1
|
Wang X, Liu L, Shen R, Wang Q, Xie X, Liu W, Yu Z, Li X, Guo X, Yang F. A novel CBM serving as a module for efficiently decomposing xanthan by modifying the processivity of hydrolase. Carbohydr Polym 2025; 347:122747. [PMID: 39486976 DOI: 10.1016/j.carbpol.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
The inefficient decomposition of polysaccharides, particularly branched polysaccharides limits their large-scale industrial applications. Further understanding and modification of glycoside hydrolases (GHs) processivity is expected to overcome this limitation. Here, a novel xanthan-binding CBM (MiXBM), which was supposed to alter the processivity of GHs, was systematically characterized. Phylogeny and structure analyses indicated that MiXBM is closely related to putative polysaccharide side chain-binding modules. Quantitative binding assays further revealed that MiXBM probably has a high affinity for xanthan side chain via a variable loop site. Moreover, catalytic performance demonstrated that xanthanase chimeras containing MiXBM promote highly efficient hydrolysis of xanthan because of improved substrate accessibility. Notably, MiXBM was observed to enhance the processivity of xanthanase, owing to its high substrate affinity to the repeating unit xanthan. Furthermore, sequential hydrolysis of xanthan by xanthanases with varying processivity resulted in significantly increased hydrolytic efficiency and focused oligoxanthans array. These results expand understanding of CBM-substrate recognition and shed light on efficient degradation of other regularly branched polysaccharides using modified GHs.
Collapse
Affiliation(s)
- Xueyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| | - Le Liu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Ruiyu Shen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Qian Wang
- Division of Biotechnology, Chinese Academy of Sciences Dalian Institute of Chemical Physics, Zhongshan Road, Dalian, PR China
| | - Xiaoqi Xie
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Weiming Liu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Zhimin Yu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| |
Collapse
|
2
|
Liu J, Shi J, Gao J, Shi R, Zhu J, Jensen MS, Li C, Yang J, Zhao S, Sun A, Sun D, Zhang Y, Liu C, Liu W. Functional studies on tandem carbohydrate-binding modules of a multimodular enzyme possessing two catalytic domains. Appl Environ Microbiol 2024; 90:e0088824. [PMID: 38940565 PMCID: PMC11267928 DOI: 10.1128/aem.00888-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Although functional studies on carbohydrate-binding module (CBM) have been carried out extensively, the role of tandem CBMs in the enzyme containing multiple catalytic domains (CDs) is unclear. Here, we identified a multidomain enzyme (Lc25986) with a novel modular structure from lignocellulolytic bacterial consortium. It consists of a mannanase domain, two CBM65 domains (LcCBM65-1/LcCBM65-2), and an esterase domain. To investigate CBM function and domain interactions, full-length Lc25986 and its variants were constructed and used for enzymatic activity, binding, and bioinformatic analyses. The results showed that LcCBM65-1 and LcCBM65-2 both bind mannan and xyloglucan but not cellulose or β-1,3-1,4-glucan, which differs from the ligand specificity of reported CBM65s. Compared to LcCBM65-2, LcCBM65-1 showed a stronger ligand affinity and a preference for acetylation sites. Both CBM65s stimulated the enzymatic activities of their respective neighboring CDs against acetylated mannan, but did not contribute to the activities of the distal CDs. The time course of mannan hydrolysis indicated that the full-length Lc25986 was more effective in the complete degradation of mixed acetyl/non-acetyl substrates than the mixture of single-CD mutants. When acting on complex substrates, LcCBM65-1 not only improved the enzymatic activity of the mannanase domain, but also directed the esterase domain to the acetylated polysaccharides. LcCBM65-2 adopted a low affinity to reduce interference with the catalysis of the mannanase domain. These results demonstrate the importance of CBMs for the synergism between the two CDs of a multidomain enzyme and suggest that they contribute to the adequate degradation of complex substrates such as plant cell walls. IMPORTANCE Lignocellulolytic enzymes, particularly those of bacterial origin, often harbor multiple carbohydrate-binding modules (CBMs). However, the function of CBM multivalency remains poorly understood. This is especially true for enzymes that contain more than one catalytic domain (CD), as the interactions between CDs, CBMs, and CDs and CBMs can be complex. Our research demonstrates that homogeneous CBMs can have distinct functions in a multimodular enzyme. The tandem CBMs coordinate the CDs in catalytic conflict through their differences in binding affinity, ligand preference, and arrangement within the full-length enzyme. Additionally, although the synergism between mannanase and esterase is widely acknowledged, our study highlights the benefits of integrating the two enzymes into a single entity for the degradation of complex substrates. In summary, these findings enhance our understanding of the intra-synergism of a multimodular enzyme and emphasize the significance of multiple CBMs in this context.
Collapse
Affiliation(s)
- Jiawen Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jiani Shi
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jiahui Gao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Rui Shi
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Marcus Sepo Jensen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chenchen Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jing Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Siyi Zhao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Aofei Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Vieira MM, Valadares FL, Velasco J, da Silva SS, Segato F, Chandel AK. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification. Prep Biochem Biotechnol 2024; 54:729-735. [PMID: 37966162 DOI: 10.1080/10826068.2023.2279109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Aureobasidium pullulans LB83 is a versatile biocatalyst that produces a plethora of bioactive products thriving on a variety of feedstocks under the varying culture conditions. In our last study using this microorganism, we found cellulase activity (FPase, 2.27 U/ml; CMCase, 7.42 U/ml) and other plant cell wall degrading enzyme activities grown on sugarcane bagasse and soybean meal as carbon source and nitrogen, respectively. In the present study, we provide insights on the secretome analysis of this enzymatic cocktail. The secretome analysis of A. pullulans LB83 by Liquid Chromatography coupled to Mass Spectroscopy (LC-MS/MS) revealed 38 classes of Carbohydrate Active enZymes (CAZymes) of a total of 464 identified proteins. These CAZymes consisted of 21 glycoside hydrolases (55.26%), 12 glycoside hydrolases harboring carbohydrate-binding module (31.58%), 4 carbohydrate esterases (10.53%) and one glycosyl transferase (2.63%). To the best of our knowledge, this is the first report on the secretome analysis of A. pullulans LB83.
Collapse
Affiliation(s)
- Matheus Maitan Vieira
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Fernanda Lima Valadares
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Josman Velasco
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| |
Collapse
|
4
|
Monica P, Ranjan R, Kapoor M. Family 3 CBM improves the biochemical properties, substrate hydrolysis and coconut oil extraction by hemicellulolytic and holocellulolytic chimeras. Enzyme Microb Technol 2024; 174:110375. [PMID: 38157781 DOI: 10.1016/j.enzmictec.2023.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
To understand the influence of family 3 Carbohydrate Binding Module (hereafter CBM3), single (GH5 cellulase; CelB, CelBΔCBM), bi-chimeric [GH26 endo-mannanase (ManB-1601) and GH11 endo-xylanase (XynB); ManB-XynB [1], ManB-XynB-CBM] and tri-chimeric [ManB-XynB-CelB [1], ManB-XynB-CelBΔCBM] enzyme variants (fused or deleted of CBM) were produced and purified to homogeneity. CBM3 did not alter the pH and temperature optima of bi- and tri-chimeric enzymes but improved the pH and temperature stability of ManB in CBM variants of bi-/tri-chimeric enzymes. Truncation of CBM in CelB shifted the pH optimum and increased the melting temperature (Tm 65 ℃). CBM3 improved both substrate affinity (Km) and catalytic efficiency (kcat/Km) of fused enzymes in tri-chimera and CelB but only Km for bi-chimera. Far-UV CD of CelB and bi- and tri-chimeric enzymes suggested that CBM3 improved the α-helical content and compactness in the native state but did not prevent disintegration of secondary structural contents at acidic pH. Steady-state fluorescence studies suggested that under acidic conditions CBM3 prevented the exposure of hydrophobic patches in bi-chimeric protein but could not avert the opening up of chimeric enzyme structure. Aqueous enzyme assisted treatment of mature coconut kernel using single, bi- and tri-chimeric enzymes led to cracks, peeling and fracturing of the matrix and improved the oil yield by up to 22%.
