1
|
Nair AV, Singh A, Devasurmutt Y, Rahman SA, Tatu US, Chakravortty D. Spermidine constitutes a key determinant of motility and attachment of Salmonella Typhimurium through a novel regulatory mechanism. Microbiol Res 2024; 281:127605. [PMID: 38232495 DOI: 10.1016/j.micres.2024.127605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Spermidine is a poly-cationic molecule belonging to the family of polyamines and is ubiquitously present in all organisms. Salmonella synthesizes, and harbours specialized transporters to import spermidine. A group of polyamines have been shown to assist in Salmonella Typhimurium's virulence and regulation of Salmonella pathogenicity Inslad 1 (SPI-1) genes and stress resistance; however, the mechanism remains elusive. The virulence trait of Salmonella depends on its ability to employ multiple surface structures to attach and adhere to the surface of the target cells before invasion and colonization of the host niche. Our study discovers the mechanism by which spermidine assists in the early stages of Salmonella pathogenesis. For the first time, we report that Salmonella Typhimurium regulates spermidine transport and biosynthesis processes in a mutually inclusive manner. Using a mouse model, we show that spermidine is critical for invasion into the murine Peyer's patches, which further validated our in vitro cell line observation. We show that spermidine controls the mRNA expression of fimbrial (fimA) and non-fimbrial adhesins (siiE, pagN) in Salmonella and thereby assists in attachment to host cell surfaces. Spermidine also regulated the motility through the expression of flagellin genes by enhancing the translation of sigma-28, which features an unusual start codon and a poor Shine-Dalgarno sequence. Besides regulating the formation of the adhesive structures, spermidine tunes the expression of the two-component system BarA/SirA to regulate SPI-1 encoded genes. Thus, our study unravels a novel regulatory mechanism by which spermidine exerts critical functions during Salmonella Typhimurium pathogenesis.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Yashas Devasurmutt
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - S A Rahman
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Utpal Shashikant Tatu
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
2
|
Detert K, Währer J, Nieselt K, Schmidt H. Broad time-dependent transcriptional activity of metabolic genes of E. coli O104:H4 strain C227/11Φcu in a soil microenvironment at low temperature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:582-596. [PMID: 37644642 PMCID: PMC10667640 DOI: 10.1111/1758-2229.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
In the current study, metabolic genes and networks that influence the persistence of pathogenic Escherichia coli O104:H4 strain C227/11Φcu in agricultural soil microenvironments at low temperature were investigated. The strain was incubated in alluvial loam (AL) and total RNA was prepared from samples at time point 0, and after 1 and 4 weeks. Differential transcriptomic analysis was performed by RNA sequencing analysis and values obtained at weeks 1 and 4 were compared to those of time point 0. We found differential expression of more than 1500 genes for either time point comparison. The two lists of differentially expressed genes were then subjected to gene set enrichment of Gene Ontology terms. In total, 17 GO gene sets and 3 Pfam domains were found to be enriched after 1 week. After 4 weeks, 17 GO gene sets and 7 Pfam domains were statistically enriched. Especially stress response genes and genes of the primary metabolism were particularly affected at both time points. Genes and gene sets for uptake of carbohydrates, amino acids were strongly upregulated, indicating adjustment to a low nutrient environment. The results of this transcriptome analysis show that persistence of C227/11Φcu in soils is associated with a complex interplay of metabolic networks.
Collapse
Affiliation(s)
- Katharina Detert
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| | - Jonathan Währer
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
3
|
Cáceres M, Hidalgo W, Stashenko EE, Torres R, Ortiz C. Metabolomic Analysis of the Effect of Lippia origanoides Essential Oil on the Inhibition of Quorum Sensing in Chromobacterium violaceum. Antibiotics (Basel) 2023; 12:antibiotics12050814. [PMID: 37237719 DOI: 10.3390/antibiotics12050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteria can communicate through quorum sensing, allowing them to develop different survival or virulence traits that lead to increased bacterial resistance against conventional antibiotic therapy. Here, fifteen essential oils (EOs) were investigated for their antimicrobial and anti-quorum-sensing activities using Chromobacterium violaceum CV026 as a model. All EOs were isolated from plant material via hydrodistillation and analyzed using GC/MS. In vitro antimicrobial activity was determined using the microdilution technique. Subinhibitory concentrations were used to determine anti-quorum-sensing activity by inhibition of violacein production. Finally, a possible mechanism of action for most bioactive EOs was determined using a metabolomic approach. Among the EOs evaluated, the EO from Lippia origanoides exhibited antimicrobial and anti-quorum activities at 0.37 and 0.15 mg/mL, respectively. Based on the experimental results, the antibiofilm activity of EO can be attributed to the blockage of tryptophan metabolism in the metabolic pathway of violacein synthesis. The metabolomic analyses made it possible to see effects mainly at the levels of tryptophan metabolism, nucleotide biosynthesis, arginine metabolism and vitamin biosynthesis. This allows us to highlight the EO of L. origanoides as a promising candidate for further studies in the design of antimicrobial compounds against bacterial resistance.
