1
|
Long M, Huang C, Huang X, Yang L, Chen L, Sun K, Wang C, Zhang L, Zhang L, Cai S, Yao S, Zhu H, Yang T, Zou B, Liu T. Efficient photodegradation of carbamazepine by organocatalysts incorporating a third component with a more complementary absorption spectrum. MATERIALS HORIZONS 2024. [PMID: 39392274 DOI: 10.1039/d4mh01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Carbamazepine, recognized as one of the most prevalent pharmaceuticals, has attracted considerable attention due to its potential impact on ecosystems and human health. In response, this work synthesized and characterized a novel environmentally friendly and cost-effective organic semiconductor photocatalyst PM6:Y6:ITCPTC loaded with coconut shell charcoal, and then investigated its performance for photocatalytic removal. Remarkably, carbamazepine demonstrated a photodegradation efficiency exceeding 99% within a mere 20 minutes of exposure to one sunlight intensity, and also showed good effectiveness under a low light intensity of 50 W. The catalyst exhibited exceptional reusability and stability, maintaining degradation efficiency between 95-99% over 25 cycles. The high photocatalytic activity of PM6:Y6:ITCPTC is primarily attributed to the incorporation of the third component (named ITCPTC), which enhances exciton dissociation and carrier transfer, generating superoxide radicals, electrons, and holes. Furthermore, the plausible degradation pathway of carbamazepine was proposed based on the measured intermediates and density functional theory calculations.
Collapse
Affiliation(s)
- Min Long
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| | - Ciyuan Huang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xiao Huang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Linji Yang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Liangsheng Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Ke Sun
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| | - Caiyun Wang
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, Guangxi, P. R. China.
| | - Liying Zhang
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, Guangxi, P. R. China.
| | - Libin Zhang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Songlin Cai
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Shangfei Yao
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Tao Yang
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Portugal
| | - Bingsuo Zou
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Tao Liu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
- Department of Biochemistry and Cell Biology, YouJiang Medical University for Nationalities, Baise City, Guangxi Zhuang Autonomous Region 533000, China
| |
Collapse
|
2
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Scanning Electron Microscopy Study on the Biodeterioration of Natural Fiber Materials Compared to Disposable Hygiene and Sanitary Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disposable personal care products are part of modern life, but these products could become a biological hazard in case of improper disposal. Therefore, our study compared the biodeterioration of plant-based woven materials (cotton, linen), animal materials (wool, leather), disposable hygiene products with cellulose fibers (sanitary pads, cosmetic pads), and chemical impregnated products (antimicrobial/sanitary wet wipes) using burial tests in two types of soils for 40 days. Weight loss (%) and scanning electron microscopy (SEM) revealed that textiles are relatively quickly deteriorated compared to animal-based products, and the process is dependent on the soil type. According to SEM analysis, sanitary pads were the least deteriorated, followed by wet wipes and cosmetic pads (maximum weight loss 24.332% and 27.537%, respectively), and the process was influenced by the composition and structure of the product. These results were correlated with changes in the number of microbes and cellulolytic activity of soil near the samples, and eight isolates belong to Ascomycetes according to PCR analysis. This is the first report on the fate of disposable hygiene and sanitary products in soil, but further comprehensive research is required to reveal crucial insights about their potential hazards and to increase public awareness of the inappropriate disposal of these products.