Collapse
Affiliation(s)
- P Monica
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Ritesh Ranjan
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
5
|
Wang X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress of multi-enzyme complexes based on the design of scaffold protein. BIORESOUR BIOPROCESS 2023; 10:72. [PMID: 38647916 PMCID: PMC10992622 DOI: 10.1186/s40643-023-00695-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 04/25/2024] Open
Abstract
Multi-enzyme complexes designed based on scaffold proteins are a current topic in molecular enzyme engineering. They have been gradually applied to increase the production of enzyme cascades, thereby achieving effective biosynthetic pathways. This paper reviews the recent progress in the design strategy and application of multi-enzyme complexes. First, the metabolic channels in the multi-enzyme complex have been introduced, and the construction strategies of the multi-enzyme complex emerging in recent years have been summarized. Then, the discovered enzyme cascades related to scaffold proteins are discussed, emphasizing on the influence of the linker on the fusion enzyme (fusion protein) and its possible mechanism. This review is expected to provide a more theoretical basis for the modification of multi-enzyme complexes and broaden their applications in synthetic biology.
Collapse
Affiliation(s)
- Xiangyi Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Li H, Lu Z, Hao MS, Kvammen A, Inman AR, Srivastava V, Bulone V, McKee LS. Family 92 carbohydrate-binding modules specific for β-1,6-glucans increase the thermostability of a bacterial chitinase. Biochimie 2023; 212:153-160. [PMID: 37121306 DOI: 10.1016/j.biochi.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
In biomass-processing industries there is a need for enzymes that can withstand high temperatures. Extensive research efforts have been dedicated to finding new thermostable enzymes as well as developing new means of stabilising existing enzymes. The attachment of a stable non-catalytic domain to an enzyme can, in some instances, protect a biocatalyst from thermal denaturation. Carbohydrate-binding modules (CBMs) are non-catalytic domains typically found appended to biomass-degrading or modifying enzymes, such as glycoside hydrolases (GHs). Most often, CBMs interact with the same polysaccharide as their enzyme partners, leading to an enhanced reaction rate via the promotion of enzyme-substrate interactions. Contradictory to this general concept, we show an example of a chitin-degrading enzyme from GH family 18 that is appended to two CBM domains from family 92, both of which bind preferentially to the non-substrate polysaccharide β-1,6-glucan. During chitin hydrolysis, the CBMs do not contribute to enzyme-substrate interactions but instead confer a 10-15 °C increase in enzyme thermal stability. We propose that CBM92 domains may have a natural enzyme stabilisation role in some cases, which may be relevant to enzyme design for high-temperature applications in biorefinery.
Collapse
Affiliation(s)
- He Li
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Zijia Lu
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Meng-Shu Hao
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Alma Kvammen
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Annie R Inman
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden; College of Medicine & Public Health, Flinders University, Bedford Park Campus, Sturt Road, SA, 5042, Australia
| | - Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden; Wallenberg Wood Science Center, Teknikringen 56-58, 100 44, Stockholm, Sweden.
| |
Collapse
|
7
|
Structural and functional insights of the catalytic GH5 and Calx-β domains from the metagenome-derived endoglucanase CelE2. Enzyme Microb Technol 2023; 165:110206. [PMID: 36758494 DOI: 10.1016/j.enzmictec.2023.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Cellulose is the most abundant natural polymer on Earth, representing an attractive feedstock for bioproducts and biofuel production. Cellulases promote the depolymerization of cellulose, generating short oligosaccharides and glucose, which are useful in biotechnological applications. Among the classical cellulases, those from glycoside hydrolase family 5 (GH5) are one of the most abundant in Nature, displaying several modular architectures with other accessory domains attached to its catalytic core, such as carbohydrate-binding modules (CBMs), Ig-like, FN3-like, and Calx-β domains, which can influence the enzyme activity. The metagenome-derived endoglucanase CelE2 has in its modular architecture an N-terminal domain belonging to the GH5 family and a C-terminal domain with a high identity to the Calx-β domain. In this study, the GH5 and the Calx-β domains were subcloned and heterologously expressed in E. coli, to evaluate the structural and functional properties of the individualized domains of CelE2. Thermostability analysis by circular dichroism (CD) revealed a decrease in the denaturation temperature values around 4.6 °C for the catalytic domain (CelE21-381) compared to CelE2 full-length. The CD analyses revealed that the Calx-β domain (CelE2382-477) was unfolded, suggesting that this domain requires to be attached to the catalytic core to become structurally stable. The three-dimensional structure of the catalytic domain CelE21-381 was determined at 2.1 Å resolution, showing a typical (α/β)8-barrel fold and a narrow active site compared to other cellulases from the same family. The biochemical characterization showed that the deletion of the Calx-β domain increased more than 3-fold the activity of the catalytic domain CelE21-381 towards the insoluble substrate Avicel. The main functional properties of CelE2, such as substrate specificity, optimal pH and temperature, thermal stability, and activation by CaCl2, were not altered after the deletion of the accessory domain. Furthermore, the Small Angle X-ray Scattering (SAXS) analyses showed that the addition of CaCl2 was beneficial CelE21-381 protein solvency. This work contributed to fundamental concepts about the structure and function of cellulases, which are useful in applications involving lignocellulosic materials degradation into food and feedstuffs and biofuel production.
Collapse
|
8
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
9
|
Crosby JR, Laemthong T, Bing RG, Zhang K, Tanwee TNN, Lipscomb GL, Rodionov DA, Zhang Y, Adams MWW, Kelly RM. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Appl Environ Microbiol 2022; 88:e0130222. [PMID: 36218355 PMCID: PMC9642015 DOI: 10.1128/aem.01302-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor species scavenge carbohydrates from runoff containing plant biomass that enters hot springs and from grasses that grow in more moderate parts of thermal features. While only a few Caldicellulosiruptor species can degrade cellulose, all known species are hemicellulolytic. The most well-characterized species, Caldicellulosiruptor bescii, decentralizes its hemicellulase inventory across five different genomic loci and two isolated genes. Transcriptomic analyses, comparative genomics, and enzymatic characterization were utilized to assign functional roles and determine the relative importance of its six putative endoxylanases (five glycoside hydrolase family 10 [GH10] enzymes and one GH11 enzyme) and two putative exoxylanases (one GH39 and one GH3) in C. bescii. Two genus-wide conserved xylanases, C. bescii XynA (GH10) and C. bescii Xyl3A (GH3), had the highest levels of sugar release on oat spelt xylan, were in the top 10% of all genes transcribed by C. bescii, and were highly induced on xylan compared to cellulose. This indicates that a minimal set of enzymes are used to drive xylan degradation in the genus Caldicellulosiruptor, complemented by hemicellulolytic inventories that are tuned to specific forms of hemicellulose in available plant biomasses. To this point, synergism studies revealed that the pairing of specific GH family proteins (GH3, -11, and -39) with C. bescii GH10 proteins released more sugar in vitro than mixtures containing five different GH10 proteins. Overall, this work demonstrates the essential requirements for Caldicellulosiruptor to degrade various forms of xylan and the differences in species genomic inventories that are tuned for survival in unique biotopes with variable lignocellulosic substrates. IMPORTANCE Microbial deconstruction of lignocellulose for the production of biofuels and chemicals requires the hydrolysis of heterogeneous hemicelluloses to access the microcrystalline cellulose portion. This work extends previous in vivo and in vitro efforts to characterize hemicellulose utilization by integrating genomic reconstruction, transcriptomic data, operon structures, and biochemical characteristics of key enzymes to understand the deployment and functionality of hemicellulases by the extreme thermophile Caldicellulosiruptor bescii. Furthermore, comparative genomics of the genus revealed both conserved and divergent mechanisms for hemicellulose utilization across the 15 sequenced species, thereby paving the way to connecting functional enzyme characterization with metabolic engineering efforts to enhance lignocellulose conversion.