Collapse
Affiliation(s)
- Marlon Cáceres
- Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - William Hidalgo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E Stashenko
- Escuela de Química, Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Rodrigo Torres
- Grupo de Investigación en Bioquímica y Microbiología, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Claudia Ortiz
- Escuela de Microbiología y Bioanálisis, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
4
|
Krysenko S, Wohlleben W. Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Med Sci (Basel) 2022; 10:40. [PMID: 35997332 PMCID: PMC9397018 DOI: 10.3390/medsci10030040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is an essential element required for bacterial growth. It serves as a building block for the biosynthesis of macromolecules and provides precursors for secondary metabolites. Bacteria have developed the ability to use various nitrogen sources and possess two enzyme systems for nitrogen assimilation involving glutamine synthetase/glutamate synthase and glutamate dehydrogenase. Microorganisms living in habitats with changeable availability of nutrients have developed strategies to survive under nitrogen limitation. One adaptation is the ability to acquire nitrogen from alternative sources including the polyamines putrescine, cadaverine, spermidine and spermine, as well as the monoamine ethanolamine. Bacterial polyamine and monoamine metabolism is not only important under low nitrogen availability, but it is also required to survive under high concentrations of these compounds. Such conditions can occur in diverse habitats such as soil, plant tissues and human cells. Strategies of pathogenic and non-pathogenic bacteria to survive in the presence of poly- and monoamines offer the possibility to combat pathogens by using their capability to metabolize polyamines as an antibiotic drug target. This work aims to summarize the knowledge on poly- and monoamine metabolism in bacteria and its role in nitrogen metabolism.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Ahamad I, Bano F, Anwer R, Srivastava P, Kumar R, Fatma T. Antibiofilm Activities of Biogenic Silver Nanoparticles Against Candida albicans. Front Microbiol 2022; 12:741493. [PMID: 35069463 PMCID: PMC8782275 DOI: 10.3389/fmicb.2021.741493] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilms are microbial colonies that are encased in an organic polymeric matrix and are resistant to antimicrobial treatments. Biofilms can adhere to both biotic and abiotic surfaces, allowing them to colonize medical equipment such as urinary and intravenous catheters, mechanical heart valves, endotracheal tubes, and prosthetic joints. Candida albicans biofilm is the major etiological cause of the pathogenesis of candidiasis in which its unobstructed growth occurs in the oral cavity; trachea, and catheters that progress to systemic infections in the worst scenarios. There is an urgent need to discover novel biofilm preventive and curative agents. In the present investigation, an effort is made to observe the role of cyanobacteria-derived AgNPs as a new antibiofilm agent with special reference to candidiasis. AgNPs synthesized through the green route using Anabaena variabilis cell extract were characterized by UV-visible spectroscopy. The nanoparticles were spherical in shape with 11-15 nm size and were monodispersed. The minimum inhibitory concentration (MIC) of AgNPs was obtained at 12.5 μg/mL against C. albicans. AgNPs 25 μg/mL showed 79% fungal cell membrane permeability and 22.2% ROS production. AgNPs (25 μg/mL) also facilitated 62.5% of biofilm inhibition and degradation. Therefore, AgNPs could be considered as a promising antifungal agent to control biofilm produced by C. albicans.
Collapse
Affiliation(s)
- Irshad Ahamad
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fareha Bano
- Department of Biology, College of Science and Arts, Taibah University (Female Branch), AlUla, Saudi Arabia
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Pooja Srivastava
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation (DRDO), Government of India, New Delhi, India
| | - Raj Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation (DRDO), Government of India, New Delhi, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
She P, Wang Y, Li Y, Zhou L, Li S, Zeng X, Liu Y, Xu L, Wu Y. Drug Repurposing: In vitro and in vivo Antimicrobial and Antibiofilm Effects of Bithionol Against Enterococcus faecalis and Enterococcus faecium. Front Microbiol 2021; 12:579806. [PMID: 34025592 PMCID: PMC8138570 DOI: 10.3389/fmicb.2021.579806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
Widespread antibiotic resistance has been reported in enterococcal pathogens that cause life-threatening infections. Enterococci species rapidly acquire resistance and the pace of new antibiotic development is slow. Drug repurposing is a promising approach in solving this problem. Bithionol (BT) is a clinically approved anthelminthic drug. In this study, we found that BT showed significant antimicrobial and antibiofilm effects against Enterococcus faecalis and vancomycin-resistant Entercococcus faecium in vitro, in a dose-dependent manner, by disrupting the integrity of the bacterial cell membranes. Moreover, BT effectively reduced the bacterial load in mouse organs when combined with conventional antibiotics in a peritonitis infection model. Thus, BT has shown potential as a therapeutic agent against E. faecalis- and vancomycin-resistant E. faecium-related infections.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yangxia Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjia Li
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shijia Li
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianghai Zeng
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaqian Liu
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lanlan Xu