Collapse
|
4
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
5
|
Rios‐Miguel AB, Jetten MSM, Welte CU. Effect of concentration and hydraulic reaction time on the removal of pharmaceutical compounds in a membrane bioreactor inoculated with activated sludge. Microb Biotechnol 2021; 14:1707-1721. [PMID: 34132479 PMCID: PMC8313272 DOI: 10.1111/1751-7915.13837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4-800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.5 and 5 days). The bioreactor was inoculated with activated sludge from a municipal WWTP and fed with ammonium, acetate and methanol as main growth substrates to mimic co-metabolism. Each pharmaceutical had a different average removal efficiency: acetaminophen (100%) > fluoxetine (50%) > metoprolol (25%) > diclofenac (20%) > metformin (15%) > carbamazepine (10%). Higher pharmaceutical influent concentrations proportionally increased the removal rate of each compound, but surprisingly not the removal percentage. Furthermore, only metformin removal improved to 80-100% when HRT or biomass concentration was increased. Microbial community changes were followed with 16S rRNA gene amplicon sequencing in response to the increment of pharmaceutical concentration: Nitrospirae and Planctomycetes 16S rRNA relative gene abundance decreased, whereas Acidobacteria and Bacteroidetes increased. Remarkably, the Dokdonella genus, previously implicated in acetaminophen metabolism, showed a 30-fold increase in abundance at the highest concentration of pharmaceuticals applied. Taken together, these results suggest that the incomplete removal of most pharmaceutical compounds in WWTPs is dependent on neither concentration nor reaction time. Accordingly, we propose a chemical equilibrium or a growth substrate limitation as the responsible mechanisms of the incomplete removal. Finally, Dokdonella could be the main acetaminophen degrader under activated sludge conditions, and non-antibiotic pharmaceuticals might still be toxic to relevant WWTP bacteria.
Collapse
Affiliation(s)
- Ana B. Rios‐Miguel
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mike S. M. Jetten
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic MicrobiologyRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Cornelia U. Welte
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic MicrobiologyRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
6
|
Saifur S, Gardner CM. Loading, transport, and treatment of emerging chemical and biological contaminants of concern in stormwater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2863-2885. [PMID: 34185685 DOI: 10.2166/wst.2021.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stormwater is a largely uncontrolled source of pollution in rural and urban environments across the United States. Concern regarding the growing diversity and abundance of pollutants in stormwater, as well as their impacts on water quality, has grown significantly over the past several decades. In addition to conventional contaminants like nutrients and heavy metals, stormwater is a well-documented source of many contaminants of emerging concern, which can be toxic to both aquatic and terrestrial organisms and remain a barrier to maintaining high quality water resources. Chemical pollutants like pharmaceuticals and personal care products, industrial pollutants such as per- and polyfluoroalkyl substances, and tire wear particles in stormwater are of great concern due to their toxic, genotoxic, mutagenic and carcinogenic properties. Emerging microbial contaminants such as pathogens and antibiotic resistance genes also represent significant threats to environmental water quality and human health. Knowledge regarding the transport, behavior, and the remediation capacity of these pollutants in runoff is key for addressing these pollutants in situ and minimizing ecosystem perturbations. To this end, this review paper will analyze current understanding of these contaminants in stormwater runoff in terms of their transport, behavior, and bioremediation potential.
Collapse
Affiliation(s)
- Sumaiya Saifur
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA 99164, USA E-mail:
| | - Courtney M Gardner
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA 99164, USA E-mail:
| |
Collapse
|
7
|
Zhong J, Jiang H, Wang Z, Yu Z, Wang L, Mueller JF, Guo J. Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100079. [PMID: 36158607 PMCID: PMC9488057 DOI: 10.1016/j.ese.2021.100079] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 05/09/2023]
Abstract
The ubiquity of micropollutants (MPs) in aquatic environments has attracted increasing concern for public health and ecological security. Compared to conventional biological treatment, photocatalytic processes show more efficiency in degrading MPs, but they require expensive materials and complicated synthesis processes. This study developed an economic photocatalytic process to degrade micropollutants. We synthesized urea-based graphitic carbon nitride (g-C3N4) by a facile one-step pyrolysis method and evaluated the photocatalytic efficiency of carbamazepine (CBZ). Under simulated solar irradiation, g-C3N4 could achieve 100% removal efficiency of 0.1 mg/L CBZ in spiked wastewater effluent within 15 min, and 86.5% removal efficiency in wastewater influent after 20 min of irradiation. The porous structure of g-C3N4 promoted effective charge separation and mass transport of CBZ near the catalyst surface, enabling a high kinetic rate (0.3662 min -1). Reactive oxygen species trapping experiments revealed that superoxide radicals (O2 •-) and holes (h+) were the major active radicals. Electron paramagnetic resonance (EPR) further confirmed the presence of O2 •-, • OH, 1O2 and holes. The pH, light intensity and initial CBZ concentration were found to have significant impacts on the removal efficiency of CBZ. Possible reaction intermediates were identified and the degradation pathway was proposed. Multiple MPs were selected to further demonstrate photocatalytic efficiency of g-C3N4. The facile synthesis, superior efficiency, and versatility of g-C3N4 make it a promising catalyst for application in tertiary wastewater treatment processes.
