1
|
Srivastava S, Dafale NA, Purohit HJ. Functional genomics assessment of lytic polysaccharide mono-oxygenase with glycoside hydrolases in Paenibacillus dendritiformis CRN18. Int J Biol Macromol 2020; 164:3729-3738. [PMID: 32835796 DOI: 10.1016/j.ijbiomac.2020.08.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022]
Abstract
Recently discovered Lytic Polysaccharide Mono-Oxygenase (LPMO) enhances the enzymatic deconstruction of complex polysaccharide by oxidation. The present study demonstrates the agricultural waste hydrolyzing capabilities of Paenibacillus dendritiformis CRN18, which exhibits the enzyme activity of exo-glucanase, β-glucosidase, β-glucuronidase, endo-1, 4 β-xylanases, arabinosidase, and α-galactosidase as 0.1U/ml, 0.3U/ml, 0.09U/ml, 0.1U/ml, 0.05U/ml, and 0.41U/ml, respectively. The genome analysis of strain reveals the presence of four LPMO genes, along with lignocellulolytic genes. The gene structure of LPMO and its phylogenetic analysis shows the evolutionary relatedness with the Bacillus LPMO gene. Gene position of LPMOs in the genome of strains shows the close association of two LPMOs with chitin active enzyme GH18, and the other two are associated with hemicellulases (GH39, GH23). Protein-protein interaction and gene networking of LPMO sheds light on the co-occurrence, neighborhood, and interaction of LPMOs with chitinase and xylanase enzymes. Structural prediction of LPMOs unravels the information of the LPMO's binding site. Although the LPMO has been explored for its oxidative mechanism, a little light has been shed on its gene structure. This study provides insights into the LPMO gene structure in P. dendritiformis CRN18 and its potential in lignocellulose hydrolysis.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India; AcSIR-Academy for Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India; AcSIR-Academy for Scientific and Innovative Research, Ghaziabad 201 002, India.
| | - Hemant J Purohit
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| |
Collapse
|
2
|
Kuhaudomlarp S, Pergolizzi G, Patron NJ, Henrissat B, Field RA. Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. J Biol Chem 2019; 294:6483-6493. [PMID: 30819804 PMCID: PMC6484121 DOI: 10.1074/jbc.ra119.007712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
Glycoside phosphorylases (GPs) catalyze the phosphorolysis of glycans into the corresponding sugar 1-phosphates and shortened glycan chains. Given the diversity of natural β-(1→3)-glucans and their wide range of biotechnological applications, the identification of enzymatic tools that can act on β-(1→3)-glucooligosaccharides is an attractive area of research. GP activities acting on β-(1→3)-glucooligosaccharides have been described in bacteria, the photosynthetic excavate Euglena gracilis, and the heterokont Ochromonas spp. Previously, we characterized β-(1→3)-glucan GPs from bacteria and E. gracilis, leading to their classification in glycoside hydrolase family GH149. Here, we characterized GPs from Gram-positive bacteria and heterokont algae acting on β-(1→3)-glucooligosaccharides. We identified a phosphorylase sequence from Ochromonas spp. (OcP1) together with its orthologs from other species, leading us to propose the establishment of a new GH family, designated GH161. To establish the activity of GH161 members, we recombinantly expressed a bacterial GH161 gene sequence (PapP) from the Gram-positive bacterium Paenibacillus polymyxa ATCC 842 in Escherichia coli. We found that PapP acts on β-(1→3)-glucooligosaccharide acceptors with a degree of polymerization (DP) ≥ 2. This activity was distinct from that of characterized GH149 β-(1→3)-glucan phosphorylases, which operate on acceptors with DP ≥ 1. We also found that bacterial GH161 genes co-localize with genes encoding β-glucosidases and ATP-binding cassette transporters, highlighting a probable involvement of GH161 enzymes in carbohydrate degradation. Importantly, in some species, GH161 and GH94 genes were present in tandem, providing evidence that GPs from different CAZy families may work sequentially to degrade oligosaccharides.
Collapse
Affiliation(s)
- Sakonwan Kuhaudomlarp
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Giulia Pergolizzi
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Nicola J Patron
- the Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, 163 Avenue de Luminy, 13288 Marseille, France.,CNRS, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France, and.,the Department of Biological Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia
| | - Robert A Field
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom,
| |
Collapse
|
3
|
Rütering M, Cress BF, Schilling M, Rühmann B, Koffas MAG, Sieber V, Schmid J. Tailor-made exopolysaccharides-CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa. Synth Biol (Oxf) 2017; 2:ysx007. [PMID: 32995508 PMCID: PMC7445874 DOI: 10.1093/synbio/ysx007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022] Open
Abstract
Application of state-of-the-art genome editing tools like CRISPR-Cas9 drastically increase the number of undomesticated micro-organisms amenable to highly efficient and rapid genetic engineering. Adaptation of these tools to new bacterial families can open up entirely new possibilities for these organisms to accelerate as biotechnologically relevant microbial factories, also making new products economically competitive. Here, we report the implementation of a CRISPR-Cas9 based vector system in Paenibacillus polymyxa, enabling fast and reliable genome editing in this host. Homology directed repair allows for highly efficient deletions of single genes and large regions as well as insertions. We used the system to investigate the yet undescribed biosynthesis machinery for exopolysaccharide (EPS) production in P. polymyxa DSM 365, enabling assignment of putative roles to several genes involved in EPS biosynthesis. Using this simple gene deletion strategy, we generated EPS variants that differ from the wild-type polymer not only in terms of monomer composition, but also in terms of their rheological behavior. The developed CRISPR-Cas9 mediated engineering approach will significantly contribute to the understanding and utilization of socially and economically relevant Paenibacillus species and extend the polymer portfolio.