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Effect of Spermidine on Biofilm Formation in Escherichia coli K-12. J Bacteriol 2021; 203:JB.00652-20. [PMID: 33685971 DOI: 10.1128/jb.00652-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Polyamines are essential for biofilm formation in Escherichia coli, but it is still unclear which polyamines are primarily responsible for this phenomenon. To address this issue, we constructed a series of E. coli K-12 strains with mutations in genes required for the synthesis and metabolism of polyamines. Disruption of the spermidine synthase gene (speE) caused a severe defect in biofilm formation. This defect was rescued by the addition of spermidine to the medium but not by putrescine or cadaverine. A multidrug/spermidine efflux pump membrane subunit (MdtJ)-deficient strain was anticipated to accumulate more spermidine and result in enhanced biofilm formation compared to the MdtJ+ strain. However, the mdtJ mutation did not affect intracellular spermidine or biofilm concentrations. E. coli has the spermidine acetyltransferase (SpeG) and glutathionylspermidine synthetase/amidase (Gss) to metabolize intracellular spermidine. Under biofilm-forming conditions, not Gss but SpeG plays a major role in decreasing the too-high intracellular spermidine concentrations. Additionally, PotFGHI can function as a compensatory importer of spermidine when PotABCD is absent under biofilm-forming conditions. Last, we report here that, in addition to intracellular spermidine, the periplasmic binding protein (PotD) of the spermidine preferential ABC transporter is essential for stimulating biofilm formation.IMPORTANCE Previous reports have speculated on the effect of polyamines on bacterial biofilm formation. However, the regulation of biofilm formation by polyamines in Escherichia coli has not yet been assessed. The identification of polyamines that stimulate biofilm formation is important for developing novel therapies for biofilm-forming pathogens. This study sheds light on biofilm regulation in E. coli Our findings provide conclusive evidence that only spermidine can stimulate biofilm formation in E. coli cells, not putrescine or cadaverine. Last, ΔpotD inhibits biofilm formation even though the spermidine is synthesized inside the cells from putrescine. Since PotD is significant for biofilm formation and there is no ortholog of the PotABCD transporter in humans, PotD could be a target for the development of biofilm inhibitors.
Collapse
|
8
|
Bridges AA, Bassler BL. Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. eLife 2021; 10:e65487. [PMID: 33856344 PMCID: PMC8079147 DOI: 10.7554/elife.65487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The global pathogen Vibrio cholerae undergoes cycles of biofilm formation and dispersal in the environment and the human host. Little is understood about biofilm dispersal. Here, we show that MbaA, a periplasmic polyamine sensor, and PotD1, a polyamine importer, regulate V. cholerae biofilm dispersal. Spermidine, a commonly produced polyamine, drives V. cholerae dispersal, whereas norspermidine, an uncommon polyamine produced by vibrios, inhibits dispersal. Spermidine and norspermidine differ by one methylene group. Both polyamines control dispersal via MbaA detection in the periplasm and subsequent signal relay. Our results suggest that dispersal fails in the absence of PotD1 because endogenously produced norspermidine is not reimported, periplasmic norspermidine accumulates, and it stimulates MbaA signaling. These results suggest that V. cholerae uses MbaA to monitor environmental polyamines, blends of which potentially provide information about numbers of 'self' and 'other'. This information is used to dictate whether or not to disperse from biofilms.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- The Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- The Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
9
|
Le VTB, Tsimbalyuk S, Lim EQ, Solis A, Gawat D, Boeck P, Lim EQ, Renolo R, Forwood JK, Kuhn ML. The Vibrio cholerae SpeG Spermidine/Spermine N-Acetyltransferase Allosteric Loop and β6-β7 Structural Elements Are Critical for Kinetic Activity. Front Mol Biosci 2021; 8:645768. [PMID: 33928120 PMCID: PMC8076852 DOI: 10.3389/fmolb.2021.645768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 11/27/2022] Open
Abstract
Polyamines regulate many important biological processes including gene expression, intracellular signaling, and biofilm formation. Their intracellular concentrations are tightly regulated by polyamine transport systems and biosynthetic and catabolic pathways. Spermidine/spermine N-acetyltransferases (SSATs) are catabolic enzymes that acetylate polyamines and are critical for maintaining intracellular polyamine homeostasis. These enzymes belong to the Gcn5-related N-acetyltransferase (GNAT) superfamily and adopt a highly conserved fold found across all kingdoms of life. SpeG is an SSAT protein found in a variety of bacteria, including the human pathogen Vibrio cholerae. This protein adopts a dodecameric structure and contains an allosteric site, making it unique compared to other SSATs. Currently, we have a limited understanding of the critical structural components of this protein that are required for its allosteric behavior. Therefore, we explored the importance of two key regions of the SpeG protein on its kinetic activity. To achieve this, we created various constructs of the V. cholerae SpeG protein, including point mutations, a deletion, and chimeras with residues from the structurally distinct and non-allosteric human SSAT protein. We measured enzyme kinetic activity toward spermine for ten constructs and crystallized six of them. Ultimately, we identified specific portions of the allosteric loop and the β6-β7 structural elements that were critical for enzyme kinetic activity. These results provide a framework for further study of the structure/function relationship of SpeG enzymes from other organisms and clues toward the structural evolution of members of the GNAT family across domains of life.