Collapse
Affiliation(s)
- Jiexi Zhong
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Hui Jiang
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhigang Yu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jochen F. Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Gao Z, Xu H, Zhang P, Ji D, Xia L, Wang X, Li B, Dou M, Xu Y. Variations in bacterial community structures during geothermal water recharge-induced bioclogging. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:629-637. [PMID: 32036743 DOI: 10.1080/10934529.2020.1724744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Characterizing bacterial communities is of great significance for targeted control of bacteria-induced clogging during geothermal water recharge. Based on a series of laboratory-scale percolation experiments, the variations in bacterial community diversity, composition, and structure were investigated during simulated geothermal water recharge using high-throughput sequencing technology. The Chao, Shannon, and Evenness indexes were used to quantify the richness, diversity, and evenness of the bacterial community, respectively. The results show that the richness of the bacterial community initially increased and then decreased in the sand columns during the experiments of geothermal water recharge, while the changes in bacterial diversity and evenness were not apparent. A variety of bacterial phyla were found, among which Proteobacteria was predominant (88.31%), followed by Actinobacteria, Bacteroidetes, and Firmicutes (4.23%, 3.44%, and 2.49%). For the non-Proteobacterial phyla, Actinobacteria gradually disappeared while Bacteroidetes and Firmicutes were detected during the percolation experiments. This study implies that, despite the variations in the bacterial community, a core group of bacteria persists during geothermal water recharge, and thus a targeted control of bacteria-induced clogging during geothermal water recharge should be feasible.
Collapse
Affiliation(s)
- Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Hailong Xu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Pingping Zhang
- The Second Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Dezhou, China
- Shandong Provincial Research Cerner of Geothermal Resources and Reinjection, Dezhou, China
| | - Deshuai Ji
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Lu Xia
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Xinyi Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Bin Li
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Minyue Dou
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yifan Xu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Nguyen PM, Afzal M, Ullah I, Shahid N, Baqar M, Arslan M. Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21109-21126. [PMID: 31134537 DOI: 10.1007/s11356-019-05320-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Post-industrial era has witnessed significant advancements at unprecedented rates in the field of medicine and cosmetics, which has led to affluent use of pharmaceuticals and personal care products (PPCPs). However, this has exacerbated the influx of various pollutants in the environment affecting living organisms through multiple routes. Thousands of PPCPs of various classes-prescription and non-prescription drugs-are discharged directly into the environment. In this review, we have surveyed literature investigating plant-based remediation practices to remove PPCPs from the environment. Our specific aim is to highlight the importance of plant-bacteria interplay for sustainable remediation of PPCPs. The green technologies not only are successfully curbing organic pollutants but also have displayed certain limitations. For example, the presence of biologically active compounds within plant rhizosphere may affect plant growth and hence compromise the phytoremediation potential of constructed wetlands. To overcome these hindrances, combined use of plants and beneficial bacteria has been employed. The microbes (both rhizo- and endophytes) in this type of system not only degrade PPCPs directly but also accelerate plant growth by producing growth-promoting enzymes and hence remediation potential of constructed wetlands.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Environmental Technology, Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Inaam Ullah
- International Join laboratory for Global Climate Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Naeem Shahid
- Department System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, 04318, Germany
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Arslan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan.
