1
|
Turner M, Van Hulzen L, Guse K, Agany D, Pietri JE. The gut microbiota confers resistance against Salmonella Typhimurium in cockroaches by modulating innate immunity. iScience 2024; 27:111293. [PMID: 39628558 PMCID: PMC11612784 DOI: 10.1016/j.isci.2024.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cockroaches exhibit unexplained intra- and interpopulation variation in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Here, we show that the gut microbiota has a protective effect against colonization by ingested S. Typhimurium in cockroaches. We further examine two potential mechanisms for this effect, showing that commensal bacteria present in the gut do not compete with S. Typhimurium during growth in cockroach feces, but rather prime expression of host antimicrobial peptide genes that suppress S. Typhimurium infection. Lastly, we determine that neither absolute abundance of the microbiota nor its overall diversity is linked to infection susceptibility. Instead, we identify several minority bacterial taxa that exhibit interindividual variation in abundance as key indicators of infection susceptibility among genetically similar individuals. These findings illuminate the potential of cockroaches as an invertebrate model for interspecies microbial interactions and provide insight into vector-borne Salmonella transmission, suggesting that the microbiota of cockroaches could be targeted to reduce pathogen transmission.
Collapse
Affiliation(s)
- Matthew Turner
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Landen Van Hulzen
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Kylene Guse
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Diing Agany
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Jose E. Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
- Purdue University, Department of Entomology, Center for Urban and Industrial Pest Management, West Lafayette, IN, USA
- Purdue University, Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
- Purdue University, Department of Biological Sciences, West Lafayette, IN, USA
| |
Collapse
|
2
|
DePoy AN, Wall H, Tinker KA, Ottesen EA. Microbial transcriptional responses to host diet maintain gut microbiome homeostasis in the American cockroach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621369. [PMID: 39554183 PMCID: PMC11565919 DOI: 10.1101/2024.10.31.621369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Diet is considered a key determinant of gut microbiome composition and function. However, studies in the American cockroach have revealed surprising stability in hindgut microbiome taxonomic composition following shifts in host diet. To discover microbial activities underlying this stability, we analyzed microbial community transcriptomes from hindguts of cockroaches fed diverse diets. We used a taxon-centric approach in which we clustered genomes based on taxonomic relatedness and functional similarity and examined the transcriptional profiles of each cluster independently. In total, we analyzed a set of 18 such "genome clusters", including key taxa within Bacteroidota, Bacillota, Desulfobacterota, and Euryarcheaeota phyla. We found that microbial transcriptional responses to diet varied across diets and microbial functional profiles, with the strongest transcriptional shifts seen in taxa predicted to be primarily focused on degradation of complex dietary polysaccharides. These groups upregulated genes associated with utilization of diet-sourced polysaccharides in response to bran and dog food diets, while they upregulated genes for degradation of potentially host-derived polysaccharides in response to tuna, butter, and starvation diets. In contrast, chemolithotrophic taxa, such as Desulfobacterota and Methanimicrococcus, exhibited stable transcriptional profiles, suggesting that compensatory changes in the metabolism of other microbial community members are sufficient to support their activities across major dietary shifts. These results provide new insight into microbial activities supporting gut microbiome stability in the face of variable diets in omnivores.
Collapse
|
3
|
Nweze JE, Gupta S, Salcher MM, Šustr V, Horváthová T, Angel R. Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition. Commun Biol 2024; 7:1204. [PMID: 39342029 PMCID: PMC11438867 DOI: 10.1038/s42003-024-06821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Shruti Gupta
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Terézia Horváthová
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.
| |
Collapse
|
4
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Amalia Bogri
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | | | - Asbjørn Vedel Borchert
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| |
Collapse
|
5
|
Domínguez-Santos R, Baixeras J, Moya A, Latorre A, Gil R, García-Ferris C. Gut Microbiota Is Not Essential for Survival and Development in Blattella germanica, but Affects Uric Acid Storage. Life (Basel) 2024; 14:153. [PMID: 38276282 PMCID: PMC10821347 DOI: 10.3390/life14010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Cockroaches harbor two coexisting symbiotic systems: the obligate endosymbiont Blattabacterium cuenotii, and a complex gut microbiota. Blattabacterium is the only bacterium present in the eggs, as the gut microbiota is acquired by horizontal transmission after hatching, mostly through coprophagy. Blattella germanica, a cosmopolitan omnivorous cockroach living in intimate association with humans, is an appropriate model system for studying whether the gut microbiota is essential for the cockroach's survival, development, or welfare. We obtained a germ-free cockroach population (i.e., containing normal amounts of the endosymbiont, but free of microbes on the insects' surface and digestive tract). Non-significant differences with the controls were detected in most fitness parameters analyzed, except for a slight shortening in the hatching time of the second generation and a reduction in female weight at 10 days after adult ecdysis. The latter is accompanied by a decrease in uric acid reserves. This starvation-like phenotype of germ-free B. germanica suggests that the microbiota is not essential in this species for survival and development throughout its complete life cycle, but it could participate in complementation of host nutrition by helping with food digestion and nutrient absorption.
Collapse
Affiliation(s)
- Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain; (R.D.-S.); (A.M.); (A.L.)
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region (FISABIO), Avenida de Cataluña, 21, 46020 Valencia, Spain
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), University of Valencia, Calle Catedrático José Beltrán, 2, 46980 Paterna, Spain;
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain; (R.D.-S.); (A.M.); (A.L.)
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region (FISABIO), Avenida de Cataluña, 21, 46020 Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain; (R.D.-S.); (A.M.); (A.L.)
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region (FISABIO), Avenida de Cataluña, 21, 46020 Valencia, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain; (R.D.-S.); (A.M.); (A.L.)
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region (FISABIO), Avenida de Cataluña, 21, 46020 Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Calle Catedrático Agustín Escardino, 9, 46980 Paterna, Spain; (R.D.-S.); (A.M.); (A.L.)
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region (FISABIO), Avenida de Cataluña, 21, 46020 Valencia, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Calle Dr. Moliner, 50, 46100 Valencia, Spain
| |
Collapse
|
6
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
7
|
Kucuk RA, Campbell BJ, Lyon NJ, Shelby EA, Caterino MS. Gut bacteria of adult and larval Cotinis nitida Linnaeus (Coleoptera: Scarabaeidae) demonstrate community differences according to respective life stage and gut region. Front Microbiol 2023; 14:1185661. [PMID: 37485511 PMCID: PMC10362445 DOI: 10.3389/fmicb.2023.1185661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
The close association between bacteria and insect hosts has played an indispensable role in insect diversity and ecology. Thus, continued characterization of such insect-associated-microbial communities is imperative, especially those of saprophagous scarab beetles. The bacterial community of the digestive tract of adults and larvae of the cetoniine scarab species Cotinis nitida is characterized according to life stage, gut structure, and sex via high-throughput 16S rRNA gene amplicon sequencing. Through permutational ANOVAs of the resulting sequences, bacterial communities of the digestive system are shown to differ significantly between adults and larvae in taxon richness, evenness and relatedness. Significant bacterial community-level differences are also observed between the midgut and hindgut in adult beetles, while no significant host-sex differences are observed. The partitioning between bacterial communities in the larval digestive system is shown through significant differences in two distinct hindgut regions, the ileum and the expanded paunch, but not between the midgut and ileum portion of the hindgut region. These data further corroborate the hypothesis of strong community partitioning in the gut of members of the Scarabaeoidea, suggest hypotheses of physiological-digestive association, and also demonstrate the presence of a seemingly unusual non-scarab-associated taxon. These findings contribute to a general portrait of scarabaeoid digestive tract bacterial communities while illuminating the microbiome of a common new world cetoniine of the Gymnetini-a tribe largely neglected in scarab and beetle microbiome and symbiosis literature.