Collapse
Affiliation(s)
- James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Prabmark K, Boonyapakron K, Bunterngsook B, Arunrattanamook N, Uengwetwanit T, Chitnumsub P, Champreda V. Enhancement of catalytic activity and alkaline stability of cellobiohydrolase by structure-based protein engineering. 3 Biotech 2022; 12:269. [PMID: 36097631 PMCID: PMC9463429 DOI: 10.1007/s13205-022-03339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Alkaline cellobiohydrolases have the potential for application in various industries, including pulp processing and laundry where operation under high pH conditions is preferred. In this study, variants of CtCel6A cellobiohydrolase from Chaetomium thermophilum were generated by structural-based protein engineering with the rationale of increasing catalytic activity and alkaline stability. The variants included removal of the carbohydrate-binding module (CBM) and substitution of residues 173 and 200. The CBM-deleted enzyme with Y200F mutation predicted to mediate conformational change at the N-terminal loop demonstrated increased alkaline stability at 60 °C, pH 8.0 for 24 h up to 2.25-fold compared with the wild-type enzyme. Another CBM-deleted enzyme with L173E mutation predicted to induce a new hydrogen bond in the substrate-binding cleft showed enhanced hydrolysis yield of pretreated sugarcane trash up to 4.65-fold greater than that of the wild-type enzyme at the pH 8.0. The variant enzymes could thus be developed for applications on cellulose hydrolysis and plant fiber modification operated under alkaline conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03339-4.
Collapse
Affiliation(s)
- Kanoknart Prabmark
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Katewadee Boonyapakron
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Nattapol Arunrattanamook
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Tanaporn Uengwetwanit
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Penchit Chitnumsub
- Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| |
Collapse
|
11
|
Wu X, Shi Z, Tian W, Liu M, Huang S, Liu X, Yin H, Wang L. A thermostable and CBM2-linked GH10 xylanase from Thermobifida fusca for paper bleaching. Front Bioeng Biotechnol 2022; 10:939550. [PMID: 36091429 PMCID: PMC9459120 DOI: 10.3389/fbioe.2022.939550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Xylanases have the potential to be used as bio-deinking and bio-bleaching materials and their application will decrease the consumption of the chlorine-based chemicals currently used for this purpose. However, xylanases with specific properties could act effectively, such as having significant thermostability and alkali resistance, etc. In this study, we found that TfXyl10A, a xylanase from Thermobifida fusca, was greatly induced to transcript by microcrystalline cellulose (MCC) substrate. Biochemical characterization showed that TfXyl10A is optimally effective at temperature of 80 °C and pH of 9.0. After removing the carbohydrate-binding module (CBM) and linker regions, the optimum temperature of TfXyl10A-CD was reduced by 10°C (to 70°C), at which the enzyme’s temperature tolerance was also weakened. While truncating only the CBM domain (TfXyl10AdC) had no significant effect on its thermostability. Importantly, polysaccharide-binding experiment showed that the auxiliary domain CBM2 could specifically bind to cellulose substrates, which endowed xylanase TfXyl10A with the ability to degrade xylan surrounding cellulose. These results indicated that TfXyl10A might be an excellent candidate in bio-bleaching processes of paper industry. In addition, the features of active-site architecture of TfXyl10A in GH10 family were further analyzed. By mutating each residue at the -2 and -1 subsites to alanine, the binding force and enzyme activity of mutants were observably decreased. Interestingly, the mutant E51A, locating at the distal -3 subsite, exhibited 90% increase in relative activity compared with wild-type (WT) enzyme TfXyl10A-CD (the catalytic domain of TfXyl110A). This study explored the function of a GH10 xylanase containing a CBM2 domain and the contribution of amino acids in active-site architecture to catalytic activity. The results obtained provide guidance for the rational design of xylanases for industrial applications under high heat and alkali-based operating conditions, such as paper bleaching.
Collapse
Affiliation(s)
- Xiuyun Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao, China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zelu Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wenya Tian
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Mengyu Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shuxia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao, China
- *Correspondence: Hua Yin, ; Lushan Wang,
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Hua Yin, ; Lushan Wang,
| |
Collapse
|
12
|
Tang L, Bao M, Wang Y, Fu Z, Han F, Yu W. Effects of Module Truncation of a New Alginate Lyase VxAly7C from Marine Vibrio xiamenensis QY104 on Biochemical Characteristics and Product Distribution. Int J Mol Sci 2022; 23:ijms23094795. [PMID: 35563187 PMCID: PMC9102848 DOI: 10.3390/ijms23094795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alginate lyase has received extensive attention as an important tool for oligosaccharide preparation, pharmaceutical production, and energy biotransformation. Noncatalytic module carbohydrate-binding modules (CBM) have a major impact on the function of alginate lyases. Although the effects of two different families of CBMs on enzyme characteristics have been reported, the effect of two combined CBM32s on enzyme function has not been elucidated. Herein, we cloned and expressed a new multimodular alginate lyase, VxAly7C, from Vibrioxiamenensis QY104, consisting of two CBM32s at N-terminus and a polysaccharide lyase family 7 (PL7) at C-terminus. To explore the function of CBM32s in VxAly7C, full-length (VxAly7C-FL) and two truncated mutants, VxAly7C-TM1 (with the first CBM32 deleted) and VxAly7C-TM2 (with both CBM32s deleted), were characterized. The catalytic efficiency of recombinant VxAly7C-TM2 was 1.82 and 4.25 times higher than that of VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s had an antagonistic effect. However, CBM32s improved the temperature stability, the adaptability in an alkaline environment, and the preference for polyG. Moreover, CBM32s contributed to the production of tri- and tetrasaccharides, significantly affecting the end-product distribution. This study advances the understanding of module function and provides a reference for broader enzymatic applications and further enzymatic improvement and assembly.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| |
Collapse
|
13
|
Verschoor JA, Kusumawardhani H, Ram AFJ, de Winde JH. Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges. Front Microbiol 2022; 13:821629. [PMID: 35401461 PMCID: PMC8985596 DOI: 10.3389/fmicb.2022.821629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Annually, 400 Mt of plastics are produced of which roughly 40% is discarded within a year. Current plastic waste management approaches focus on applying physical, thermal, and chemical treatments of plastic polymers. However, these methods have severe limitations leading to the loss of valuable materials and resources. Another major drawback is the rapid accumulation of plastics into the environment causing one of the biggest environmental threats of the twenty-first century. Therefore, to complement current plastic management approaches novel routes toward plastic degradation and upcycling need to be developed. Enzymatic degradation and conversion of plastics present a promising approach toward sustainable recycling of plastics and plastics building blocks. However, the quest for novel enzymes that efficiently operate in cost-effective, large-scale plastics degradation poses many challenges. To date, a wide range of experimental set-ups has been reported, in many cases lacking a detailed investigation of microbial species exhibiting plastics degrading properties as well as of their corresponding plastics degrading enzymes. The apparent lack of consistent approaches compromises the necessary discovery of a wide range of novel enzymes. In this review, we discuss prospects and possibilities for efficient enzymatic degradation, recycling, and upcycling of plastics, in correlation with their wide diversity and broad utilization. Current methods for the identification and optimization of plastics degrading enzymes are compared and discussed. We present a framework for a standardized workflow, allowing transparent discovery and optimization of novel enzymes for efficient and sustainable plastics degradation in the future.