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
10
|
Bai Y, Ruan X, Wang F, Antoine G, van der Hoek JP. Sulfonamides removal under different redox conditions and microbial response to sulfonamides stress during riverbank filtration: A laboratory column study. CHEMOSPHERE 2019; 220:668-677. [PMID: 30605809 DOI: 10.1016/j.chemosphere.2018.12.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Riverbank filtration (RBF) as a barrier of pathogenic microorganisms and organic micropollutants recently has been proven capable of removing sulfonamides. However, the study about the effect of redox conditions on biodegradation of common and persistent sulfonamides in RBF is limited and the response of microbial communities to sulfonamides stress during RBF is unknown. In this study, two column set-ups (with residence time 5 days and 11 days respectively), simulating different redox conditions of riverbank filtration systems, were operated for seven months to investigate 1) the long-term effect of redox conditions on ng∙L-1 level sulfonamides (sulfapyridine, sulfadiazine, sulfamethoxazole, sulfamethazine, sulfaquinoxaline) removal, and 2) the microbial community evolution represented by the phylogenetic and metabolic function shift under non-lethal selective pressures of sulfonamides. The results showed that sulfonamides were more degradable under anoxic conditions than oxic and suboxic conditions. In the sulfonamides stressed community, the phylogenetic diversity increased slightly. Relative abundance of an intrinsic sulfonamides resistant bacteria Bacillus spp. increased, suggesting that sulfonamide resistance developed in specific bacteria under sulfonamides contamination pressure in RBF systems. At the same time, an activated transport function in the stressed microbial community was noticed. The predicted relative abundance of gene folP, which encodes dihydropteroate synthase, also increased significantly, indicating a detoxification mechanism and sulfonamides resistance potential under non-lethal selective pressures of sulfonamides in RBF systems.
Collapse
Affiliation(s)
- Ying Bai
- Key Laboratory of Surfacial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, China
| | - Xiaohong Ruan
- Key Laboratory of Surfacial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, China.
| | - Feifei Wang
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Garnier Antoine
- The National Engineering School of Rennes, Allée de Beaulieu 11, 35708 Rennes, France
| | - Jan Peter van der Hoek
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands; Strategic Centre, Waternet, Korte Ouderkerkerdijk 7, 1096 AC Amsterdam, the Netherlands
| |
Collapse
|
11
|
Rossmassler K, Kim S, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products. Biodegradation 2019; 30:127-145. [PMID: 30820709 DOI: 10.1007/s10532-019-09871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Knowledge of the conditions that promote the growth and activity of pharmaceutical and personal care product (PPCP)-degrading microorganisms within mixed microbial systems are needed to shape microbiomes in biotreatment reactors and manage process performance. Available carbon sources influence microbial community structure, and specific carbon sources could potentially be added to end-of-treatment train biotreatment systems (e.g., soil aquifer treatment [SAT]) to select for the growth and activity of a range of microbial phylotypes that collectively degrade target PPCPs. Herein, the impacts of primary carbon sources on PPCP biodegradation and microbial community structure were explored to identify promising carbon sources for PPCP biotreatment application. Six types of primary carbon sources were investigated: casamino acids, two humic acid and peptone mixtures (high and low amounts of humic acid), molasses, an organic acids mixture, and phenol. Biodegradation was tracked for five PPCPs (diclofenac, 5-fluorouracil, gemfibrozil, ibuprofen, and triclosan). Primary carbon sources were found to differentially impact microbial community structures and rates and efficiencies of PPCP biotransformation. Of the primary carbon sources tested, casamino acids, organic acids, and phenol showed the fastest biotransformation; however, on a biomass-normalized basis, both humic acid-peptone mixtures showed comparable or superior biotransformation. By comparing microbial communities for the different primary carbon sources, abundances of unclassified Beijerinckiaceae, Beijerinckia, Sphingomonas, unclassified Sphingomonadaceae, Flavobacterium, unclassified Rhizobiales, and Nevskia were statistically linked with biotransformation of specific PPCPs.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sunah Kim
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Sarah Galloway
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
12
|
Flynn TM, Koval JC, Greenwald SM, Owens SM, Kemner KM, Antonopoulos DA. Parallelized, Aerobic, Single Carbon-Source Enrichments from Different Natural Environments Contain Divergent Microbial Communities. Front Microbiol 2017; 8:2321. [PMID: 29234312 PMCID: PMC5712364 DOI: 10.3389/fmicb.2017.02321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