Collapse
Affiliation(s)
- Roy A. Kucuk
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Barbara J. Campbell
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Nicholas J. Lyon
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Michael S. Caterino
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
8
|
Cazzaniga M, Domínguez-Santos R, Marín-Miret J, Gil R, Latorre A, García-Ferris C. Exploring Gut Microbial Dynamics and Symbiotic Interaction in Blattella germanica Using Rifampicin. BIOLOGY 2023; 12:955. [PMID: 37508385 PMCID: PMC10376618 DOI: 10.3390/biology12070955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Blattella germanica harbours two cohabiting symbiotic systems: an obligate endosymbiont, Blattabacterium, located inside bacteriocytes and vertically transmitted, which is key in nitrogen metabolism, and abundant and complex gut microbiota acquired horizontally (mainly by coprophagy) that must play an important role in host physiology. In this work, we use rifampicin treatment to deepen the knowledge on the relationship between the host and the two systems. First, we analysed changes in microbiota composition in response to the presence and removal of the antibiotic with and without faeces in one generation. We found that, independently of faeces supply, rifampicin-sensitive bacteria are strongly affected at four days of treatment, and most taxa recover after treatment, although some did not reach control levels. Second, we tried to generate an aposymbiotic population, but individuals that reached the second generation were severely affected and no third generation was possible. Finally, we established a mixed population with quasi-aposymbiotic and control nymphs sharing an environment in a blind experiment. The analysis of the two symbiotic systems in each individual after reaching the adult stage revealed that endosymbiont's load does not affect the composition of the hindgut microbiota, suggesting that there is no interaction between the two symbiotic systems in Blattella germanica.
Collapse
Affiliation(s)
- Monica Cazzaniga
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
9
|
Dukes HE, Tinker KA, Ottesen EA. Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics. Front Microbiol 2023; 14:1156809. [PMID: 37323917 PMCID: PMC10266427 DOI: 10.3389/fmicb.2023.1156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Omnivorous cockroaches host a complex hindgut microbiota comprised of insect-specific lineages related to those found in mammalian omnivores. Many of these organisms have few cultured representatives, thereby limiting our ability to infer the functional capabilities of these microbes. Here we present a unique reference set of 96 high-quality single cell-amplified genomes (SAGs) from bacterial and archaeal cockroach gut symbionts. We additionally generated cockroach hindgut metagenomic and metatranscriptomic sequence libraries and mapped them to our SAGs. By combining these datasets, we are able to perform an in-depth phylogenetic and functional analysis to evaluate the abundance and activities of the taxa in vivo. Recovered lineages include key genera within Bacteroidota, including polysaccharide-degrading taxa from the genera Bacteroides, Dysgonomonas, and Parabacteroides, as well as a group of unclassified insect-associated Bacteroidales. We also recovered a phylogenetically diverse set of Firmicutes exhibiting a wide range of metabolic capabilities, including-but not limited to-polysaccharide and polypeptide degradation. Other functional groups exhibiting high relative activity in the metatranscriptomic dataset include multiple putative sulfate reducers belonging to families in the Desulfobacterota phylum and two groups of methanogenic archaea. Together, this work provides a valuable reference set with new insights into the functional specializations of insect gut symbionts and frames future studies of cockroach hindgut metabolism.
Collapse
Affiliation(s)
- Helen E. Dukes
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Kara A. Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | | |
Collapse
|
10
|
Axenic and gnotobiotic insect technologies in research on host-microbiota interactions. Trends Microbiol 2023:S0966-842X(23)00055-0. [PMID: 36906503 DOI: 10.1016/j.tim.2023.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Insects are one of the most important animal life forms on earth. Symbiotic microbes are closely related to the growth and development of the host insects and can affect pathogen transmission. For decades, various axenic insect-rearing systems have been developed, allowing further manipulation of symbiotic microbiota composition. Here we review the historical development of axenic rearing systems and the latest progress in using axenic and gnotobiotic approaches to study insect-microbe interactions. We also discuss the challenges of these emerging technologies, possible solutions to address these challenges, and future research directions that can contribute to a more comprehensive understanding of insect-microbe interactions.
Collapse
|
11
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
12
|
Maraci Ö, Antonatou-Papaioannou A, Jünemann S, Engel K, Castillo-Gutiérrez O, Busche T, Kalinowski J, Caspers BA. Timing matters: age-dependent impacts of the social environment and host selection on the avian gut microbiota. MICROBIOME 2022; 10:202. [PMID: 36434663 PMCID: PMC9700942 DOI: 10.1186/s40168-022-01401-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The establishment of the gut microbiota in early life is a critical process that influences the development and fitness of vertebrates. However, the relative influence of transmission from the early social environment and host selection throughout host ontogeny remains understudied, particularly in avian species. We conducted conspecific and heterospecific cross-fostering experiments in zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata domestica) under controlled conditions and repeatedly sampled the faecal microbiota of these birds over the first 3 months of life. We thus documented the development of the gut microbiota and characterised the relative impacts of the early social environment and host selection due to species-specific characteristics and individual genetic backgrounds across ontogeny by using 16S ribosomal RNA gene sequencing. RESULTS The taxonomic composition and community structure of the gut microbiota changed across ontogenetic stages; juvenile zebra finches exhibited higher alpha diversity than adults at the post-breeding stage. Furthermore, in early development, the microbial communities of juveniles raised by conspecific and heterospecific foster parents resembled those of their foster family, emphasising the importance of the social environment. In later stages, the social environment continued to influence the gut microbiota, but host selection increased in importance. CONCLUSIONS We provided a baseline description of the developmental succession of gut microbiota in zebra finches and Bengalese finches, which is a necessary first step for understanding the impact of the early gut microbiota on host fitness. Furthermore, for the first time in avian species, we showed that the relative strengths of the two forces that shape the establishment and maintenance of the gut microbiota (i.e. host selection and dispersal from the social environment) change during development, with host selection increasing in importance. This finding should be considered when experimentally manipulating the early-life gut microbiota. Our findings also provide new insights into the mechanisms of host selection. Video Abstract.
Collapse
Affiliation(s)
- Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany.