Collapse
Affiliation(s)
- Van Thi Bich Le
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Sofiya Tsimbalyuk
- School of Biomedical Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Ee Qi Lim
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Allan Solis
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Darwin Gawat
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Paloma Boeck
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Ee Qing Lim
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Rosselini Renolo
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Jade K. Forwood
- School of Biomedical Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Misty L. Kuhn
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
10
|
Mass spectrometry based targeted metabolomics precisely characterized new functional metabolites that regulate biofilm formation in Escherichia coli. Anal Chim Acta 2021; 1145:26-36. [DOI: 10.1016/j.aca.2020.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
|
11
|
Li S, She P, Zhou L, Zeng X, Xu L, Liu Y, Chen L, Wu Y. High-Throughput Identification of Antibacterials Against Pseudomonas aeruginosa. Front Microbiol 2020; 11:591426. [PMID: 33362739 PMCID: PMC7755642 DOI: 10.3389/fmicb.2020.591426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance is a growing public health concern, though the constant development of new antibiotics. The combination of high-throughput screening and drug repurposing is an effective way to develop new therapeutic uses of drugs. In this study, we screened a drug library consisting of 1,573 drugs already approved by the Food and Drug Administration and 903 drugs from the natural product library, to identify antimicrobials against Pseudomonas aeruginosa. A high-throughput screening assay based on microtiter plate was used to screen 39 drugs that inhibit the planktonic or biofilm formation of P. aeruginosa while most of them are antibiotics. The antimicrobial activities of these drugs were evaluated by phenotypic analysis. Further studies showed the combined therapy of tetracycline antibiotics demeclocycline hydrochloride (DMCT) and the novel antimicrobial peptide SAAP-148 has an effective synergistic antibacterial effect on P. aeruginosa PAO1 and P. aeruginosa ATCC27853. Moreover, the time-kill curve assay and murine model of cutaneous abscesses further confirmed the synergistic effect. In addition, the combination of DMCT and SAAP-148 has the potential to combat clinically isolated multidrug-resistant (MDR) P. aeruginosa strains. Our results clearly indicate that DMCT and SAAP-148 combined therapy could be an effective method to combat MDR P. aeruginosa-related infections.
Collapse
Affiliation(s)
- Shijia Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianghai Zeng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lanlan Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaqian Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
He Y, Cao Y, Xiang Y, Hu F, Tang F, Zhang Y, Albashari AA, Xing Z, Luo L, Sun Y, Huang Q, Ye Q, Zhang K. An Evaluation of Norspermidine on Anti-fungal Effect on Mature Candida albicans Biofilms and Angiogenesis Potential of Dental Pulp Stem Cells. Front Bioeng Biotechnol 2020; 8:948. [PMID: 32903416 PMCID: PMC7434867 DOI: 10.3389/fbioe.2020.00948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Norspermidine (Nspd) is a kind of polyamine molecule, which is common in eukaryotes and prokaryotes. It has been reported as a potential anti-biofilms agent of bacteria, but its anti-fungal effect remains unclear. Candida albicans (C. albicans) is a common opportunistic pathogen in oral cavity of human beings. C. albicans biofilm is often seen in dental caries. In this work, we aimed to study the effect of Nspd on mature Candida albicans biofilms and to investigate how Nspd would influence human dental pulp stem cells (DPSCs). Our biofilm assays indicated that 111.7 and 55.9 mM Nspd dispersed 48 h mature fungal biofilms and showed significant fungicidal effect. 27.9 and 14.0 mM Nspd showed moderate fungicidal effect. Live/dead staining echoed the fungicidal effect. 111.7-14.0 mM Nspd showed a dose- inhibitory effect on mature fungal biofilm, where 14.0 mM Nspd reduced the metabolic activity by half compared with blank control. Moreover, we demonstrated that 111.7-27.9 mM Nspd restrained the production of hyphae form of C. albicans via SEM. Low dose Nspd (27.9 and 14.0 mM) could significantly reduce virulence related gene expression in C. albicans biofilms. MTT assay displayed a dose effect relation between 2.5-0.08 mM Nspd and DPSCs viability, where 0.63 mM Nspd reduced the viable level of DPSCs to 75% compared with blank control. Live/dead staining of DPSCs did not show distinctive difference between 0.63 mM Nspd and blank control. Vascular differentiation assay showed capillary-like structure of inducted DPSCs culture with and without 0.63 mM Nspd suggesting that it did not significantly affect angiogenic differentiation of DPSCs. Nspd can penetrate remaining dentin at low level, which is confirmed by an in vitro caries model. In conclusion, our study indicated high dosage Nspd (111.7 and 55.9 mM) could effectively disrupt and kill mature fungal biofilms. Low dosage (27.9 and 14.0 mM) showed mild anti-fungal effect on mature C. albicans biofilms. Human DPSCs were tolerate to 0.08-0.63 mM Nspd, where viability was over 75%. 0.63 mM Nspd did not affect the proliferation and angiogenetic differentiation of DPSCs.