Microbial communities that inhabit environments such as soil can contain thousands of distinct taxa, yet little is known about how this diversity is maintained in response to environmental perturbations such as changes in the availability of carbon. By utilizing aerobic substrate arrays to examine the effect of carbon amendment on microbial communities taken from six distinct environments (soil from a temperate prairie and forest, tropical forest soil, subalpine forest soil, and surface water and soil from a palustrine emergent wetland), we examined how carbon amendment and inoculum source shape the composition of the community in each enrichment. Dilute subsamples from each environment were used to inoculate 96-well microtiter plates containing triplicate wells amended with one of 31 carbon sources from six different classes of organic compounds (phenols, polymers, carbohydrates, carboxylic acids, amines, amino acids). After incubating each well aerobically in the dark for 72 h, we analyzed the composition of the microbial communities on the substrate arrays as well as the initial inocula by sequencing 16S rRNA gene amplicons using the Illumina MiSeq platform. Comparisons of alpha and beta diversity in these systems showed that, while the composition of the communities that grow to inhabit the wells in each substrate array diverges sharply from that of the original community in the inoculum, these enrichment communities are still strongly affected by the inoculum source. We found most enrichments were dominated by one or several OTUs most closely related to aerobes or facultative anaerobes from the Proteobacteria (e.g., Pseudomonas, Burkholderia, and Ralstonia) or Bacteroidetes (e.g., Chryseobacterium). Comparisons within each substrate array based on the class of carbon source further show that the communities inhabiting wells amended with a carbohydrate differ significantly from those enriched with a phenolic compound. Selection therefore seems to play a role in shaping the communities in the substrate arrays, although some stochasticity is also seen whereby several replicate wells within a single substrate array display strongly divergent community compositions. Overall, the use of highly parallel substrate arrays offers a promising path forward to study the response of microbial communities to perturbations in a changing environment.
Collapse
Affiliation(s)
- Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Jason C Koval
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | | | - Sarah M Owens
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | | |
Collapse
|
13
|
Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. WATER RESEARCH 2017; 125:227-236. [PMID: 28865372 DOI: 10.1016/j.watres.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems.
Collapse
Affiliation(s)
- Sunah Kim
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | - Karen Rossmassler
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | | | - Sarah Galloway
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Jessica Prenni
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Susan K De Long
- Colorado State University, Department of Civil and Environmental Engineering, USA.
| |
Collapse
|
14
|
Carpenter CMG, Helbling DE. Removal of micropollutants in biofilters: Hydrodynamic effects on biofilm assembly and functioning. WATER RESEARCH 2017; 120:211-221. [PMID: 28494247 DOI: 10.1016/j.watres.2017.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Global water resources contain a variety of micropollutants (MPs), including pharmaceuticals, personal care products, and pesticides. This study investigated the removal of MPs during drinking water production by means of biofiltration. The objective of this work was to investigate the influence of hydrodynamics on biofilm growth and development in a biofiltration process and the consequent effect on MP biotransformation rates. We operated three groups of biofiltration columns continuously for 381 days under three distinct hydrodynamic regimes (superficial velocity: 10, 20, 40 cm h-1) and fed them a mixture of 29 micropollutants at low concentrations. Total protein concentrations were used as a surrogate measurement for attached biomass and periodic tracer experiments were conducted to estimate dispersivity and assess changes in the depth of the biological zone in each biofilter. These data revealed significant differences in biofilm assembly among the biofilters; higher superficial velocities led to less concentrated surface biomass but a deeper biological zone and more total biomass. Eleven of the 29 MPs were biotransformed and nine of those could be evaluated to estimate biotransformation rates. The second-order rate constants for all nine MPs were not significantly different among the hydrodynamic regimes. However, a depth-based analysis of biotransformation rates revealed significantly greater second-order rate constants for 5 of the MPs at increasing biofilter depths, suggesting that sparse microbial communities found in deeper and more oligotrophic biofilters had a greater activity for the biotransformation of these MPs. The identification of several transformation products at similar relative distributions suggests that the greater activity was not the result of changing metabolic processes under more oligotrophic conditions. These results improve our fundamental understanding of biofilm assembly and functioning in biofiltration processes.