| | - Anna Antonatou-Papaioannou
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
- Institute of Biology-Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Jünemann
- Institute for Bio- and Geosciences, Research Center Jülich, Jülich, Germany
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Kathrin Engel
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Omar Castillo-Gutiérrez
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Parhomenko OV, Kolomiichuk SV, Omelianov DD, Brygadyrenko VV. Potential use of synthetic and natural aromatic mixtures in prevention from Shelfordella lateralis сockroaches. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Attractive and repellent properties of many household chemicals may be used to combat synantrophic insects, such as cockroaches. In the natural environment, Shelfordella lateralis (Walker, 1868) (Blattodea, Blattidae) lives in the area spanning Central Asia to North Africa. Furthermore, in many tropical and subtropical countries, it is common in human accomodations. In the laboratory conditions, we determined reaction of cockroaches to aromatic mixtures and medicinal plants often used in households. Attractiveness coefficient was the lowest for cosmetic mixtrures Tutti-fruti and Verbena and Bamboo; other cosmetic aromatizers did not repell this insect (Lilac, Mango) or repelled it poorly (Grapefruit, Amaretto, Pine). Food additives that significantly repelled Sh. lateralis are Apricot, Barberry and Kiwi and lower effects were produced by Biscuit, whereas Vanilla flavouring had no repellent effect. Mixtures for vaping Strawberry pie, Pear, Frozen forest, Irish Cream and Blue Magic exerted strong repellent effects on cockroaches. Low repellent effect on Sh. lateralis were exerted by vaping mixtures Pancakes with Honey, Turkish Tobacco and Grapefruit. No significant effects on the number of cockroaches were exerted by vaping mixtures Vanilla, Club Ice Cream, Blueberry Smoke, Mojito, Chocolate, Apple, Mint and Walnut. Out of the fishing lures, the strongest repellent effects on Sh. lateralis were taken by Blood Worm, Onion and Honey, and weaker effects were exerted by Corn and Vanilla. Imagoes of Sh. lateralis were most significantly repelled by essential oils from jojoba, eucalyptus, daisy, tee tree, Cao Sao Vang balsam, and also fir essential oil. Neither luring nor repellent effects on imagoes of Sh. lateralis were displayed by essential oils from lemon, aloe, peppermint and mandarin. Dry medicinal plants repelled imagoes of Sh. lateralis: inflorescences of Calendula officinalis, leaves of Artemisia absinthium, flowers of Jasminum officinale, leaves of Origanum vulgare, inflorescences of Matricaria chamomilla, inflorescences of Crataegus monogyna, leaves of Mentha x piperita, inflorescences of Achillea millefolium, leaves of Hypericum perforatum, leaves of Aristolochia clematitis and inflorescences of Tanacetum vulgare. No repellent effects on Sh. lateralis were exerted by Chelidonium majus, inflorescences of Tilia cordata and inflorescences of Helichrysum arenarium. Thus, most (40 of 58, or 69.0%) of the tested aromatic substances and medicinal plants repelled synantrophic Turkestan cockroach, while a much smaller share (31.0%) neither significantly lured nor repelled them. No aromatic mixtures attracted Sh. lateralis in our experiment.
Collapse
|
14
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
15
|
Ni’matuzahroh, Affandi M, Fatimah, Trikurniadewi N, Khiftiyah AM, Sari SK, Abidin AZ, Ibrahim SNMM. Comparative study of gut microbiota from decomposer fauna in household composter using metataxonomic approach. Arch Microbiol 2022; 204:210. [DOI: 10.1007/s00203-022-02785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
16
|
Of Cockroaches and Symbionts: Recent Advances in the Characterization of the Relationship between Blattella germanica and Its Dual Symbiotic System. Life (Basel) 2022; 12:life12020290. [PMID: 35207577 PMCID: PMC8878154 DOI: 10.3390/life12020290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Mutualistic stable symbioses are widespread in all groups of eukaryotes, especially in insects, where symbionts have played an essential role in their evolution. Many insects live in obligate relationship with different ecto- and endosymbiotic bacteria, which are needed to maintain their hosts’ fitness in their natural environment, to the point of even relying on them for survival. The case of cockroaches (Blattodea) is paradigmatic, as both symbiotic systems coexist in the same organism in two separated compartments: an intracellular endosymbiont (Blattabacterium) inside bacteriocytes located in the fat body, and a rich and complex microbiota in the hindgut. The German cockroach Blattella germanica is a good model for the study of symbiotic interactions, as it can be maintained in the laboratory in controlled populations, allowing the perturbations of the two symbiotic systems in order to study the communication and integration of the tripartite organization of the host–endosymbiont–microbiota, and to evaluate the role of symbiotic antimicrobial peptides (AMPs) in host control over their symbionts. The importance of cockroaches as reservoirs and transmission vectors of antibiotic resistance sequences, and their putative interest to search for AMPs to deal with the problem, is also discussed.
Collapse
|
17
|
Dwivedi M, Powali S, Rastogi S, Singh A, Gupta DK. Microbial community in human gut: a therapeutic prospect and implication in health and diseases. Lett Appl Microbiol 2021; 73:553-568. [PMID: 34365651 DOI: 10.1111/lam.13549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The interest in the working and functionality of the human gut microbiome has increased drastically over the years. Though the existence of gut microbes has long been speculated for long over the last few decades, a lot of research has sprung up in studying and understanding the role of gut microbes in the human digestive tract. The microbes present in the gut are highly instrumental in maintaining the metabolism in the body. Further research is going on in this field to understand how gut microbes can be employed as potential sources of novel therapeutics; moreover, probiotics have also elucidated their significant place in this direction. As regards the clinical perspective, microbes can be engineered to afford defence mechanisms while interacting with foreign pathogenic bodies. More investigations in this field may assist us to evaluate and understand how these cells communicate with human cells and promote immune interactions. Here we elaborate on the possible implication of human gut microbiota into the immune system as well as explore the probiotics in the various human ailments. Comprehensive information on the human gut microbiome at the same platform may contribute effectively to our understanding of the human microbiome and possible mechanisms of associated human diseases.
Collapse
Affiliation(s)
- M Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - S Powali
- Maulana Abdul Kalam Azad University of Technology, Kolkatta, India
| | - S Rastogi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - A Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - D K Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
18
|
Domínguez-Santos R, Pérez-Cobas AE, Cuti P, Pérez-Brocal V, García-Ferris C, Moya A, Latorre A, Gil R. Interkingdom Gut Microbiome and Resistome of the Cockroach Blattella germanica. mSystems 2021; 6:6/3/e01213-20. [PMID: 33975971 PMCID: PMC8125077 DOI: 10.1128/msystems.01213-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cockroaches are intriguing animals with two coexisting symbiotic systems, an endosymbiont in the fat body, involved in nitrogen metabolism, and a gut microbiome whose diversity, complexity, role, and developmental dynamics have not been fully elucidated. In this work, we present a metagenomic approach to study Blattella germanica populations not treated, treated with kanamycin, and recovered after treatment, both naturally and by adding feces to the diet, with the aim of better understanding the structure and function of its gut microbiome along the development as well as the characterization of its resistome.IMPORTANCE For the first time, we analyze the interkingdom hindgut microbiome of this species, including bacteria, fungi, archaea, and viruses. Network analysis reveals putative cooperation between core bacteria that could be key for ecosystem equilibrium. We also show how antibiotic treatments alter microbiota diversity and function, while both features are restored after one untreated generation. Combining data from B. germanica treated with three antibiotics, we have characterized this species' resistome. It includes genes involved in resistance to several broad-spectrum antibiotics frequently used in the clinic. The presence of genetic elements involved in DNA mobilization indicates that they can be transferred among microbiota partners. Therefore, cockroaches can be considered reservoirs of antibiotic resistance genes (ARGs) and potential transmission vectors.