Collapse
Affiliation(s)
- Jo-Anne Verschoor
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Arthur F. J. Ram
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Johannes H. de Winde
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
14
|
Miao H, Zhao Y, Ma Y, Han N, Zhe Y, Tang X, Huang Z. Improving the thermostability of endo-β-1,4-glucanase by the fusion of a module subdivided from hyperthermophilic CBM9_1-2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Miao H, Ma Y, Zhe Y, Tang X, Wu Q, Huang Z, Han N. Improving the Thermostability of a Fungal GH11 Xylanase via Fusion of a Submodule (C2) from Hyperthermophilic CBM9_1-2. Int J Mol Sci 2021; 23:ijms23010463. [PMID: 35008888 PMCID: PMC8745443 DOI: 10.3390/ijms23010463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Xylanases have been applied in many industrial fields. To improve the activity and thermostability of the xylanase CDBFV from Neocallimastix patriciarum (GenBank accession no. KP691331), submodule C2 from hyperthermophilic CBM9_1-2 was inserted into the N- and/or C-terminal regions of the CDBFV protein (producing C2-CDBFV, CDBFV-C2, and C2-CDBFV-C2) by genetic engineering. CDBFV and the hybrid proteins were successfully expressed in Escherichia coli BL21 (DE3). Enzymatic property analysis indicates that the C2 submodule had a significant effect on enhancing the thermostability of the CDBFV. At the optimal temperature (60.0 °C), the half-lives of the three chimeras C2-CDBFV, CDBFV-C2, and C2-CDBFV-C2 are 1.5 times (37.5 min), 4.9 times (122.2 min), and 3.8 times (93.1 min) longer than that of wild-type CDBFV (24.8 min), respectively. More importantly, structural analysis and molecular dynamics (MD) simulation revealed that the improved thermal stability of the chimera CDBFV-C2 was on account of the formation of four relatively stable additional hydrogen bonds (S42-S462, T59-E277, S41-K463, and S44-G371), which increased the protein structure’s stability. The thermostability characteristics of CDBFV-C2 make it a viable enzyme for industrial applications.
Collapse
Affiliation(s)
- Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China; (H.M.); (X.T.); (Q.W.)
- School of Life Science, Yunnan Normal University, Kunming 650500, China; (Y.M.); (Y.Z.)
| | - Yu Ma
- School of Life Science, Yunnan Normal University, Kunming 650500, China; (Y.M.); (Y.Z.)
| | - Yuanyuan Zhe
- School of Life Science, Yunnan Normal University, Kunming 650500, China; (Y.M.); (Y.Z.)
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China; (H.M.); (X.T.); (Q.W.)
- School of Life Science, Yunnan Normal University, Kunming 650500, China; (Y.M.); (Y.Z.)
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China; (H.M.); (X.T.); (Q.W.)
- School of Life Science, Yunnan Normal University, Kunming 650500, China; (Y.M.); (Y.Z.)
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China; (H.M.); (X.T.); (Q.W.)
- School of Life Science, Yunnan Normal University, Kunming 650500, China; (Y.M.); (Y.Z.)
- Correspondence: (Z.H.); (N.H.); Tel.: +86-0871-5920830 (Z.H.); Fax: +86-0871-5920952 (Z.H.)
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China; (H.M.); (X.T.); (Q.W.)
- School of Life Science, Yunnan Normal University, Kunming 650500, China; (Y.M.); (Y.Z.)
- Correspondence: (Z.H.); (N.H.); Tel.: +86-0871-5920830 (Z.H.); Fax: +86-0871-5920952 (Z.H.)
| |
Collapse
|
16
|
Wang L, Wang Y, Chang S, Gao Z, Ma J, Wu B, He B, Wei P. Identification and characterization of a thermostable GH11 xylanase from Paenibacillus campinasensis NTU-11 and the distinct roles of its carbohydrate-binding domain and linker sequence. Colloids Surf B Biointerfaces 2021; 209:112167. [PMID: 34715594 DOI: 10.1016/j.colsurfb.2021.112167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/06/2021] [Accepted: 10/16/2021] [Indexed: 01/13/2023]
Abstract
An extracellular thermostable xylanase (XynNTU) from Paenibacillus campinasensis NTU-11, consisted of a glycoside hydrolase (GH) family 11 catalytic domain, a Gly/Pro-rich linker sequence (LS) and a family 6 carbohydrate-binding module (CBM6), was identified and expressed in E. coli BL21. The purified XynNTU had a specific activity of 2750 U/mg and an optimal activity at 60 °C and pH 7.0, and retained a residual activity of 58.4% after incubation (60 °C, 48 h). Two truncated mutants, CBM6-truncated form XynNTU-CDLS, CBM6 and linker-truncated form XynNTU-CD, possessed similar values of optimum pH and temperature as the native XynNTU. XynNTU-CD displayed a lower thermostability than XynNTU, whereas for XynNTU-CDLS, more than 90% of residual activity was remained (60 °C, 48 h), indicating that this enzyme presented a higher thermostability than that of the majority of reported GH11 xylanases. Furthermore, XynNTU and two mutants maintained more than 70% of residual activity at pH values of 5-9. Kinetic measurements suggested that CBM6 had a crucial function in the ability of the enzyme to bind and hydrolyze xylan substrates, while LS had a relatively mild influence. Collectively, a noticeable thermostability and a high specific activity of XynNTU and its truncated form XynNTU-CDLS highlights their potentials for diverse industrial applications.
Collapse
Affiliation(s)
- Lijuan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211810, Jiangsu, China
| | - Yiya Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211810, Jiangsu, China
| | - Siyuan Chang
- School of Health and Life Science, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211810, Jiangsu, China.
| | - Jiangfeng Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211810, Jiangsu, China.
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211810, Jiangsu, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211810, Jiangsu, China
| |
Collapse
|
17
|
Yi Y, Xu S, Kovalevsky A, Zhang X, Liu D, Wan Q. Characterization and structural analysis of a thermophilic GH11 xylanase from compost metatranscriptome. Appl Microbiol Biotechnol 2021; 105:7757-7767. [PMID: 34553251 DOI: 10.1007/s00253-021-11587-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Xylanase is efficient for xylan degradation and widely applied in industries. We found a GH11 family xylanase (Xyn11A) with high thermostability and catalytic activity from compost metatranscriptome. This xylanase has the optimal reaction temperature at 80 °C with the activity of 2907.3 U/mg. The X-ray crystallographic structure shows a typical "right hand" architecture, which is the characteristics of the GH11 family enzymes. Comparing it with the mesophilic XYN II, a well-studied GH11 xylanase from Trichoderma reesei, Xyn11A is more compact with more H-bonds. Our mutagenic results show that the electrostatic interactions in the thumb and palm region of Xyn11A could result in its high thermostability and activity. Introducing a disulfide bond at the N-terminus further increased its optimal reaction temperature to 90 °C with augmented activity. KEY POINTS: • A hyperthermophilic xylanase with high activity was discovered using the metatranscriptomic method. • The mechanisms of thermophilicity and high activity were revealed using X-ray crystallography, mutagenesis, and molecular dynamics simulations. • The thermostability and activity were further improved by introducing a disulfide bond.
Collapse
Affiliation(s)
- Yunlei Yi
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shenyuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Group Inc., Qingdao, Shandong, 266000, People's Republic of China
| | - Dongyang Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qun Wan
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
18
|
The Role of Glycoside Hydrolases in Phytopathogenic Fungi and Oomycetes Virulence. Int J Mol Sci 2021; 22:ijms22179359. [PMID: 34502268 PMCID: PMC8431085 DOI: 10.3390/ijms22179359] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.