Collapse
Affiliation(s)
- Marius Rütering
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Straubing, Germany.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Brady F Cress
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Martin Schilling
- Evonik Nutrition and Care GmbH, Kirschenallee, Darmstadt, Germany
| | - Broder Rühmann
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Straubing, Germany
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Straubing, Germany.,Fraunhofer IGB, Straubing Branch Bio, Electro, and Chemocatalysis BioCat, Straubing, Germany.,Catalysis Research Center, Technical University of Munich, Garching, Germany
| | - Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Straubing, Germany
| |
Collapse
|
4
|
Rhee MS, Sawhney N, Kim YS, Rhee HJ, Hurlbert JC, St John FJ, Nong G, Rice JD, Preston JF. GH115 α-glucuronidase and GH11 xylanase from Paenibacillus sp. JDR-2: potential roles in processing glucuronoxylans. Appl Microbiol Biotechnol 2016; 101:1465-1476. [PMID: 27766358 DOI: 10.1007/s00253-016-7899-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 01/26/2023]
Abstract
Paenibacillus sp. JDR-2 (Pjdr2) has been studied as a model for development of bacterial biocatalysts for efficient processing of xylans, methylglucuronoxylan, and methylglucuronoarabinoxylan, the predominant hemicellulosic polysaccharides found in dicots and monocots, respectively. Pjdr2 produces a cell-associated GH10 endoxylanase (Xyn10A1) that catalyzes depolymerization of xylans to xylobiose, xylotriose, and methylglucuronoxylotriose with methylglucuronate-linked α-1,2 to the nonreducing terminal xylose. A GH10/GH67 xylan utilization regulon includes genes encoding an extracellular cell-associated Xyn10A1 endoxylanase and an intracellular GH67 α-glucuronidase active on methylglucuronoxylotriose generated by Xyn10A1 but without activity on methylglucuronoxylotetraose generated by a GH11 endoxylanase. The sequenced genome of Pjdr2 contains three paralogous genes potentially encoding GH115 α-glucuronidases found in certain bacteria and fungi. One of these, Pjdr2_5977, shows enhanced expression during growth on xylans along with Pjdr2_4664 encoding a GH11 endoxylanase. Here, we show that Pjdr2_5977 encodes a GH115 α-glucuronidase, Agu115A, with maximal activity on the aldouronate methylglucuronoxylotetraose selectively generated by a GH11 endoxylanase Xyn11 encoded by Pjdr2_4664. Growth of Pjdr2 on this methylglucuronoxylotetraose supports a process for Xyn11-mediated extracellular depolymerization of methylglucuronoxylan and Agu115A-mediated intracellular deglycosylation as an alternative to the GH10/GH67 system previously defined in this bacterium. A recombinantly expressed enzyme encoded by the Pjdr2 agu115A gene catalyzes removal of 4-O-methylglucuronate residues α-1,2 linked to internal xylose residues in oligoxylosides generated by GH11 and GH30 xylanases and releases methylglucuronate from polymeric methylglucuronoxylan. The GH115 α-glucuronidase from Pjdr2 extends the discovery of this activity to members of the phylum Firmicutes and contributes to a novel system for bioprocessing hemicelluloses.
Collapse
Affiliation(s)
- Mun Su Rhee
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.,Xycrobe Therapeutics Inc., 3210 Merryfield Row, San Diego,, CA, 92121,, USA
| | - Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235,, USA
| | - Young Sik Kim
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Hyun Jee Rhee
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 6-113, Cambridge, MA, 02139,, USA
| | - Jason C Hurlbert
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC, 29733, USA
| | - Franz J St John
- Forest Products Laboratory, United States Forest Service, The United States Department of Agriculture, Madison, Madison,, WI, 53726, USA
| | - Guang Nong
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - John D Rice
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.