Collapse
Affiliation(s)
- Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
| | | | - Paolo Cuti
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
| |
Collapse
|
19
|
Mason CJ, Hoover K, Felton GW. Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Sci Rep 2021; 11:4429. [PMID: 33627698 PMCID: PMC7904771 DOI: 10.1038/s41598-021-83497-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Plants can have fundamental roles in shaping bacterial communities associated with insect herbivores. For larval lepidopterans (caterpillars), diet has been shown to be a driving force shaping gut microbial communities, where the gut microbiome of insects feeding on different plant species and genotypes can vary in composition and diversity. In this study, we aimed to better understand the roles of plant genotypes, sources of microbiota, and the host gut environment in structuring bacterial communities. We used multiple maize genotypes and fall armyworm (Spodoptera frugiperda) larvae as models to parse these drivers. We performed a series of experiments using axenic larvae that received a mixed microbial community prepared from frass from larvae that consumed field-grown maize. The new larval recipients were then provided different maize genotypes that were gamma-irradiated to minimize bacteria coming from the plant during feeding. For field-collected maize, there were no differences in community structure, but we did observe differences in gut community membership. In the controlled experiment, the microbial inoculation source, plant genotype, and their interactions impacted the membership and structure of gut bacterial communities. Compared to axenic larvae, fall armyworm larvae that received frass inoculum experienced reduced growth. Our results document the role of microbial sources and plant genotypes in contributing to variation in gut bacterial communities in herbivorous larvae. While more research is needed to shed light on the mechanisms driving this variation, these results provide a method for incorporating greater gut bacterial community complexity into laboratory-reared larvae.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Hindgut microbiota reflects different digestive strategies in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Appl Environ Microbiol 2021; 87:AEM.02100-20. [PMID: 33355113 PMCID: PMC8090880 DOI: 10.1128/aem.02100-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gut microbes play an important role in the biology and evolution of insects. Australian native dung beetles (Scarabaeinae) present an opportunity to study gut microbiota in an evolutionary context as they come from two distinct phylogenetic lineages and some species in each lineage have secondarily adapted to alternative or broader diets. In this study, we characterised the hindgut bacterial communities found in 21 species of dung beetles across two lineages using 16S rRNA sequencing. We found that gut microbial diversity was more dependent on host phylogeny and gut morphology than specific dietary preferences or environment. In particular, gut microbial diversity was highest in the endemic, flightless genus Cephalodesmius that feeds on a broad range of composted organic matter. The hindgut of Cephalodesmius harbours a highly conserved core set of bacteria suggesting that the bacteria are symbiotic. Symbiosis is supported by the persistence of the core microbiota across isolated beetle populations and between species in the genus. A co-evolutionary relationship is supported by the expansion of the hindgut to form a fermentation chamber and the fermentative nature of the core microbes. In contrast, Australian species of the widespread dung beetle genus Onthophagus, specialise on a single food resource such as dung or fungus, exhibit minimal food processing behaviour, have a short, narrow hindgut and a variable gut microbiota with relatively few core bacterial taxa. A conserved, complex gut microbiota is hypothesised to be unnecessary for this highly mobile genus.IMPORTANCE Dung beetles are a very important part of an ecosystem because of their role in the removal and decomposition of vertebrate dung. It has been suspected that symbiotic gut bacteria facilitate this role, a hypothesis that we have explored with high throughput barcoding. We found that differences in hindgut morphology had the greatest effect on the bacterial community composition. Species with a hindgut fermentation chamber harboured a distinctly different hindgut community compared to those species with a narrow, undifferentiated hindgut. Diet and phylogeny were also associated with differences in gut community. Further understanding of the relationships between dung beetles and their gut microbes will provide insights into the evolution of their behaviours and how gut communities contribute to their fitness.
Collapse
|
21
|
Disentangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet on Cockroach Microbiome Assembly. mSphere 2021; 6:6/1/e01023-20. [PMID: 33408228 PMCID: PMC7845597 DOI: 10.1128/msphere.01023-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A multitude of factors affect the assemblies of complex microbial communities associated with animal hosts, with implications for community flexibility, resilience, and long-term stability; however, their relative effects have rarely been deduced. Here, we use a tractable lab model to quantify the relative and combined effects of parental transmission (egg case microbiome present/reduced), gut inocula (cockroach versus termite gut provisioned), and varying diets (matched or unmatched with gut inoculum source) on gut microbiota structure of hatchlings of the omnivorous cockroach Shelfordella lateralis using 16S rRNA gene (rDNA) amplicon sequencing. We show that the presence of a preexisting bacterial community via vertical transmission of microbes on egg cases reduces subsequent microbial invasion, suggesting priority effects that allow initial colonizers to take a strong hold and which stabilize the microbiome. However, subsequent inoculation sources more strongly affect ultimate community composition and their ecological networks, with distinct host-taxon-of-origin effects on which bacteria establish. While this is so, communities respond flexibly to specific diets in ways that consequently impact predicted community functions. In conclusion, our findings suggest that inoculations drive communities toward different stable states depending on colonization and extinction events, through ecological host-microbe relations and interactions with other gut bacteria, while diet in parallel shapes the functional capabilities of these microbiomes. These effects may lead to consistent microbial communities that maximize the extended phenotype that the microbiota provides the host, particularly if microbes spend most of their lives in host-associated environments.IMPORTANCE When host fitness is dependent on gut microbiota, microbial community flexibility and reproducibility enhance host fitness by allowing fine-tuned environmental tracking and sufficient stability for host traits to evolve. Our findings lend support to the importance of vertically transmitted early-life microbiota as stabilizers, through interactions with potential colonizers, which may contribute to ensuring that the microbiota aligns within host fitness-enhancing parameters. Subsequent colonizations are driven by microbial composition of the sources available, and we confirm that host-taxon-of-origin affects stable subsequent communities, while communities at the same time retain sufficient flexibility to shift in response to available diets. Microbiome structure is thus the result of the relative impact and combined effects of inocula and fluctuations driven by environment-specific microbial sources and digestive needs. These affect short-term community structure on an ecological time scale but could ultimately shape host species specificities in microbiomes across evolutionary time, if environmental conditions prevail.
Collapse
|
22
|
Li Y, Schal C, Pan X, Huang Y, Zhang F. Effects of Antibiotics on the Dynamic Balance of Bacteria and Fungi in the Gut of the German Cockroach. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2666-2678. [PMID: 32968762 DOI: 10.1093/jee/toaa205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The German cockroach, Blattella germanica (L.) (Blattaria: Blattidae) harbored diverse microorganisms in the digestive tract, including bacteria, fungi, viruses, archaea, and protozoa. This diverse community maintains a relatively stable balance. Some bacteria have been confirmed to play crucial roles in the insect's physiology, biochemistry, and behavior. Antibiotics can effectively eliminate bacteria and disrupt the balance of gut microbiota, but the time-course of this process, the structure of the new microbial community, and the dynamics of re-assemblage of a bacterial community after antibiotic treatment have not been investigated. In the present study, antibiotic (levofloxacin and gentamicin) ingestion reduced bacterial diversity and abundance in the cockroach gut. Within 14 d of discontinuing antibiotic treatment, the number of culturable gut bacteria returned to its original level. However, the composition of the new bacterial community with greater abundance of antibiotic-resistant Enterococcus and Dysgonomonas was significantly different from the original community. Network analysis showed that antibiotic treatment made the interaction between bacteria and fungi closer and stronger in the cockroach gut during the recovery of gut microorganisms. The study on the composition change, recovery rules, and interaction dynamics between gut bacteria and fungi after antibiotic treatment are helpful to explore gut microbes' colonization and interaction with insects, which contributes to the selection of stable core gut bacteria as biological carriers of paratransgenesis for controlling Blattella germanica.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Xiaoyuan Pan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | - Yanhong Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, 41 Jiefang Road, People's Republic of China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| |
Collapse
|
23
|
Bridges CM, Gage DJ. Development and application of aerobic, chemically defined media for Dysgonomonas. Anaerobe 2020; 67:102302. [PMID: 33271360 DOI: 10.1016/j.anaerobe.2020.102302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 12/25/2022]
Abstract
Members of Dysgonomonas are Gram-stain-negative, non-motile, facultatively anaerobic coccobacilli originally described in relation to their isolation from stool and wounds of human patients (CDC group DF-3). More recently, Dysgonomonas have been found to be widely distributed in terrestrial environments and are particularly enriched in insect systems. Their prevalence in xylophagous insects such as termites and wood-feeding cockroaches, as well as in soil-fed microbial fuel cells, elicit interest in lignocellulose degradation and biofuel production, respectively. Their occurrence in mosquito and fruit fly have implications relating to symbiosis, host immunology and developmental biology. Additionally, their presence in termite, mosquito and nematode present novel opportunities for pest and vector control. Currently, the absolute growth requirements of Dysgonomonas are unknown, and they are commonly cultured under anaerobic conditions on complex media containing blood, peptones, tryptones, and yeast, plant or meat extracts. Restrictive and undefined culturing conditions preclude physiological and genetic studies, and thus further understanding of their metabolic potential. Here we describe the requirements for growth of termite-derived Dysgonomonas isolates and create parallel complex, defined and minimal media that permit vigorous and reliable aerobic growth. Furthermore, we show that these media can be used to easily enrich for Dysgonomonas isolates from densely-colonized and microbially-diverse environmental samples.