Collapse
Affiliation(s)
- Corey M G Carpenter
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Polesel F, Andersen HR, Trapp S, Plósz BG. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10316-10334. [PMID: 27479075 DOI: 10.1021/acs.est.6b01899] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.
Collapse
Affiliation(s)
- Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Cardenas MAR, Ali I, Lai FY, Dawes L, Thier R, Rajapakse J. Removal of micropollutants through a biological wastewater treatment plant in a subtropical climate, Queensland-Australia. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2016; 14:14. [PMID: 27822379 PMCID: PMC5093989 DOI: 10.1186/s40201-016-0257-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/03/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Municipal wastewaters contain a multitude of organic compounds derived from domestic and industrial sources including active components of pharmaceutical and personal care products and compounds used in agriculture, such as pesticides, or food processing such as artificial sweeteners often referred to as micropollutants. Some of these compounds or their degradation products may have detrimental effects on the environment, wildlife and humans. Acesuflame is one of the most popular artificial sweeteners to date used in foodstuffs. The main objectives of this descriptive study were to evaluate the presence of micropollutants in both the influent and effluent of a large-scale conventional biological wastewater treatment plant (WWTP) in South-East Queensland receiving wastewater from households, hospitals and various industries. METHODS Based on USEPA Method 1694: Filtered samples were spiked with mass-labelled chemical standards and then analysed for the micropollutants using liquid chromatography coupled with tandem mass spectrometry. RESULTS The presence of thirty-eight compounds were detected in the wastewater influent to the treatment plant while nine of the compounds in the categories of analgesic, anti-inflammatory, alkaloid and lipid/cholesterol lowering drugs were undetectable (100 % removed) in the effluent. They were: Analgesic: Paracetamol, Salicylic acid, Oxycodone; Anti-inflammatory: Naproxen + ve, Atorvastatin, Indomethacin, Naproxen; Alkaloid: Caffeine; Lipid/cholesterol lowering: Gemfibrozol. CONCLUSIONS The study results revealed that the micropollutants removal through this biological treatment process was similar to previous research reported from other countries including Europe the Americas and Asia, except for acesulfame, a highly persistent artificial sweetener. Surprisingly, acesulfame was diminished to a much greater extent (>90 %) than previously reported research for this type of WWTPs (45-65 %) that only include physical removal of objects and solids and a biodegradation step.
Collapse
Affiliation(s)
| | - Imtiaj Ali
- Treatment Program, Logan City Council, Logan City DC, QLD 4114 Australia
| | - Foon Yin Lai
- National Research Centre for Environmental Toxicilogy (EnTox), The University of Queensland, Brisbane, QLD 4108 Australia
| | - Les Dawes
- Science and Engineering Faculty, School of Earth, Environment and Biological Sciences, Queensland University of Technology, QLD 4001 Brisbane, Australia
| | - Ricarda Thier
- Faculty of Health, Queensland University of Technology, QLD 4001 Brisbane, Australia
| | - Jay Rajapakse
- Science and Engineering Faculty, School of Earth, Environment and Biological Sciences, Queensland University of Technology, QLD 4001 Brisbane, Australia
| |
Collapse
|
17
|
D'Alessio M, Yoneyama B, Kirs M, Kisand V, Ray C. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:124-35. [PMID: 25889551 DOI: 10.1016/j.scitotenv.2015.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/04/2015] [Accepted: 04/05/2015] [Indexed: 05/26/2023]
Abstract
Slow sand filtration (SSF) has been widely used as a means of providing potable water due to its efficacy, low cost, and minimal maintenance. Advances in analytical instrumentation have revealed the occurrence of pharmaceutically active compounds (PhACs) in surface water as well as in groundwater. It is unclear if the presence of these compounds in the feed water can interfere with the performances of an SSF unit. The aim of this work was to examine i) the ability of two SSF units to remove six PhACs (caffeine, carbamazepine, 17-β estradiol [E2], estrone [E1], gemfibrozil, and phenazone), and ii) the impact of these PhACs on the removal of bacteria by two SSF units. The presence of PhACs in feed water for SSF can occur in surface waters impacted by wastewater or leakage from sewers and septic tanks, as well as in developing countries where