Collapse
|
19
|
Betts NS, Collins HM, Shirley NJ, Cuesta-Seijo JA, Schwerdt JG, Phillips RJ, Finnie C, Fincher GB, Dockter C, Skadhauge B, Bulone V. Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110792. [PMID: 34034860 DOI: 10.1016/j.plantsci.2020.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-β-xylanase and six β-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a β-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.
Collapse
Affiliation(s)
- Natalie S Betts
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Helen M Collins
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia
| | - Jose A Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Renee J Phillips
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Christine Finnie
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Vincent Bulone
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
| |
Collapse
|
20
|
Fujii Y, Kobayashi M, Miyabe Y, Kishimura H, Hatanaka T, Kumagai Y. Preparation of β(1→3)/β(1→4) xylooligosaccharides from red alga dulse by two xylanases from Streptomyces thermogriseus. BIORESOUR BIOPROCESS 2021; 8:38. [PMID: 38650209 PMCID: PMC10991458 DOI: 10.1186/s40643-021-00390-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Red alga dulse contains xylan with β(1→3)/β(1→4) linkages. We previously prepared xylooligosaccharides (XOSs) from dulse xylan; however, the product contained many D-xylose residues and fewer XOSs with β(1→3) linkages. To improve the efficiency of XOS production, we prepared two recombinant endoxylanases from Streptomyces thermogriseus (StXyl10 and StXyl11). Comparing the kcat/Km values for dulse xylan, this value from StXyl10 was approximately two times higher than that from StXyl11. We then determined the suitable conditions for XOS production. As a result, dulse XOS was prepared by the successive hydrolysis of 10 mg/mL dulse xylan by 0.5 μg/mL StXyl10 for 4 h at 50 °C and then 2.0 μg/mL StXyl11 for 36 h at 60 °C. Xylan was converted into 95.8% XOS, including 59.7% XOS with a β(1→3) linkage and 0.97% D-xylose. Our study provides useful information for the production of XOSs with β(1→3) linkages.
Collapse
Affiliation(s)
- Yuki Fujii
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Manami Kobayashi
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Yoshikatsu Miyabe
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
- Aomori Prefectural Industrial Technology Research Center, Food Research Institute, 221-10 Yamaguchi, Nogi, Aomori, Aomori-ken, 030-0142, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS), 7549-1 Kibichuo-cho, Kaga-gun, Okayama, 716-1241, Japan
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
21
|
Liu Y, Wang J, Bao C, Dong B, Cao Y. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase. Int J Biol Macromol 2021; 182:701-711. [PMID: 33862072 DOI: 10.1016/j.ijbiomac.2021.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
A study was carried out to investigate the characterization of a novel Aspergillus sulphureus JCM01963 xylanase (AS-xyn10A) with a carbohydrate binding module (CBM) and its application in degrading alkali pretreated corncob, rapeseed meal and corn stover alone and in combination with a commercial cellulase. In this study, the 3D structure of AS-xyn10A, which contained a CBM at C-terminal. AS-xyn10A and its CBM-truncated variant (AS-xyn10A-dC) was codon-optimized and over-expressed in Komagaella phaffii X-33 (syn. Pichia pastoris) and characterized with optimal condition at 70 °C and pH 5.0, respectively. AS-xyn10A displayed high activity to xylan extracted from corn stover, corncob, and rapeseed meal. The concentration of hydrolyzed xylo-oligosaccharides (XOSs) reached 1592.26 μg/mL, 1149.92 μg/mL, and 621.86 μg/mL, respectively. Xylobiose was the main product (~70%) in the hydrolysis mixture. AS-xyn10A significantly synergized with cellulase to improve the hydrolysis efficiency of corn stover, corncob, and rapeseed meal to glucose. The degree of synergy (DS) was 1.32, 1.31, and 1.30, respectively. Simultaneously, XOSs hydrolyzed with AS-xyn10A and cellulase was improved by 46.48%, 66.13% and 141.45%, respectively. In addition, CBM variant decreased the yields of xylo-oligosaccharide and glucose in rapeseed meal degradation. This study provided a novel GH10 endo-xylanase, which has potential applications in hydrolysis of biomass.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
22
|
Liu J, Sun D, Zhu J, Liu C, Liu W. Carbohydrate-binding modules targeting branched polysaccharides: overcoming side-chain recalcitrance in a non-catalytic approach. BIORESOUR BIOPROCESS 2021; 8:28. [PMID: 38650221 PMCID: PMC10992016 DOI: 10.1186/s40643-021-00381-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Extensive decoration of backbones is a major factor resulting in resistance of enzymatic conversion in hemicellulose and other branched polysaccharides. Employing debranching enzymes is the main strategy to overcome this kind of recalcitrance at present. A carbohydrate-binding module (CBM) is a contiguous amino acid sequence that can promote the binding of enzymes to various carbohydrates, thereby facilitating enzymatic hydrolysis. According to previous studies, CBMs can be classified into four types based on their preference in ligand type, where Type III and IV CBMs prefer to branched polysaccharides than the linear and thus are able to specifically enhance the hydrolysis of substrates containing side chains. With a role in dominating the hydrolysis of branched substrates, Type III and IV CBMs could represent a non-catalytic approach in overcoming side-chain recalcitrance.
Collapse
Affiliation(s)
- Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
23
|
Bhat SK, Purushothaman K, Kini KR, Gopala Rao Appu Rao AR. Design of mutants of GH11 xylanase from Bacillus pumilus for enhanced stability by amino acid substitutions in the N-terminal region: an in silico analysis. J Biomol Struct Dyn 2021; 40:7666-7679. [PMID: 33749523 DOI: 10.1080/07391102.2021.1899988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
GH11 xylanases are versatile small-molecular-weight single-polypeptide chain monofunctional enzymes. This family of glycoside hydrolases has important applications in food, feed and chemical industries. We designed mutants for improved thermal stability with substitutions in the first six residues of the N-terminal region and evaluated the stability in silico. The first six residues RTITNN of native xylanase have been mutated accordingly to introduce β structure, increase hydrophobic clusters and enhance conformational rigidity in the molecule. To design stable mutants, the approach consisted of constructing root mean square fluctuation (RMSF) plots of both mesophilic and thermophilic xylanases to check the localized backbone displacement maxima, identify the hydrophobic interaction cluster in and around the peaks of interest, construct mutants by substituting appropriate residues based on beta propensity, hydrophobicity, side chain occupancy and conformational rigidity. This resulted in the decreased number of possible substitutions from 19 to 6 residues. Introduction of conformational rigidity by substitution of asparagine residues at 5th and 6th residue position with proline and valine enhanced the stability. Deletion of N-terminal region increased the stability probably by reducing entropic factors. The structure and stability of GH11 xylanase and resultant mutants were analyzed by root mean square deviation, RMSF, radius of gyration and solvent accessible surface area analysis. The stability of the mutants followed the order N-del > Y1P5 >Y1V5 > ATRLM. The contribution of N-terminal end to overall stability of the molecule is significant because of the proximity of the C-terminal end to the N-terminal end which reinforces long-range interactions. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - K Ramachandra Kini
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | | |
Collapse
|
24
|
Boonyapakron K, Chitnumsub P, Kanokratana P, Champreda V. Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis. J Biosci Bioeng 2020; 131:13-19. [PMID: 33067124 DOI: 10.1016/j.jbiosc.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.
Collapse
Affiliation(s)
- Katewadee Boonyapakron
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Penchit Chitnumsub
- Biomolecular Analysis and Application Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
25
|
Mathibe BN, Malgas S, Radosavljevic L, Kumar V, Shukla P, Pletschke BI. Tryptic Mapping Based Structural Insights of Endo-1, 4-β-Xylanase from Thermomyces lanuginosus VAPS-24. Indian J Microbiol 2020; 60:392-395. [PMID: 32655201 DOI: 10.1007/s12088-020-00879-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022] Open
Abstract
An endo-1,4-β-xylanase, XynA, from Thermomyces lanuginosus VAPS-24, was purified to homogeneity and exhibited a molecular mass of approximately 20 kDa. The protein sequence of XynA was found to be similar to those of other Thermomyces lanuginosus derived xylanases and, as a result, could be used as a model enzyme for understanding the protein structure-activity relationship and facilitating protein engineering to design enzyme variants with desirable properties. Therefore, this xylanase will be an attractive candidate for applications in the biofuel and fine chemical industries for the degradation of xylans in steam pre-treated biomass.