Collapse
Affiliation(s)
- Charles M Bridges
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Daniel J Gage
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
24
|
Zhuang W, Yu X, Hu R, Luo Z, Liu X, Zheng X, Xiao F, Peng Y, He Q, Tian Y, Yang T, Wang S, Shu L, Yan Q, Wang C, He Z. Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. NPJ Biofilms Microbiomes 2020; 6:52. [PMID: 33184266 PMCID: PMC7665043 DOI: 10.1038/s41522-020-00164-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Mangrove roots harbor a repertoire of microbial taxa that contribute to important ecological functions in mangrove ecosystems. However, the diversity, function, and assembly of mangrove root-associated microbial communities along a continuous fine-scale niche remain elusive. Here, we applied amplicon and metagenome sequencing to investigate the bacterial and fungal communities among four compartments (nonrhizosphere, rhizosphere, episphere, and endosphere) of mangrove roots. We found different distribution patterns for both bacterial and fungal communities in all four root compartments, which could be largely due to niche differentiation along the root compartments and exudation effects of mangrove roots. The functional pattern for bacterial and fungal communities was also divergent within the compartments. The endosphere harbored more genes involved in carbohydrate metabolism, lipid transport, and methane production, and fewer genes were found to be involved in sulfur reduction compared to other compartments. The dynamics of root-associated microbial communities revealed that 56-74% of endosphere bacterial taxa were derived from nonrhizosphere, whereas no fungal OTUs of nonrhizosphere were detected in the endosphere. This indicates that roots may play a more strictly selective role in the assembly of the fungal community compared to the endosphere bacterial community, which is consistent with the projections established in an amplification-selection model. This study reveals the divergence in the diversity and function of root-associated microbial communities along a continuous fine-scale niche, thereby highlighting a strictly selective role of soil-root interfaces in shaping the fungal community structure in the mangrove root systems.
Collapse
Affiliation(s)
- Wei Zhuang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3×2, Canada
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China.
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), South China Sea Institution, Sun Yat-sen University, 510006, Guangzhou, China.
- College of Agronomy, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
25
|
Lee S, Kim JY, Yi MH, Lee IY, Lee WJ, Moon HS, Yong D, Yong TS. Comparative Microbiome Analysis of Three Species of Laboratory-Reared Periplaneta Cockroaches. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:537-542. [PMID: 33202505 PMCID: PMC7672242 DOI: 10.3347/kjp.2020.58.5.537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
Cockroaches inhabit various habitats, which will influence their microbiome. Although the microbiome can be influenced by the diet and environmental factors, it can also differ between species. Therefore, we conducted 16S rDNA-targeted high-throughput sequencing to evaluate the overall bacterial composition of the microbiomes of 3 cockroach species, Periplaneta americana, P. japonica, and P. fuliginosa, raised in laboratory for several generations under the same conditions. The experiments were conducted using male adult cockroaches. The number of operational taxonomic units (OTUs) was not significantly different among the 3 species. With regard to the Shannon and Pielou indexes, higher microbiome values were noted in P. americana than in P. japonica and P. fuliginosa. Microbiome composition was also evaluated, with endosymbionts accounting for over half of all OTUs in P. japonica and P. fuliginosa. Beta diversity analysis further showed that P. japonica and P. fuliginosa had similar microbiome composition, which differed from that of P. americana. However, we also identified that P. japonica and P. fuliginosa host distinct OTUs. Thus, although microbiome compositions may vary based on multiple conditions, it is possible to identify distinct microbiome compositions among different Periplaneta cockroach species, even when the individuals are reared under the same conditions.
Collapse
Affiliation(s)
- Seogwon Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In-Yong Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won-Ja Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hye Su Moon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
26
|
Martinson VG. Rediscovering a Forgotten System of Symbiosis: Historical Perspective and Future Potential. Genes (Basel) 2020; 11:E1063. [PMID: 32916942 PMCID: PMC7563122 DOI: 10.3390/genes11091063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
While the majority of symbiosis research is focused on bacteria, microbial eukaryotes play important roles in the microbiota and as pathogens, especially the incredibly diverse Fungi kingdom. The recent emergence of widespread pathogens in wildlife (bats, amphibians, snakes) and multidrug-resistant opportunists in human populations (Candida auris) has highlighted the importance of better understanding animal-fungus interactions. Regardless of their prominence there are few animal-fungus symbiosis models, but modern technological advances are allowing researchers to utilize novel organisms and systems. Here, I review a forgotten system of animal-fungus interactions: the beetle-fungus symbioses of Drugstore and Cigarette beetles with their symbiont Symbiotaphrina. As pioneering systems for the study of mutualistic symbioses, they were heavily researched between 1920 and 1970, but have received only sporadic attention in the past 40 years. Several features make them unique research organisms, including (1) the symbiont is both extracellular and intracellular during the life cycle of the host, and (2) both beetle and fungus can be cultured in isolation. Specifically, fungal symbionts intracellularly infect cells in the larval and adult beetle gut, while accessory glands in adult females harbor extracellular fungi. In this way, research on the microbiota, pathogenesis/infection, and mutualism can be performed. Furthermore, these beetles are economically important stored-product pests found worldwide. In addition to providing a historical perspective of the research undertaken and an overview of beetle biology and their symbiosis with Symbiotaphrina, I performed two analyses on publicly available genomic data. First, in a preliminary comparative genomic analysis of the fungal symbionts, I found striking differences in the pathways for the biosynthesis of two B vitamins important for the host beetle, thiamine and biotin. Second, I estimated the most recent common ancestor for Drugstore and Cigarette beetles at 8.8-13.5 Mya using sequence divergence (CO1 gene). Together, these analyses demonstrate that modern methods and data (genomics, transcriptomes, etc.) have great potential to transform these beetle-fungus systems into model systems again.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
27
|
Jahnes BC, Sabree ZL. Nutritional symbiosis and ecology of host-gut microbe systems in the Blattodea. CURRENT OPINION IN INSECT SCIENCE 2020; 39:35-41. [PMID: 32109859 DOI: 10.1016/j.cois.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Cockroaches and termites (Order: Blattodea) have been the subject of substantial research attention for over a century due, in part, to a subset of them having a strong propensity to cohabitate with humans and their structures. Recent research has led to numerous insights into their behavior, physiology, and ecology, as well as their ability to harbor taxonomically diverse microbial communities within their digestive systems, which include taxa that contribute to host growth and development. Further, recent investigations into the physiological and behavioral adaptations that enable recalcitrant polysaccharide digestion and the maintenance of microbial symbionts in cockroaches and termites suggests that symbionts contribute significantly to nutrient provisioning and processing.
