W Kreuzer
- Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
17
|
Beam JP, Bernstein HC, Jay ZJ, Kozubal MA, Jennings RD, Tringe SG, Inskeep WP. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs. Front Microbiol 2016; 7:25. [PMID: 26913020 PMCID: PMC4753309 DOI: 10.3389/fmicb.2016.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3–3.5; temperature = 68–75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4–40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14–30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1–2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day−1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.
Collapse
Affiliation(s)
- Jacob P Beam
- Department of Land Resources and Environmental Sciences, Thermal Biology Institute, Montana State University Bozeman, MT, USA
| | - Hans C Bernstein
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State UniversityBozeman, MT, USA; Biodetection Science and Biological Science Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Zackary J Jay
- Department of Land Resources and Environmental Sciences, Thermal Biology Institute, Montana State UniversityBozeman, MT, USA; Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State UniversityBozeman, MT, USA
| | - Mark A Kozubal
- Department of Land Resources and Environmental Sciences, Thermal Biology Institute, Montana State University Bozeman, MT, USA
| | - Ryan deM Jennings
- Department of Land Resources and Environmental Sciences, Thermal Biology Institute, Montana State University Bozeman, MT, USA
| | - Susannah G Tringe
- United States Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - William P Inskeep
- Department of Land Resources and Environmental Sciences, Thermal Biology Institute, Montana State University Bozeman, MT, USA
| |
Collapse
|
18
|
Leyn SA, Rodionova IA, Li X, Rodionov DA. Novel Transcriptional Regulons for Autotrophic Cycle Genes in Crenarchaeota. J Bacteriol 2015; 197:2383-91. [PMID: 25939834 PMCID: PMC4524184 DOI: 10.1128/jb.00249-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Autotrophic microorganisms are able to utilize carbon dioxide as their only carbon source, or, alternatively, many of them can grow heterotrophically on organics. Different variants of autotrophic pathways have been identified in various lineages of the phylum Crenarchaeota. Aerobic members of the order Sulfolobales utilize the hydroxypropionate-hydroxybutyrate cycle (HHC) to fix inorganic carbon, whereas anaerobic Thermoproteales use the dicarboxylate-hydroxybutyrate cycle (DHC). Knowledge of transcriptional regulation of autotrophic pathways in Archaea is limited. We applied a comparative genomics approach to predict novel autotrophic regulons in the Crenarchaeota. We report identification of two novel DNA motifs associated with the autotrophic pathway genes in the Sulfolobales (HHC box) and Thermoproteales (DHC box). Based on genome context evidence, the HHC box regulon was attributed to a novel transcription factor from the TrmB family named HhcR. Orthologs of HhcR are present in all Sulfolobales genomes but were not found in other lineages. A predicted HHC box regulatory motif was confirmed by in vitro binding assays with the recombinant HhcR protein from Metallosphaera yellowstonensis. For the DHC box regulon, we assigned a different potential regulator, named DhcR, which is restricted to the order Thermoproteales. DhcR in Thermoproteus neutrophilus (Tneu_0751) was previously identified as a DNA-binding protein with high affinity for the promoter regions of two autotrophic operons. The global HhcR and DhcR regulons reconstructed by comparative genomics were reconciled with available omics data in Metallosphaera and Thermoproteus spp. The identified regulons constitute two novel mechanisms for transcriptional control of autotrophic pathways in the Crenarchaeota. IMPORTANCE Little is known about transcriptional regulation of carbon dioxide fixation pathways in Archaea. We previously applied the comparative genomics approach for reconstruction of DtxR family regulons in diverse lineages of Archaea. Here, we utilize similar computational approaches to identify novel regulatory motifs for genes that are autotrophically induced in microorganisms from two lineages of Crenarchaeota and to reconstruct the respective regulons. The predicted novel regulons in archaeal genomes control the majority of autotrophic pathway genes and also other carbon and energy metabolism genes. The HhcR regulon was experimentally validated by DNA-binding assays in Metallosphaera spp. Novel regulons described for the first time in this work provide a basis for understanding the mechanisms of transcriptional regulation of autotrophic pathways in Archaea.
Collapse
Affiliation(s)
- Semen A Leyn
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina A Rodionova
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Xiaoqing Li
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
19
|
Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park. Appl Environ Microbiol 2015; 81:5907-16. [PMID: 26092468 DOI: 10.1128/aem.01095-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP.
Collapse
|