Collapse
Affiliation(s)
- Brian N Mathibe
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| | - Layla Radosavljevic
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| | - Vishal Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| |
Collapse
|
26
|
Muhammad A, Khunrae P, Sutthibutpong T. Effects of oligolignol sizes and binding modes on a GH11 xylanase inhibition revealed by molecular modeling techniques. J Mol Model 2020; 26:124. [DOI: 10.1007/s00894-020-04383-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
27
|
Meng D, Wang J, You C. The properties of the linker in a mini-scaffoldin influence the catalytic efficiency of scaffoldin-mediated enzyme complexes. Enzyme Microb Technol 2020; 133:109460. [DOI: 10.1016/j.enzmictec.2019.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
|
28
|
Velasco J, Oliva B, Mulinari EJ, Quintero LP, da Silva Lima A, Gonçalves AL, Gonçalves TA, Damasio A, Squina FM, Ferreira Milagres AM, Abdella A, Wilkins MR, Segato F. Heterologous expression and functional characterization of a GH10 endoxylanase from Aspergillus fumigatus var. niveus with potential biotechnological application. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00382. [PMID: 31799141 PMCID: PMC6881608 DOI: 10.1016/j.btre.2019.e00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Xylanases decrease the xylan content in pretreated biomass releasing it from hemicellulose, thus improving the accessibility of cellulose for cellulases. In this work, an endo-β-1,4-xylanase from Aspergillus fumigatus var. niveus (AFUMN-GH10) was successfully expressed. The structural analysis and biochemical characterization showed this AFUMN-GH10 does not contain a carbohydrate-binding module. The enzyme retained its activity in a pH range from 4.5 to 7.0, with an optimal temperature at 60 °C. AFUMN-GH10 showed the highest activity in beechwood xylan. The mode of action of AFUMN-GH10 was investigated by hydrolysis of APTS-labeled xylohexaose, which resulted in xylotriose and xylobiose as the main products. AFUMN-GH10 released 27% of residual xylan from hydrothermally-pretreated corn stover and 14% of residual xylan from hydrothermally-pretreated sugarcane bagasse. The results showed that environmentally friendly pretreatment followed by enzymatic hydrolysis with AFUMN-GH10 in low concentration is a suitable method to remove part of residual and recalcitrant hemicellulose from biomass.
Collapse
Affiliation(s)
- Josman Velasco
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Bianca Oliva
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Evandro José Mulinari
- Department of Physics and Applied Sciences, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Leidy Patricia Quintero
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Awana da Silva Lima
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Aline Larissa Gonçalves
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Thiago Augusto Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, SP, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Fabio Marcio Squina
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, SP, Brazil
| | | | - Asmaa Abdella
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mark R. Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| |
Collapse
|
29
|
Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. J Ind Microbiol Biotechnol 2019; 46:1251-1263. [PMID: 31392469 DOI: 10.1007/s10295-019-02222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
The genus Caldicellulosiruptor is comprised of extremely thermophilic, heterotrophic anaerobes that degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses determined that this genus is genetically diverse, with the current pangenome remaining open, meaning that new genes are expected with each additional genome sequence added. Given the high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome now includes 3791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be involved in plant biomass degradation. Comparisons between C. changbaiensis and Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell attachment to polysaccharides highlighted physiological differences between the two species which are supported by their respective gene inventories. Most significantly, these comparisons indicated that C. changbaiensis possesses uncommon cellulose attachment mechanisms not observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.
Collapse
|
30
|
Lee LL, Crosby JR, Rubinstein GM, Laemthong T, Bing RG, Straub CT, Adams MW, Kelly RM. The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in ‘Caldi World’. Extremophiles 2019; 24:1-15. [DOI: 10.1007/s00792-019-01116-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/09/2019] [Indexed: 12/01/2022]
|
31
|
Jia X, Han Y. The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:143. [PMID: 31198440 PMCID: PMC6556019 DOI: 10.1186/s13068-019-1480-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus can degrade and metabolize untreated lignocellulosic biomass containing xylan. The mechanism of the bacterium for degradation of insoluble xylan in untreated biomass has not been revealed. RESULTS In the present study, the only annotated extracellular endo-β-1,4-xylanase (Xyn10B) with multidomain structures in C. lactoaceticus genome was biochemically characterized. Xyn10B contains three N-terminal consecutive family 22 carbohydrate-binding modules (CBMs), one GH10 catalytic domain (CD), two family 9 CBMs and two S-layer homology (SLH) modules in the C-terminal. CBM22a shares 27.1% and 27.2% sequence homology with CBM22b and CBM22c, respectively. The sequence homology between two CBM9 s and two SLHs is 26.8% and 25.6%, respectively. To elucidate the effect of multiple domains on the enzymatic properties of Xyn10B, the truncated variants of which (Xyn10B-TM1: CBM22a-CBM22b-CBM22c-CD10; Xyn10B-TM2: CBM22c-CD10; Xyn10B-TM3: CBM22c-CD10-CBM9a; and Xyn10B-TM4: CD10-CBM9a) were separately reconstructed, recombinantly expressed and biochemically characterized. Enzymatic properties studies showed that the optimal temperature for all four Xyn10B truncations was 65 °C. Compared to Xyn10B-TM3 and Xyn10B-TM4, Xyn10B-TM1 and Xyn10B-TM2 had higher hydrolytic activity, thermostability and affinity on insoluble substrates. It is noteworthy that Xyn10B-TM1 and Xyn10B-TM2 have higher enzymatic activity on insoluble xylan than the soluble counterparts, whereas Xyn10B-TM3 and Xyn10B-TM4 showed opposite characteristics. The kinetic parameters analysis of Xyn10B-TM1 on xylan showed V max was 5740, 1300, 1033, and 3925 U/μmol on insoluble oat spelt xylan (OSX), soluble beechwood xylan (BWX), soluble sugar cane xylan (SCX), and soluble corncob xylan (CCX), respectively. The results indicated that CBM22s especially CBM22c promoted the hydrolytic activity, thermostability and affinity on insoluble substrates of the Xyn10B truncations. The functions of CBM22, CBM9, CD and SLH are different, while contribute synergetically to the thermostability, protein structure integrity, substrate binding, and high hydrolytic activity on insoluble xylan of untreated lignocellulosic biomass. The domains of CBM22, CBM9, CD and SLH have different characteristics, which synergistically promote the thermostability, protein structure integrity, affinity on insoluble substrates and enzymatic activity properties of Xyn10B. CONCLUSIONS The extracellular endo-β-1,4-xylanase with multidomain structures of CBM, CD and SLH promote the biodegradation of insoluble xylan in untreated lignocellulosic biomass by thermophilic C. lactoaceticus.
Collapse
Affiliation(s)
- Xiaojing Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048 China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
32
|
Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity. Carbohydr Res 2019; 474:1-7. [DOI: 10.1016/j.carres.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
|
33
|
Lee LL, Hart WS, Lunin VV, Alahuhta M, Bomble YJ, Himmel ME, Blumer-Schuette SE, Adams MWW, Kelly RM. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species. Appl Environ Microbiol 2019; 85:e01983-18. [PMID: 30478233 PMCID: PMC6344629 DOI: 10.1128/aem.01983-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022] Open
Abstract
Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tāpirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tāpirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.