Collapse
Affiliation(s)
- Benjamin C Jahnes
- Department of Microbiology, Ohio State University, 105 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Zakee L Sabree
- Department of Microbiology, Ohio State University, 105 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA; Department of Evolution, Ecology and Organismal Biology, Ohio State University, 300 Aronoff Laboratory, 318 W. 12th Avenue, Columbus OH, 43210, USA.
| |
Collapse
|
28
|
The role of host molecules in communication with the resident and pathogenic microbiota: A review. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Kohl KD. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190251. [PMID: 32200746 PMCID: PMC7133527 DOI: 10.1098/rstb.2019.0251] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phylosymbiosis, where similarities in host-associated microbial communities recapitulate the phylogeny of their hosts, is a newly recognized yet pervasive pattern in the field of host-microbe interactions. While phylosymbiosis has been documented across many systems, we still have a poor understanding of the mechanisms that underlie this emergent pattern. Host selection of the microbiome is a widely cited mechanism, yet other basic ecological and evolutionary processes (dispersal, drift and diversification) may also be at play. This paper discusses the roles that each of these processes and their interactions may play in yielding phylosymbiotic signals across hosts. Finally, this paper will identify open questions and methods that are required to better understand the relative contributions of these basic processes to phylosymbiosis. Given that phylosymbiosis has been shown to relate to functional components of host fitness, understanding the processes that contribute to these patterns will be important for our understanding of the ecology and evolution of host-microbe interactions. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
30
|
Domínguez-Santos R, Pérez-Cobas AE, Artacho A, Castro JA, Talón I, Moya A, García-Ferris C, Latorre A. Unraveling Assemblage, Functions and Stability of the Gut Microbiota of Blattella germanica by Antibiotic Treatment. Front Microbiol 2020; 11:487. [PMID: 32269557 PMCID: PMC7109288 DOI: 10.3389/fmicb.2020.00487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/05/2020] [Indexed: 01/19/2023] Open
Abstract
Symbiosis between prokaryotes and eukaryotes is a widespread phenomenon that has contributed to the evolution of eukaryotes. In cockroaches, two types of symbionts coexist: an endosymbiont in the fat body (Blattabacterium), and a rich gut microbiota. The transmission mode of Blattabacterium is vertical, while the gut microbiota of a new generation is mainly formed by bacterial species present in feces. We have carried out a metagenomic analysis of Blattella germanica populations, treated and non-treated with two antibiotics (vancomycin and ampicillin) over two generations to (1) determine the core of bacterial communities and potential functions of the gut microbiota and (2) to gain insights into the mechanisms of resistance and resilience of the gut microbiota. Our results indicate that the composition and functions of the bacteria were affected by treatment, more severely in the case of vancomycin. Further results demonstrated that in an untreated second-generation population that comes from antibiotic-treated first-generation, the microbiota is not yet stabilized at nymphal stages but can fully recover in adults when feces of a control population were added to the diet. This signifies the existence of a stable core in either composition and functions in lab-reared populations. The high microbiota diversity as well as the observed functional redundancy point toward the microbiota of cockroach hindguts as a robust ecosystem that can recover from perturbations, with recovery being faster when feces are added to the diet.
Collapse
Affiliation(s)
| | - Ana Elena Pérez-Cobas
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Alejandro Artacho
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| | - José A. Castro
- Unit of Genetics, Department of Biology, University of the Balearic Islands, Palma, Spain
| | - Irene Talón
- Institute for Integrative Systems Biology, University of Valencia and CSIC, Valencia, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology, University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology, University of Valencia and CSIC, Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology, University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| |
Collapse
|
31
|
Greyson-Gaito CJ, Bartley TJ, Cottenie K, Jarvis WMC, Newman AEM, Stothart MR. Into the wild: microbiome transplant studies need broader ecological reality. Proc Biol Sci 2020; 287:20192834. [PMID: 32097591 PMCID: PMC7062022 DOI: 10.1098/rspb.2019.2834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 01/04/2023] Open
Abstract
Gut microbial communities (microbiomes) profoundly shape the ecology and evolution of multicellular life. Interactions between host and microbiome appear to be reciprocal, and ecological theory is now being applied to better understand how hosts and their microbiome influence each other. However, some ecological processes that underlie reciprocal host-microbiome interactions may be obscured by the current convention of highly controlled transplantation experiments. Although these approaches have yielded invaluable insights, there is a need for a broader array of approaches to fully understand host-microbiome reciprocity. Using a directed review, we surveyed the breadth of ecological reality in the current literature on gut microbiome transplants with non-human recipients. For 55 studies, we categorized nine key experimental conditions that impact the ecological reality (EcoReality) of the transplant, including host taxon match and donor environment. Using these categories, we rated the EcoReality of each transplant. Encouragingly, the breadth of EcoReality has increased over time, but some components of EcoReality are still relatively unexplored, including recipient host environment and microbiome state. The conceptual framework we develop here maps the landscape of possible EcoReality to highlight where fundamental ecological processes can be considered in future transplant experiments.
Collapse
Affiliation(s)
| | - Timothy J. Bartley
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Karl Cottenie
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Will M. C. Jarvis
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Amy E. M. Newman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mason R. Stothart
- Department of Ecosystem and Public Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Nalepa CA. Origin of Mutualism Between Termites and Flagellated Gut Protists: Transition From Horizontal to Vertical Transmission. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Lampert N, Mikaelyan A, Brune A. Diet is not the primary driver of bacterial community structure in the gut of litter-feeding cockroaches. BMC Microbiol 2019; 19:238. [PMID: 31666028 PMCID: PMC6864750 DOI: 10.1186/s12866-019-1601-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diet is a major determinant of bacterial community structure in termite guts, but evidence of its importance in the closely related cockroaches is conflicting. Here, we investigated the ecological drivers of the bacterial gut microbiota in cockroaches that feed on lignocellulosic leaf litter. RESULTS The physicochemical conditions determined with microsensors in the guts of Ergaula capucina, Pycnoscelus surinamensis, and Byrsotria rothi were similar to those reported for both wood-feeding and omnivorous cockroaches. All gut compartments were anoxic at the center and showed a slightly acidic to neutral pH and variable but slightly reducing conditions. Hydrogen accumulated only in the crop of B. rothi. High-throughput amplicon sequencing of bacterial 16S rRNA genes documented that community structure in individual gut compartments correlated strongly with the respective microenvironmental conditions. A comparison of the hindgut microbiota of cockroaches and termites from different feeding groups revealed that the vast majority of the core taxa in cockroaches with a lignocellulosic diet were present also in omnivorous cockroaches but absent in wood-feeding higher termites. CONCLUSION Our results indicate that diet is not the primary driver of bacterial community structure in the gut of wood- and litter-feeding cockroaches. The high similarity to the gut microbiota of omnivorous cockroaches suggests that the dietary components that are actually digested do not differ fundamentally between feeding groups.
Collapse
Affiliation(s)
- Niclas Lampert
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Aram Mikaelyan
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.,Present Address: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
34
|
Jahnes BC, Herrmann M, Sabree ZL. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 2019; 7:e6914. [PMID: 31139506 PMCID: PMC6521811 DOI: 10.7717/peerj.6914] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Microbial assemblages residing within and on animal gastric tissues contribute to various host beneficial processes that include diet accessibility and nutrient provisioning, and we sought to examine the degree to which intergenerational and community-acquired gut bacteria impact development in a tractable germ-free (GF) invertebrate model system. Coprophagy is a common behavior in cockroaches and termites that provides access to both nutrients and the primary means by which juveniles are inoculated with beneficial gut bacteria. This hypothesis was tested in the American cockroach (Periplaneta americana) by interfering with this means of acquiring gut bacteria, which resulted in GF insects that exhibited prolonged growth rates and gut tissue dysmorphias relative to wild-type (WT) P. americana. Conventionalization of GF P. americana via consumption of frass (feces) from conspecifics and siblings reared under non-sterile conditions resulted in colonization of P. americana gut tissues by a diverse microbial community and a significant (p < 0.05) recovery of WT level growth and hindgut tissue development phenotypes. These data suggest that coprophagy is essential for normal gut tissue and organismal development by introducing beneficial gut bacteria to P. americana, and that the GF P. americana model system is a useful system for examining how gut bacteria impact host outcomes.