unregulated use and improper disposal are prevalent. Two pilot-scale SSF units were used during the study. Unit B1 was fed with stream water with 1% of primary effluent added, while unit B2 was fed with stream water alone. Although limited removal (<10%) of carbamazepine, gemfibrozil, and phenazone occurred, the complete removal of caffeine, and the partial removal (11-92%) of E2 and E1 were observed in the two SSF units. The results of this study suggest that the occurrence of the selected PhACs, probably estrogens and caffeine, in the feed water at 50 μg L(-1) affected the ability of the schmutzdecke to remove total coliform and Escherichia coli. The bacterial removal achieved within the schmutzdecke dropped from 95% to less than 20% by the end of the study. This decrease in removal may be related to the change in the microbial community within the schmutzdecke. A diverse microbial community, including Bacteroidetes and several classes of Proteobacteria, was replaced by a microbial community in which Gammaproteobacteria was the predominant phylum (99%). Despite the low removal achieved within the schmutzdecke, removal of total coliform and E. coli greater than 99% occurred after both SSF units throughout the study. Bacterial removal occurred in the upper half of the sand filter. This was probably due to a diverse microbial community established in the packing material, in which Bacteroidetes (13-25%), Acidobacteria (7-17%) and several classes of Proteobacteria (35-52%) (Alpha-, Beta-, Delta-, and Gammaproteobacteria) were the predominant phyla.
Collapse
Affiliation(s)
- Matteo D'Alessio
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Bunnie Yoneyama
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Marek Kirs
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Chittaranjan Ray
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
18
|
Tappin AD, Loughnane JP, McCarthy AJ, Fitzsimons MF. Bacterio-plankton transformation of diazepam and 2-amino-5-chlorobenzophenone in river waters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2227-2236. [PMID: 25164562 DOI: 10.1039/c4em00306c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Benzodiazepines are a large class of commonly-prescribed drugs used to treat a variety of clinical disorders. They have been shown to produce ecological effects at environmental concentrations, making understanding their fate in aquatic environments very important. In this study, uptake and biotransformations by riverine bacterio-plankton of the benzodiazepine, diazepam, and 2-amino-5-chlorobenzophenone, ACB (a photo-degradation product of diazepam and several other benzodiazepines), were investigated using batch microcosm incubations. These were conducted using water and bacterio-plankton populations from contrasting river catchments (Tamar and Mersey, UK), both in the presence and absence of a peptide, added as an alternative organic substrate. Incubations lasted 21 days, reflecting the expected water residence time in the catchments. In River Tamar water, 36% of diazepam (p < 0.001) was removed when the peptide was absent. In contrast, there was no removal of diazepam when the peptide was added, although the peptide itself was consumed. For ACB, 61% was removed in the absence of the peptide, and 84% in its presence (p < 0.001 in both cases). In River Mersey water, diazepam removal did not occur in the presence or absence of the peptide, with the latter again consumed, while ACB removal decreased from 44 to 22% with the peptide present. This suggests that bacterio-plankton from the Mersey water degraded the peptide in preference to both diazepam and ACB. Biotransformation products were not detected in any of the samples analysed but a significant increase in ammonium concentration (p < 0.038) was measured in incubations with ACB, confirming mineralization of the amine substituent. Sequential inoculation and incubation of Mersey and Tamar microcosms, for 5 periods of 21 days each, did not produce any evidence of increased ability of the microbial community to remove ACB, suggesting that an indigenous consortium was probably responsible for its metabolism. As ACB degradation was consistent, we propose that the aquatic photo-degradation of diazepam to ACB, followed by mineralization of ACB, is a primary removal pathway for these emerging contaminants. As ACB is photo-produced by several benzodiazepines, this pathway should be relevant for the removal of other benzodiazepines that enter the freshwater environment.
Collapse
Affiliation(s)
- Alan D Tappin
- Biogeochemistry Research Centre, Marine Institute, Plymouth University, Plymouth, PL4 8AA, UK.
| | | | | | | |
Collapse
|