Collapse
Affiliation(s)
- Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanfan Cao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yangfan Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Fengting Hu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Fengyu Tang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | - Zhenjie Xing
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lihua Luo
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Sun
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qiang Huang
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Qingsong Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- School of Stomatology and Medicine, Foshan University, Foshan, China
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keke Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Paluch E, Rewak-Soroczyńska J, Jędrusik I, Mazurkiewicz E, Jermakow K. Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 2020; 104:1871-1881. [PMID: 31927762 PMCID: PMC7007913 DOI: 10.1007/s00253-020-10349-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Quorum sensing (QS) is a mechanism that enables microbial communication. It is based on the constant secretion of signaling molecules to the environment. The main role of QS is the regulation of vital processes in the cell such as virulence factor production or biofilm formation. Due to still growing bacterial resistance to antibiotics that have been overused, it is necessary to search for alternative antimicrobial therapies. One of them is quorum quenching (QQ) that disrupts microbial communication. QQ-driving molecules can decrease or even completely inhibit the production of virulence factors (including biofilm formation). There are few QQ strategies that comprise the use of the structural analogues of QS receptor autoinductors (AI). They may be found in nature or be designed and synthesized via chemical engineering. Many of the characterized QQ molecules are enzymes with the ability to degrade signaling molecules. They can also impede cellular signaling cascades. There are different techniques used for testing QS/QQ, including chromatography-mass spectroscopy, bioluminescence, chemiluminescence, fluorescence, electrochemistry, and colorimetry. They all enable qualitative and quantitative measurements of QS/QQ molecules. This article gathers the information about the mechanisms of QS and QQ, and their effect on microbial biofilm formation. Basic methods used to study QS/QQ, as well as the medical and biotechnological applications of QQ, are also described. Basis research methods are also described as well as medical and biotechnological application.
Collapse
Affiliation(s)
- E Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376, Wrocław, Poland.
| | - J Rewak-Soroczyńska
- Institute of Low Temperature and Structure Research, Polish Academy of Science, Okólna 2, 50-422, Wroclaw, Poland
| | - I Jędrusik
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - E Mazurkiewicz
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - K Jermakow
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376, Wrocław, Poland
| |
Collapse
|
14
|
Effects of Norspermidine on Dual-Species Biofilms Composed of Streptococcus mutans and Streptococcus sanguinis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1950790. [PMID: 31781595 PMCID: PMC6874952 DOI: 10.1155/2019/1950790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023]
Abstract
The present study aimed at investigating the influence of norspermidine on the formation of dual-species biofilms composed of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S. sanguinis). Crystal violet assay was conducted to assess the formation of single-species biofilms of S. mutans and S. sanguinis, and the growth curve was carefully observed to monitor the growth of these two species of bacteria. Fluorescence in situ hybridization (FISH) and MTT array were used to analyze the composition and metabolic activity of the dual-species biofilms, respectively. Extracellular polysaccharides (EPS)/bacteria staining, anthrone method, and scanning electron microscopy (SEM) imaging were conducted to study the synthesis of EPS by dual-species biofilms. Lactic acid assay and pH were measured to detect dual-species biofilm acid production. We found that norspermidine had different effects on S. mutans and S. sanguinis including their growth and biofilm formation. Norspermidine regulated the composition of the dual-species biofilms, decreased the ratio of S. mutans in dual-species biofilms, and reduced the metabolic activity, EPS synthesis, and acid production of dual-species biofilms. Norspermidine regulated dual-species biofilms in an ecological way, suggesting that it may be a potent reagent for controlling dental biofilms and managing dental caries.