Collapse
Affiliation(s)
- Benjamin C Jahnes
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Madeline Herrmann
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 2019; 9:2792. [PMID: 30808905 PMCID: PMC6391413 DOI: 10.1038/s41598-019-39163-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Symbioses between insects and microbes are ubiquitous, but vary greatly in terms of function, transmission mechanism, and location in the insect. Lepidoptera (butterflies and moths) are one of the largest and most economically important insect orders; yet, in many cases, the ecology and functions of their gut microbiomes are unresolved. We used high-throughput sequencing to determine factors that influence gut microbiomes of field-collected fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Fall armyworm midgut bacterial communities differed from those of corn earworm collected from the same host plant species at the same site. However, corn earworm bacterial communities differed between collection sites. Subsequent experiments using fall armyworm evaluating the influence of egg source and diet indicated that that host plant had a greater impact on gut communities. We also observed differences between regurgitant (foregut) and midgut bacterial communities of the same insect host, suggesting differential colonization. Our findings indicate that host plant is a major driver shaping gut microbiota, but differences in insect physiology, gut region, and local factors can also contribute to variation in microbiomes. Additional studies are needed to assess the mechanisms that affect variation in insect microbiomes, as well as the ecological implications of this variability in caterpillars.
Collapse
Affiliation(s)
- Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
36
|
Tinker KA, Ottesen EA. The hindgut microbiota of praying mantids is highly variable and includes both prey-associated and host-specific microbes. PLoS One 2018; 13:e0208917. [PMID: 30533025 PMCID: PMC6289422 DOI: 10.1371/journal.pone.0208917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023] Open
Abstract
Praying mantids are predators that consume a wide variety of insects. While the gut microbiome of carnivorous mammals is distinct from that of omnivores and herbivores, the role of the gut microbiome among predatory insects is relatively understudied. Praying mantids are the closest known relatives to termites and cockroaches, which are known for their diverse gut microbiota. However, little is known about the mantid gut microbiota or their importance to host health. In this work, we report the results of a 16S rRNA gene-based study of gut microbiome composition in adults and late-instar larvae of three mantid species. We found that the praying mantis gut microbiome exhibits substantial variation in bacterial diversity and community composition. The hindgut of praying mantids were often dominated by microbes that are present in low abundance or not found in the guts of their insect prey. Future studies will explore the role of these microbes in the digestion of the dietary substrates and/or the degradation of toxins produced by their insect prey.
Collapse
Affiliation(s)
- Kara A. Tinker
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth A. Ottesen
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Wang C, Zhou Y, Lv D, Ge Y, Li H, You Y. Change in the intestinal bacterial community structure associated with environmental microorganisms during the growth of Eriocheir sinensis. Microbiologyopen 2018; 8:e00727. [PMID: 30311433 PMCID: PMC6528601 DOI: 10.1002/mbo3.727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
As an important organ to maintain the host's homeostasis, intestinal microbes play an important role in development of the organism. In contrast to those of terrestrial animals, the intestinal microbes of aquatic organisms are affected by environmental microorganisms (including water microorganisms and sediment microorganisms). In the present study, the compositional differences of intestinal microbes in three representative developmental stages of the Chinese mitten crab (Eriocheir sinensis) were studied. Meanwhile, network association analysis, and visualization of the water microorganisms of the crabs’ habitat, the environment microorganisms in the pond, and the intestinal microbes, was carried out. The results showed that the gut microbiota diversity index decreased continuously with age, and the four bacteria of Aeromonas (Proteobacteria), Defluviitaleaceae (Firmicutes), Candidatus Bacilloplasma (Tenericutes), and Dysgonomonas (Bacteroidetes) were the “indigenous” flora of the crab. In the network‐related analysis with the environment, we found that as the culture time increased, the effect of environmental microorganisms on the intestinal microbes of crabs gradually decreased, and the four “indigenous” bacteria were always unaffected by the environmental microorganisms. The results of this study identified the core bacteria of the crab and, for the first time, studied the relationship between intestinal environmental microorganisms, which will aid the practical production of crabs and will promote research into the relationship between specific bacteria and the physiological metabolism of crabs.
Collapse
Affiliation(s)
- Chenhe Wang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Yanfeng Zhou
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Dawei Lv
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - You Ge
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Huan Li
- Nextomics Biosciences Co., Ltd, Wuhan, China
| | - Yang You
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China.,Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| |
Collapse
|
38
|
Inagaki T, Matsuura K. Extended mutualism between termites and gut microbes: nutritional symbionts contribute to nest hygiene. Naturwissenschaften 2018; 105:52. [DOI: 10.1007/s00114-018-1580-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023]
|
39
|
Overlapping Community Compositions of Gut and Fecal Microbiomes in Lab-Reared and Field-Collected German Cockroaches. Appl Environ Microbiol 2018; 84:AEM.01037-18. [PMID: 29959246 PMCID: PMC6102980 DOI: 10.1128/aem.01037-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
German cockroaches, Blattella germanica (Blattodea: Ectobiidae), are human commensals that move freely between food and waste, disseminating bacteria, including potential pathogens, through their feces. However, the relationship between the microbial communities of the cockroach gut and feces is poorly understood. We analyzed the V4 region of the 16S rRNA gene and the V9 region of the 18S rRNA gene by next-generation sequencing (NGS) to compare the bacterial and protist diversities in guts versus feces and males versus females, as well as assess variation across cockroach populations. Cockroaches harbored a diverse array of bacteria, and 80 to 90% of the operational taxonomic units (OTUs) were shared between the feces and gut. Lab-reared and field-collected cockroaches had distinct microbiota, and whereas lab-reared cockroaches had relatively conserved communities, considerable variation was observed in the microbial community composition of cockroaches collected in different apartments. Nonetheless, cockroaches from all locations shared some core bacterial taxa. The eukaryotic community in the feces of field-collected cockroaches was found to be more diverse than that in lab-reared cockroaches. These results demonstrate that cockroaches disseminate their gut microbiome in their feces, and they underscore the important contribution of the cockroach fecal microbiome to the microbial diversity of cockroach-infested homes.IMPORTANCE The German cockroach infests diverse human-built structures, including homes and hospitals. It produces potent allergens that trigger asthma and disseminates opportunistic pathogens in its feces. A comprehensive understanding of gut and fecal microbial communities of cockroaches is essential not only to understand their contribution to the biology of the cockroach, but also for exploring their clinical relevance. In this study, we compare the diversity of bacteria and eukaryotes in the cockroach gut and feces and assess the variation in the gut microbiota across cockroach populations.
Collapse
|
40
|
Onchuru TO, Javier Martinez A, Ingham CS, Kaltenpoth M. Transmission of mutualistic bacteria in social and gregarious insects. CURRENT OPINION IN INSECT SCIENCE 2018; 28:50-58. [PMID: 30551767 DOI: 10.1016/j.cois.2018.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 05/09/2023]
Abstract
Symbiotic microbes can confer a range of benefits to social, sub-social, and gregarious insects that include contributions to nutrition, digestion, and defense. Transmission of beneficial symbionts to the next generation in these insects sometimes occurs transovarially as in many solitary insects, but primarily through social contact such as coprophagy in gregarious taxa, and trophallaxis in eusocial insects. While these behaviors benefit reliable transmission of multi-microbial assemblages, they may also come at the cost of inviting the spread of parasites and pathogens. Nonetheless, the overall benefit of social symbiont transmission may be one of several important factors that reinforce the evolution of social behaviors and insect eusociality.