Collapse
Affiliation(s)
- Laura L Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - William S Hart
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Sara E Blumer-Schuette
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
34
|
Extremely thermoactive archaeal endoglucanase from a shallow marine hydrothermal vent from Vulcano Island. Appl Microbiol Biotechnol 2018; 103:1267-1274. [DOI: 10.1007/s00253-018-9542-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
|
35
|
Low-resolution SAXS and comparative modeling based structure analysis of endo-β-1,4-xylanase a family 10 glycoside hydrolase from Pseudopedobacter saltans comb. nov. Int J Biol Macromol 2018; 112:1104-1114. [DOI: 10.1016/j.ijbiomac.2018.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/20/2022]
|
36
|
Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and Their Applications for Production of Feruloylated Oligosaccharides. Appl Biochem Biotechnol 2018; 186:816-833. [DOI: 10.1007/s12010-018-2775-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/27/2018] [Indexed: 01/14/2023]
|
37
|
Lee LL, Blumer-Schuette SE, Izquierdo JA, Zurawski JV, Loder AJ, Conway JM, Elkins JG, Podar M, Clum A, Jones PC, Piatek MJ, Weighill DA, Jacobson DA, Adams MWW, Kelly RM. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Appl Environ Microbiol 2018; 84:e02694-17. [PMID: 29475869 PMCID: PMC5930323 DOI: 10.1128/aem.02694-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.
Collapse
Affiliation(s)
- Laura L Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sara E Blumer-Schuette
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Javier A Izquierdo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey V Zurawski
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alicia Clum
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marek J Piatek
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
38
|
Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5. AMB Express 2018; 8:44. [PMID: 29564574 PMCID: PMC5862715 DOI: 10.1186/s13568-018-0576-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
Xylanase with a high thermostability will satisfy the needs of raising the temperature of hydrolysis to improve the rheology of the broth in industry of biomass conversion. In this study, a xylanase gene (xyn10A), predicted to encode a hydrolase domain of GH10, a linker region and a CBM1 domain, was cloned from a superior lignocellulose degrading strain Aspergillus fumigatus Z5 and successfully expressed in Pichia pastoris X33. Xyn10A has a specific xylanase activity of 34.4 U mg−1, and is optimally active at 90 °C and pH 6.0. Xyn10A shows quite stable at pHs ranging from 3.0 to 11.0, and keeps over 40% of xylanase activity after incubation at 70 °C for 1 h. Removal of CBM1 domain has a slight negative effect on its thermostability, but the further cleavage of linker region significantly decreased its stability at high temperature. The transfer of CBM1 and linker region to another GH10 xylanase can help to increase the thermostability. In addition, hydrolase domains between the two Xyn10A proteins naturally formed a dimer structure, which became more thermostable after removing the CBM1 or/and linker region. This thermostable Xyn10A is a suitable candidate for the highly efficient fungal enzyme cocktails for biomass conversion.
Collapse
|
39
|
Mathew S, Aronsson A, Karlsson EN, Adlercreutz P. Xylo- and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes. Appl Microbiol Biotechnol 2018; 102:3105-3120. [DOI: 10.1007/s00253-018-8823-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 01/02/2023]
|
40
|
Wang B, Ji SQ, Ma XQ, Lu M, Wang LS, Li FL. Substitution of one calcium-binding amino acid strengthens substrate binding in a thermophilic alginate lyase. FEBS Lett 2018; 592:369-379. [DOI: 10.1002/1873-3468.12965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Bing Wang
- Shandong Provincial Key Laboratory of Synthetic Biology; Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao China
- University of Chinese Academy of Sciences; Beijing China
| | - Shi-Qi Ji
- Shandong Provincial Key Laboratory of Synthetic Biology; Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao China
| | - Xiao-Qing Ma
- Shandong Provincial Key Laboratory of Synthetic Biology; Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao China
| | - Ming Lu
- Shandong Provincial Key Laboratory of Synthetic Biology; Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao China
| | - Lu-Shan Wang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology; Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao China
| |
Collapse
|
41
|
Tajwar R, Shahid S, Zafar R, Akhtar MW. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB. Enzyme Microb Technol 2017; 106:75-82. [DOI: 10.1016/j.enzmictec.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/09/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
42
|
Structural insights into the substrate specificity of a glycoside hydrolase family 5 lichenase from Caldicellulosiruptor sp. F32. Biochem J 2017; 474:3373-3389. [DOI: 10.1042/bcj20170328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 01/12/2023]
Abstract
Glycoside hydrolase (GH) family 5 is one of the largest GH families with various GH activities including lichenase, but the structural basis of the GH5 lichenase activity is still unknown. A novel thermostable lichenase F32EG5 belonging to GH5 was identified from an extremely thermophilic bacterium Caldicellulosiruptor sp. F32. F32EG5 is a bi-functional cellulose and a lichenan-degrading enzyme, and exhibited a high activity on β-1,3-1,4-glucan but side activity on cellulose. Thin-layer chromatography and NMR analyses indicated that F32EG5 cleaved the β-1,4 linkage or the β-1,3 linkage while a 4-O-substitued glucose residue linked to a glucose residue through a β-1,3 linkage, which is completely different from extensively studied GH16 lichenase that catalyses strict endo-hydrolysis of the β-1,4-glycosidic linkage adjacent to a 3-O-substitued glucose residue in the mixed-linked β-glucans. The crystal structure of F32EG5 was determined to 2.8 Å resolution, and the crystal structure of the complex of F32EG5 E193Q mutant and cellotetraose was determined to 1.7 Å resolution, which revealed that the exit subsites of substrate-binding sites contribute to both thermostability and substrate specificity of F32EG5. The sugar chain showed a sharp bend in the complex structure, suggesting that a substrate cleft fitting to the bent sugar chains in lichenan is a common feature of GH5 lichenases. The mechanism of thermostability and substrate selectivity of F32EG5 was further demonstrated by molecular dynamics simulation and site-directed mutagenesis. These results provide biochemical and structural insights into thermostability and substrate selectivity of GH5 lichenases, which have potential in industrial processes.
Collapse
|
43
|
Two Distinct α-l-Arabinofuranosidases in Caldicellulosiruptor Species Drive Degradation of Arabinose-Based Polysaccharides. Appl Environ Microbiol 2017; 83:AEM.00574-17. [PMID: 28432102 DOI: 10.1128/aem.00574-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023] Open
Abstract
Species in the extremely thermophilic genus Caldicellulosiruptor can degrade unpretreated plant biomass through the action of multimodular glycoside hydrolases. To date, most focus with these bacteria has been on hydrolysis of glucans and xylans, while the biodegradation mechanism for arabinose-based polysaccharides remains unclear. Here, putative α-l-arabinofuranosidases (AbFs) were identified in Caldicellulosiruptor species by homology to less-thermophilic versions of these enzymes. From this screen, an extracellular XynF was determined to be a key factor in hydrolyzing α-1,2-, α-1,3-, and α-1,5-l-arabinofuranosyl residues of arabinose-based polysaccharides. Combined with a GH11 xylanase (XynA), XynF increased arabinoxylan hydrolysis more than 6-fold compared to the level seen with XynA alone, likely the result of XynF removing arabinofuranosyl side chains to generate linear xylans that were readily degraded. A second AbF, the intracellular AbF51, preferentially cleaved the α-1,5-l-arabinofuranosyl glycoside bonds within sugar beet arabinan. β-Xylosidases, such as GH39 Xyl39B, facilitated the hydrolysis of arabinofuranosyl residues at the nonreducing terminus of the arabinose-branched xylo-oligosaccharides by AbF51. These results demonstrate the separate but complementary contributions of extracellular XynF and cytosolic AbF51 in processing the bioconversion of arabinose-containing oligosaccharides to fermentable monosaccharides.IMPORTANCE Degradation of hemicellulose, due to its complex chemical structure, presents a major challenge during bioconversion of lignocellulosic biomass to biobased fuels and chemicals. Degradation of arabinose-containing polysaccharides, in particular, can be a key bottleneck in this process. Among Caldicellulosiruptor species, the multimodular arabinofuranosidase XynF is present in only selected members of this genus. This enzyme exhibited high hydrolysis activity, broad specificity, and strong synergism with other hemicellulases acting on arabino-polysaccharides. An intracellular arabinofuranosidase, AbF51, occurs in all Caldicellulosiruptor species and, in conjunction with xylosidases, processes the bioconversion of arabinose-branched oligosaccharides to fermentable monosaccharides. Taken together, the data suggest that plant biomass degradation in Caldicellulosiruptor species involves extracellular XynF that acts synergistically with other hemicellulases to digest arabino-polysaccharides that are subsequently transported and degraded further by intracellular AbF51 to produce short-chain arabino sugars.