| |
Collapse
|
5
|
Sawhney N, Crooks C, Chow V, Preston JF, St John FJ. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides. BMC Genomics 2016; 17:131. [PMID: 26912334 PMCID: PMC4765114 DOI: 10.1186/s12864-016-2436-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Background Polysaccharides comprising plant biomass are potential resources for conversion to fuels and chemicals. These polysaccharides include xylans derived from the hemicellulose of hardwoods and grasses, soluble β-glucans from cereals and starch as the primary form of energy storage in plants. Paenibacillus sp. JDR-2 (Pjdr2) has evolved a system for bioprocessing xylans. The central component of this xylan utilization system is a multimodular glycoside hydrolase family 10 (GH10) endoxylanase with carbohydrate binding modules (CBM) for binding xylans and surface layer homology (SLH) domains for cell surface anchoring. These attributes allow efficient utilization of xylans by generating oligosaccharides proximal to the cell surface for rapid assimilation. Coordinate expression of genes in response to growth on xylans has identified regulons contributing to depolymerization, importation of oligosaccharides and intracellular processing to generate xylose as well as arabinose and methylglucuronate. The genome of Pjdr2 encodes several other putative surface anchored multimodular enzymes including those for utilization of β-1,3/1,4 mixed linkage soluble glucan and starch. Results To further define polysaccharide utilization systems in Pjdr2, its transcriptome has been determined by RNA sequencing following growth on barley-derived soluble β-glucan, starch, cellobiose, maltose, glucose, xylose and arabinose. The putative function of genes encoding transcriptional regulators, ABC transporters, and glycoside hydrolases belonging to the corresponding substrate responsive regulon were deduced by their coordinate expression and locations in the genome. These results are compared to observations from the previously defined xylan utilization systems in Pjdr2. The findings from this study show that Pjdr2 efficiently utilizes these glucans in a manner similar to xylans. From transcriptomic and genomic analyses we infer a common strategy evolved by Pjdr2 for efficient bioprocessing of polysaccharides. Conclusions The barley β-glucan and starch utilization systems in Pjdr2 include extracellular glycoside hydrolases bearing CBM and SLH domains for depolymerization of these polysaccharides. Overlapping regulation observed during growth on these polysaccharides suggests they are preferentially utilized in the order of starch before xylan before barley β-glucan. These systems defined in Pjdr2 may serve as a paradigm for developing biocatalysts for efficient bioprocessing of plant biomass to targeted biofuels and chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2436-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA.
| | - Virginia Chow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA.
| |
Collapse
|
6
|
López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:104. [PMID: 27186238 PMCID: PMC4867992 DOI: 10.1186/s13068-016-0518-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/04/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The search for new enzymes and microbial strains to degrade plant biomass is one of the most important strategies for improving the conversion processes in the production of environment-friendly chemicals and biofuels. In this study, we report a new Paenibacillus isolate, O199, which showed the highest efficiency for cellulose deconstruction in a screen of environmental isolates. Here, we provide a detailed description of the complex multi-component O199 enzymatic system involved in the degradation of lignocellulose. RESULTS We examined the genome and the proteome of O199 grown on complex lignocellulose (wheat straw) and on microcrystalline cellulose. The genome contained 476 genes with domains assigned to carbohydrate-active enzyme (CAZyme) families, including 100 genes coding for glycosyl hydrolases (GHs) putatively involved in cellulose and hemicellulose degradation. Moreover, 31 % of these CAZymes were expressed on cellulose and 29 % on wheat straw. Proteomic analyses also revealed a complex and complete set of enzymes for deconstruction of cellulose (at least 22 proteins, including 4 endocellulases, 2 exocellulases, 2 cellobiohydrolases and 2 β-glucosidases) and hemicellulose (at least 28 proteins, including 5 endoxylanases, 1 β-xylosidase, 2 xyloglucanases, 2 endomannanases, 2 licheninases and 1 endo-β-1,3(4)-glucanase). Most of these proteins were secreted extracellularly and had numerous carbohydrate-binding domains (CBMs). In addition, O199 also secreted a high number of substrate-binding proteins (SBPs), including at least 42 proteins binding carbohydrates. Interestingly, both plant lignocellulose and crystalline cellulose triggered the production of a wide array of hydrolytic proteins, including cellulases, hemicellulases, and other GHs. CONCLUSIONS Our data provide an in-depth analysis of the complex and complete set of enzymes and accessory non-catalytic proteins-GHs, CBMs, transporters, and SBPs-implicated in the high cellulolytic capacity shown by this bacterial strain. The large diversity of hydrolytic enzymes and the extracellular secretion of most of them supports the use of Paenibacillus O199 as a candidate for second-generation technologies using paper or lignocellulosic agricultural wastes.
Collapse
Affiliation(s)
- Rubén López-Mondéjar
- />Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, v. v. i., Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Daniela Zühlke
- />Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Friedrich-Ludwig-Jahnstrasse 15, 17487 Greifswald, Germany
| | - Tomáš Větrovský
- />Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, v. v. i., Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Dörte Becher
- />Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Friedrich-Ludwig-Jahnstrasse 15, 17487 Greifswald, Germany
| | - Katharina Riedel
- />Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Friedrich-Ludwig-Jahnstrasse 15, 17487 Greifswald, Germany
| | - Petr Baldrian
- />Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, v. v. i., Průmyslová 595, 252 42 Vestec, Czech Republic
| |
Collapse
|