Collapse
|
15
|
She P, Zhou L, Li S, Liu Y, Xu L, Chen L, Luo Z, Wu Y. Synergistic Microbicidal Effect of Auranofin and Antibiotics Against Planktonic and Biofilm-Encased S. aureus and E. faecalis. Front Microbiol 2019; 10:2453. [PMID: 31708908 PMCID: PMC6821689 DOI: 10.3389/fmicb.2019.02453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022] Open
Abstract
Methicillin-resistant/susceptible Staphylococcus aureus (MRSA/MSSA) and Enterococcus faecalis strains are often found in community- and hospital-acquired infections. The single use of conventional antibiotics hardly completely kills the bacterial cells of interest, especially in the form of biofilms. Thus, drug repurposing and antimicrobial combination are promising ways to solve this problem. Antimicrobial susceptibility assays against cocci in a suspension and in a biofilm mode of growth were performed with broth microdilution methods. Checkerboard assays and the cutaneous mouse infection model were used to examine the activity of auranofin and conventional antibiotics alone and in combination. In the present study, auranofin possesses potent antimicrobial activities against both planktonic cells and biofilms with minimum inhibitory concentrations ranging 0.125–0.5 mg/L. Auranofin in combination with linezolid or fosfomycin showed synergistic antimicrobial activities against S. aureus MSSA and MRSA both in vitro and in vivo. Similarly, auranofin also behaved synergistic effect with chloramphenicol against E. faecalis. Additionally, auranofin improved the antibiofilm efficacy of chloramphenicol and linezolid, even on the biofilms grown on a catheter surface. Though, S. epidermidis showed significant susceptibility to AF treatment, no synergistic antimicrobial effects were observed with antibiotics we tested. In all, the use of a combination of auranofin with linezolid, fosfomycin, and chloramphenicol can provide a synergistic microbicidal effect in vitro and in vivo, which rapidly enhances antimicrobial activity and may help prevent or delay the emergence of resistance.
Collapse
Affiliation(s)
- Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijia Li
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiqing Liu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lanlan Xu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Luo
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
Lu H, Que Y, Wu X, Guan T, Guo H. Metabolomics Deciphered Metabolic Reprogramming Required for Biofilm Formation. Sci Rep 2019; 9:13160. [PMID: 31511592 PMCID: PMC6739361 DOI: 10.1038/s41598-019-49603-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
Biofilm formation plays a key role in many bacteria causing infections, which mostly accounts for high-frequency infectious recurrence and antibiotics resistance. In this study, we sought to compare modified metabolism of biofilm and planktonic populations with UTI89, a predominant agent of urinary tract infection, by combining mass spectrometry based untargeted and targeted metabolomics methods, as well as cytological visualization, which enable us to identify the driven metabolites and associated metabolic pathways underlying biofilm formation. Surprisingly, our finding revealed distinct differences in both phenotypic morphology and metabolism between two patterns. Furthermore, we identified and characterized 38 differential metabolites and associated three metabolic pathways involving glycerolipid metabolism, amino acid metabolism and carbohydrate metabolism that were altered mostly during biofilm formation. This discovery in metabolic phenotyping permitted biofilm formation shall provide us a novel insight into the dissociation of biofilm, which enable to develop novel biofilm based treatments against pathogen causing infections, with lower antibiotic resistance.
Collapse
Affiliation(s)
- Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xia Wu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Tianbing Guan
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Hao Guo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
17
|
She P, Luo Z, Chen L, Wu Y. Efficacy of levofloxacin against biofilms of Pseudomonas aeruginosa isolated from patients with respiratory tract infections in vitro. Microbiologyopen 2018; 8:e00720. [PMID: 30183143 PMCID: PMC6528602 DOI: 10.1002/mbo3.720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
Microbial biofilms are formed in a variety of clinical situations and increase antibiotic resistance of the pathogen by almost ~1,000 times. The effect of levofloxacin (OFLX) on the biofilms of Pseudomonas aeruginosa strain PAO1 and the clinical isolates was investigated by crystal violet staining and confocal laser scanning microscope. The transcriptional alteration in the PAO1 biofilms upon OFLX treatment was also analyzed by RNA sequencing (RNA‐seq). We found that while OFLX significantly inhibited P. aeruginosa biofilm formation in a dose‐dependent manner, it could not completely eradicate preformed biofilms even at higher concentrations. RNA‐seq revealed that PAO1 genes related to metabolism, formation of secondary metabolites, and quorum sensing biosynthesis were differentially expressed in the biofilms treated with OFLX. Our data might be useful in determining the optimum OFLX concentration needed for P. aeruginosa biofilm inhibition and eradication in patients with respiratory tract infections.
Collapse
Affiliation(s)
- Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Luo
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
She P, Wang Y, Luo Z, Chen L, Tan R, Wang Y, Wu Y. Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. Microbiologyopen 2017; 7. [PMID: 29178590 PMCID: PMC5822345 DOI: 10.1002/mbo3.545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microbial biofilms are communities of surface‐adhered cells enclosed in a matrix of extracellular polymeric substances. Bacterial cells in biofilm are 10~1,000‐fold more resistant to antimicrobials than the planktonic cells. Burgeoning antibiotic resistance in Pseudomonas aeruginosa biofilm has necessitated the development of antimicrobial agents. Here, we have investigated the antibiofilm effect of meloxicam against P. aeruginosaPAO1 and its potential mechanisms. Further, we have explored whether meloxicam could enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobials. Here, we found that meloxicam could significantly inhibit PAO1 biofilm formation in a dose‐dependent manner at the concentration without influence on planktonic cell growth. Meloxicam could also significantly inhibit the motilities, production of extracellular matrix, and expression of quorum sensing‐related genes and virulence factors of PAO1. Furthermore, synergistic interaction was observed when meloxicam combined with tetracycline, gentamicin, tobramycin, ciprofloxacin, ceftriaxone, ofloxacin, norfloxacin, ceftazidime, and DNase at subminimal inhibitory concentrations against PAO1 bioiflm. Collectively, our study lays the foundation for further investigation of repurposing meloxicam as a topical antibiofilm agent to treat P. aeruginosa biofilm‐related infections.