Collapse
|
44
|
Lu Y, Fang C, Wang Q, Zhou Y, Zhang G, Ma Y. High-level expression of improved thermo-stable alkaline xylanase variant in Pichia Pastoris through codon optimization, multiple gene insertion and high-density fermentation. Sci Rep 2016; 6:37869. [PMID: 27897254 PMCID: PMC5126662 DOI: 10.1038/srep37869] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/28/2016] [Indexed: 01/13/2023] Open
Abstract
In paper industry, xylanases are used to increase the pulp properties in bleaching process as its eco-friendly nature. The xylanases activity is hindered by high temperature and alkaline conditions with high enzyme production cost in the paper industry. Here, XynHB, an alkaline stable xylanase from Bacillus pumilus HBP8 was mutated at N188A to XynHBN188A. Expressed mutant in E. coli showed 1.5-fold higher xylanase activity than XynHB at 60 °C. The mutant expressed in Pichia pastoris was glycosylated, remained stable for 30 min at 60 °C. XynHBN188A optimized based on codon usage bias for P. pastoris (xynHBN188As) showed an increase of 39.5% enzyme activity. The strain Y16 forming the largest hydrolysis halo in the xylan plate was used in shake flask experiments produced an enzyme activity of 6,403 U/ml. The Y16 strain had 9 copies of the recombinant xynHBN188As gene in the genome revealed by qPCR. The enzymatic activity increased to 48,241 U/ml in a 5 L fermentor. Supplement of 15 U/g xylanase enhanced the brightness of paper products by 2% in bleaching experiment, and thereby improved the tensile strength and burst factor by 13% and 6.5%, respectively. XynHBN188As has a great potential in paper industries.
Collapse
Affiliation(s)
- Yihong Lu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, The College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Cheng Fang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, The College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Qinhong Wang
- Tianjin institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yuling Zhou
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, The College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Guimin Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, The College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yanhe Ma
- Tianjin institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
45
|
Liu S, Ding S. Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. BMC Biotechnol 2016; 16:73. [PMID: 27770795 PMCID: PMC5075172 DOI: 10.1186/s12896-016-0305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/13/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetylation of the xylan backbone was a major obstacle to enzymatic decomposition. Removal of acetyl groups by acetyl xylan esterases (AXEs) is essential for completely enzymatic hydrolysis of xylan. Appended carbohydrate binding modules (CBMs) can promote the enzymatic deconstruction of plant cell walls by targeting and proximity effects. Fungal acetyl xylan esterases are strictly appended to cellulose-specific CBM1. It is still unclear whether xylan-specific CBMs have a greater advantage than CBM1 in potentiating the activity of fungal deacetylating enzymes and its synergistic hydrolysis of different substrates with xylanase. RESULTS Three recombinant AXE1s fused with different xylan-specific CBMs, together with wild-type AXE1 with CBM1 and CBM1-deleted mutant AXE1dC, were constructed in this study. The optimal temperature and pH of recombinant AXE1s was 50 °C and 8.0 (except AXE1dC-CBM6), respectively. Cellulose-specific CBM1 in AXE1 obviously contributed to its catalytic action against substrates compared with AXE1dC. However, replacement of CBM1 with xylan-specific CBM4-2 significantly enhanced AXE1 thermostability and catalytic activity against soluble substrate 4-methylumbelliferyl acetate. Whereas replacements with xylan-specific CBM6 and CBM22-2 were more effective in enzymatic release of acetic acid from destarched wheat bran, NaClO2-treated wheat straw, and water-insoluble wheat arabinoxylan compared to AXE1. Moreover, replacement with CBM6 and CBM22-2 also resulted in higher degree releases of reducing sugar and acetic acid from different substrates when simultaneous hydrolysis with xylanase. A good linear relationship exists between the acetic acid and reducing sugar release. CONCLUSIONS Our findings suggested that the replacement with CBM6 and CBM22-2 not only significantly improved the catalysis efficiency of AXE1, but also increased its synergistic hydrolysis of different substrates with xylanase, indicating the significance of targeting effect in AXE1 catalysis mediated by xylan-specific CBMs.
Collapse
Affiliation(s)
- Shiping Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
46
|
Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. J Struct Biol 2016; 193:206-211. [DOI: 10.1016/j.jsb.2015.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022]
|
47
|
Characterization of a thermostable endo-1,3(4)-β-glucanase from Caldicellulosiruptor sp. strain F32 and its application for yeast lysis. Appl Microbiol Biotechnol 2016; 100:4923-34. [DOI: 10.1007/s00253-016-7334-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 01/17/2016] [Indexed: 01/20/2023]
|
48
|
Foumani M, Vuong TV, MacCormick B, Master ER. Enhanced Polysaccharide Binding and Activity on Linear β-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase. PLoS One 2015; 10:e0125398. [PMID: 25932926 PMCID: PMC4416756 DOI: 10.1371/journal.pone.0125398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 02/07/2023] Open
Abstract
The gluco-oligosaccharide oxidase from Sarocladium strictum CBS 346.70 (GOOX) is a single domain flavoenzyme that favourably oxidizes gluco- and xylo- oligosaccharides. In the present study, GOOX was shown to also oxidize plant polysaccharides, including cellulose, glucomannan, β-(1→3,1→4)-glucan, and xyloglucan, albeit to a lesser extent than oligomeric substrates. To improve GOOX activity on polymeric substrates, three carbohydrate binding modules (CBMs) from Clostridium thermocellum, namely CtCBM3 (type A), CtCBM11 (type B), and CtCBM44 (type B), were separately appended to the amino and carboxy termini of the enzyme, generating six fusion proteins. With the exception of GOOX-CtCBM3 and GOOX-CtCBM44, fusion of the selected CBMs increased the catalytic activity of the enzyme (kcat) on cellotetraose by up to 50%. All CBM fusions selectively enhanced GOOX binding to soluble and insoluble polysaccharides, and the immobilized enzyme on a solid cellulose surface remained stable and active. In addition, the CBM fusions increased the activity of GOOX on soluble glucomannan by up to 30 % and on insoluble crystalline as well as amorphous cellulose by over 50 %.
Collapse
Affiliation(s)
- Maryam Foumani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Thu V. Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Benjamin MacCormick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R. Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- * E-mail:
| |
Collapse
|
49
|
Meng DD, Ying Y, Zhang KD, Lu M, Li FL. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features. MOLECULAR BIOSYSTEMS 2015; 11:3164-73. [DOI: 10.1039/c5mb00409h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diverse and distinctive encoding sequences of CAZyme in the genome of Caldicellulosiruptor sp. F32 enable the deconstruction of unpretreated lignocellulose.
Collapse
Affiliation(s)
- Dong-Dong Meng
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Yu Ying
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Kun-Di Zhang
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Ming Lu
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Fu-Li Li
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| |
Collapse
|