Collapse
Affiliation(s)
- Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yangxia Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Luo
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruichen Tan
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanle Wang
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
19
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
20
|
Krysenko S, Okoniewski N, Kulik A, Matthews A, Grimpo J, Wohlleben W, Bera A. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145. Front Microbiol 2017; 8:726. [PMID: 28487688 PMCID: PMC5403932 DOI: 10.3389/fmicb.2017.00726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962), was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Nicole Okoniewski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Arne Matthews
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Jan Grimpo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Agnieszka Bera
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| |
Collapse
|
21
|
de Almeida FA, Pimentel-Filho NDJ, Carrijo LC, Bento CBP, Baracat-Pereira MC, Pinto UM, de Oliveira LL, Vanetti MCD. Acyl homoserine lactone changes the abundance of proteins and the levels of organic acids associated with stationary phase in Salmonella Enteritidis. Microb Pathog 2017; 102:148-159. [DOI: 10.1016/j.micpath.2016.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
|
22
|
Qu L, She P, Wang Y, Liu F, Zhang D, Chen L, Luo Z, Xu H, Qi Y, Wu Y. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen 2016; 5:402-12. [PMID: 26817804 PMCID: PMC4905993 DOI: 10.1002/mbo3.338] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/15/2015] [Accepted: 12/27/2015] [Indexed: 12/24/2022] Open
Abstract
Biofilms are defined as aggregation of single cell microorganisms and associated with over 80% of all the microbial infections. Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of leading to various infections in immunocompromised people. Recent studies showed that norspermidine, a kind of polyamine, prevented and disrupted biofilm formation by some Gram-negative bacterium. In this study, the effects of norspermidine on P. aeruginosa biofilm formation and eradication were tested. Microtiter plate combined with crystal violet staining was used to study the effects of norspermidine on P. aeruginosa initial attachment, then we employed SEM (scanning electron microscope), qRT-PCR, and QS-related virulence factor assays to investigate how norspermidine prevent biofilm formation by P. aeruginosa. We reported that high-dose norspermidine had bactericide effect on P. aeruginosa, and norspermidine began to inhibit biofilm formation and eradicate 24-h mature biofilm at concentration of 0.1 and 1 mmol/L, respectively, probably by preventing cell-surface attachment, inhibiting swimming motility, and downregulating QS-related genes expression. To investigate the potential utility of norspermidine in preventing device-related infections, we found that catheters immersed with norspermidine were effective in eradicating mature biofilm. These results suggest that norspermidine could be a potent antibiofilm agent for formulating strategies against P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Lin Qu
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Pengfei She
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Yangxia Wang
- Xiangya School of MedicineCentral South UniversityChangsha410013China
| | - Fengxia Liu
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Di Zhang
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Lihua Chen
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Zhen Luo
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Huan Xu
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Yong Qi
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Yong Wu
- Department of Medicine Clinical LaboratoryThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| |
Collapse
|
23
|
She P, Chen L, Qi Y, Xu H, Liu Y, Wang Y, Luo Z, Wu Y. Effects of human serum and apo-Transferrin on Staphylococcus epidermidis RP62A biofilm formation. Microbiologyopen 2016; 5:957-966. [PMID: 27185376 PMCID: PMC5221445 DOI: 10.1002/mbo3.379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Biofilm‐associated Staphylococcus epidermidis infections present clinically important features due to their high levels of resistance to traditional antibiotics. As a part of human innate immune system, serum shows different degrees of protection against systemic S. epidermidis infection. We investigated the ability of human serum as well as serum component to inhibit the formation of, and eradication of mature S. epidermidis biofilms. In addition, the synergistic effect of vancomycin combined with apo‐Transferrin was checked. Human serum exhibited significant antibiofilm activities against S. epidermidis at the concentration without affecting planktonic cell growth. However, there was no effect of human serum on established biofilms. By component separation, we observed that antibiofilm effect of serum components mainly due to the proteins could be damaged by heat inactivation (e.g., complement) or heat‐stable proteins ≥100 kDa. In addition, serum apo‐Transferrin showed modest antibiofilm effect, but without influence on S. epidermidis initial adhesion. And there was a synergistic antibiofilm interaction between vancomycin and apo‐Transferrin against S. epidermidis. Our results indicate that serum or its components (heat‐inactivated components or heat‐stable proteins ≥100 kDa) could inhibits S. epidermidis biofilm formation. Besides, apo‐Transferrin could partially reduce the biofilm formation at the concentration that does not inhibit planktonic cell growth.
Collapse
Affiliation(s)
- Pengfei She
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Lihua Chen
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yong Qi
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Huan Xu
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yuan Liu
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yangxia Wang
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhen Luo
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yong Wu
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
24
|
Wu Y, Quan X, Si X, Wang X. A small molecule norspermidine in combination with silver ion enhances dispersal and disinfection of multi-species wastewater biofilms. Appl Microbiol Biotechnol 2016; 100:5619-29. [DOI: 10.1007/s00253-016-7394-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
|
25
|
Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 973:53-70. [PMID: 27864804 DOI: 10.1007/5584_2016_93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biofilm formation is a major virulence factor for numerous pathogenic bacteria and is cited as a central event in the pathogenesis of chronic human infections, which is in large part due to excessive extracellular matrix secretion and metabolic changes that occur within the biofilm rendering them highly tolerant to antimicrobial treatments. Polyamines, including norspermidine, play central roles in bacterial biofilm development, but have also recently been shown to inhibit biofilm formation in select strains of various pathogenic bacteria. The aim of this study was to evaluate in vitro the biofilm dispersive and inhibitory activities of norspermidine against multidrug-resistant clinical isolates of Acinetobacter baumannii(n = 4), Klebsiella pneumoniae (n = 3), Pseudomonas aeruginosa (n = 5) and Staphylococcus aureus (n = 4) associated with chronic extremity wound infections using the semi-quantitative 96-well plate method and confocal laser microscopy. In addition to the antibiofilm activity, biocompatibility of norspermidine was also evaluated by measuring toxicity in vitro to human cell lines and whole porcine tissue explants using MTT viability assay and histological analysis. Norspermidine (5-20 mM) had variable dispersive and inhibitory activity on biofilms which was dependent on both the strain and species. Of the clinical bacterial species evaluated herein, A. baumannii isolates were the most sensitive to the effect of norspermidine, which was in part due to the inhibitory effects of norspermidine on bacterial motility and expression of genes involved in the production of homoserine lactones and quorum sensing molecules both essential for biofilm formation. Importantly, exposure of cell lines and whole tissues to norspermidine for prolonged periods of time (≥24 h) was observed to reduce viability and alter tissue histology in a time and concentration dependent manner, with 20 mM exposure having the greatest negative effects on both tissues and individual cell lines. Collectively our findings demonstrate that, similar to other polyamines, norspermidine displays both inhibitory and dispersive activities on biofilms of clinical multidrug-resistant bacterial isolates, in particular for strains of A. baumannii. Additionally our findings suggest that direct application may be considered on tissues, albeit for limited exposure times.
Collapse
|
26
|
A small-molecule norspermidine and norspermidine-hosting polyelectrolyte coatings inhibit biofilm formation by multi-species wastewater culture. Appl Microbiol Biotechnol 2015; 99:10861-70. [PMID: 26350146 DOI: 10.1007/s00253-015-6943-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/08/2015] [Accepted: 08/31/2015] [Indexed: 01/30/2023]
Abstract
Norspermidine is a potent and non-bactericidal small-molecule inhibitor of biofilm growth. In this study, impacts of norspermidine on biofilm control and existing biofilm dispersal by a mixed culture from wastewater treatment systems were investigated. A surface-mediated releasing approach for prevention of bacterial biofilm formation was established via encapsulating norspermidine into polyelectrolyte multilayer coatings. Results showed that the presence of norspermidine (500-1000 μM) in medium remarkably prevented biofilm formation. Norspermidine was also effective in disassembling pre-formed biofilms. Norspermidine-containing multilayer coatings were successfully fabricated on glass slides via layer-by-layer deposition in polyethylenimine (PEI) and poly(acrylic acid) (PAA) solution. This coating exhibited a high anti-biofilm property against a mixed culture and three pure strains (Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli). The loading amount and space distribution of norspermidine in the multilayer coating were key factors influencing its anti-biofilm efficacy. The polymer coating with norspermidine loaded in each bilayer (each-layer-type) exhibited better anti-biofilm efficacy than the bottom-type and the top-type coating, which showed a stable biofilm inhibition rate of about 60 % even after 5-day leaching in aqueous solution. Norspermidine could retard bacterial adhesion and destruct biofilm matrix by reducing exopolysaccharides and extracellular DNA (eDNA) associated with bacteria instead of growth inhibition. Norspermidine and the norspermidine-hosting coatings in this study offer a great potential for the control of biofilms in the settings of water purification and wastewater treatment systems, which shows the advantage of broad spectrum and less risk of evolved bacterial resistance compared to conventional microbicidal agents (e.g., antibiotics).
Collapse
|