Collapse
Affiliation(s)
- Thomas Ogao Onchuru
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Adam Javier Martinez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Chantal Selina Ingham
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany.
| |
Collapse
|
41
|
Rosas T, García-Ferris C, Domínguez-Santos R, Llop P, Latorre A, Moya A. Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiol Ecol 2018; 94:4794938. [DOI: 10.1093/femsec/fiy002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023] Open
|
42
|
Näpflin K, Schmid-Hempel P. Host effects on microbiota community assembly. J Anim Ecol 2017; 87:331-340. [DOI: 10.1111/1365-2656.12768] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Kathrin Näpflin
- Institute of Integrative Biology (IBZ); ETH Zurich; Zurich Switzerland
| | | |
Collapse
|
43
|
Brune A. Co-evolution of marine worms and their chemoautotrophic bacterial symbionts: unexpected host switches explained by ecological fitting? Mol Ecol 2017; 25:2964-6. [PMID: 27373707 DOI: 10.1111/mec.13688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
Abstract
Mutualistic associations of bacteria and invertebrates are widespread and encompass an enormous diversity on the side of both partners. The advantages gained from the symbiosis favour reciprocal adaptations that increase the stability of the association and can lead to codiversification of symbiont and host. While numerous examples of a strictly vertical transfer of the symbionts from parent to offspring among intracellular associations abound, little is known about the fidelity of the partners in extracellular associations, where symbionts colonize the surface or body cavity of their host. In this issue of Molecular Ecology, Zimmermann et al. () investigated the evolutionary history of the symbiotic association between a monophyletic clade of sulphur-oxidizing Gammaproteobacteria and two distantly related lineages of marine worms (nematodes and annelids). The study supports the surprising conclusion that partner fidelity does not necessarily increase with the intimacy of the association. Ectosymbionts on the cuticle of the nematodes seem to be cospeciating with their hosts, whereas endosymbionts housed in the body cavity of the annelids must have originated multiple times, probably by host switching, from ectosymbionts of sympatric nematodes. This excellent case study on the evolutionary history of invertebrate-microbe interactions supports the emerging concept that the co-evolutionary processes shaping such mutualistic symbioses include both codiversification and ecological fitting.
Collapse
Affiliation(s)
- A Brune
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| |
Collapse
|
44
|
Richards C, Otani S, Mikaelyan A, Poulsen M. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites. PLoS One 2017; 12:e0185745. [PMID: 28973021 PMCID: PMC5626473 DOI: 10.1371/journal.pone.0185745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
The gut microbiotas of cockroaches and termites play important roles in the symbiotic digestion of dietary components, such as lignocellulose. Diet has been proposed as a primary determinant of community structure within the gut, acting as a selection force to shape the diversity observed within this “bioreactor”, and as a key factor for the divergence of the termite gut microbiota from the omnivorous cockroach ancestor. The gut microbiota in most termites supports primarily the breakdown of lignocellulose, but the fungus-farming sub-family of higher termites has become similar in gut microbiota to the ancestral omnivorous cockroaches. To assess the importance of a fungus diet as a driver of community structure, we compare community compositions in the guts of experimentally manipulated Pycnoscelus surinamensis cockroaches fed on fungus cultivated by fungus-farming termites. MiSeq amplicon analysis of gut microbiotas from 49 gut samples showed a step-wise gradient pattern in community similarity that correlated with an increase in the proportion of fungal material provided to the cockroaches. Comparison of the taxonomic composition of manipulated communities to that of gut communities of a fungus-feeding termite species showed that although some bacteria OTUs shared by P. surinamensis and the farming termites increased in the guts of cockroaches on a fungal diet, cockroach communities remained distinct from those of termites. These results demonstrate that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions constrain the magnitude of such change.
Collapse
Affiliation(s)
- Callum Richards
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - Saria Otani
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - Aram Mikaelyan
- Department of Biological Sciences, Vanderbilt University, VU Station B, Nashville, TN, United States of America
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, VU Station B, Nashville, TN, United States of America
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
- * E-mail:
| |
Collapse
|
45
|
Degli Esposti M, Martinez Romero E. The functional microbiome of arthropods. PLoS One 2017; 12:e0176573. [PMID: 28475624 PMCID: PMC5419562 DOI: 10.1371/journal.pone.0176573] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods' microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods' microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genoa, Italy
- Center for Genomic Sciences, UNAM Campus of Cuernavaca, Cuernavaca, Morelos, Mexico
- * E-mail:
| | | |
Collapse
|
46
|
Martinson VG, Douglas AE, Jaenike J. Community structure of the gut microbiota in sympatric species of wild Drosophila. Ecol Lett 2017; 20:629-639. [PMID: 28371064 DOI: 10.1111/ele.12761] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 12/21/2022]
Abstract
Many aspects of animal ecology and physiology are influenced by the microbial communities within them. The underlying forces contributing to the assembly and diversity of gut microbiotas include chance events, host-based selection and interactions among microorganisms within these communities. We surveyed 215 wild individuals from four sympatric species of Drosophila that share a common diet of decaying mushrooms. Their microbiotas consistently contained abundant bacteria that were undetectable or at low abundance in their diet. Despite their deep phylogenetic divergence, all species had similar microbiotas, thus failing to support predictions of the phylosymbiosis hypothesis. Communities within flies were not random assemblages drawn from a common pool; instead, many bacterial operational taxonomic units (OTUs) were overrepresented or underrepresented relative to the neutral expectations, and OTUs exhibited checkerboard distributions among flies. These results suggest that selective factors play an important role in shaping the gut community structure of these flies.
Collapse
Affiliation(s)
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14627, USA
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
47
|
Mikaelyan A, Meuser K, Brune A. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 2016; 93:fiw210. [PMID: 27798065 DOI: 10.1093/femsec/fiw210] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 11/13/2022] Open
Abstract
Symbiotic digestion of lignocellulose in higher termites (family Termitidae) is accomplished by an exclusively prokaryotic gut microbiota. By deep sequencing of amplified 16S rRNA genes, we had identified diet as the primary determinant of bacterial community structure in a broad selection of termites specialized on lignocellulose in different stages of humification. Here, we increased the resolution of our approach to account for the pronounced heterogeneity in microenvironmental conditions and microbial activities in the major hindgut compartments. The community structure of consecutive gut compartments in each species strongly differed, but that of homologous compartments clearly converged, even among unrelated termites. While the alkaline P1 compartments of all termites investigated contained specific lineages of Clostridiales, the posterior hindgut compartments (P3, P4) differed between feeding groups and were predominantly colonized by putatively fiber-associated lineages of Spirochaetes, Fibrobacteres and the TG3 phylum (wood and grass feeders) or diverse assemblages of Clostridiales and Bacteroidetes (humus and soil feeders). The results underscore that bacterial community structure in termite guts is driven by microenvironmental factors, such as pH, available substrates and gradients of O2 and H2, and inspire investigations on the functional roles of specific bacterial taxa in lignocellulose and humus digestion.
Collapse
Affiliation(s)
- Aram Mikaelyan
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Katja Meuser
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
48
|
Vicente CSL, Ozawa S, Hasegawa K. Composition of the Cockroach Gut Microbiome in the Presence of Parasitic Nematodes. Microbes Environ 2016; 31:314-20. [PMID: 27524304 PMCID: PMC5017809 DOI: 10.1264/jsme2.me16088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/28/2016] [Indexed: 11/12/2022] Open
Abstract
Cockroaches are parasitized by thelastomatid nematodes, which live in an obligate manner in their hindgut and interact with the resident microbial community. In the present study, a composition analysis was performed on the gut microbiome of Periplaneta fuliginosa and P. americana to investigate natural and artificial infection by thelastomatid nematodes. Nine libraries of the 16S rRNA gene V3-V4 region were prepared for pyrosequencing. We examined the complete gut microbiome (fore-, mid-, and hindgut) of lab-reared P. fuliginosa naturally infected with the parasitic nematode Leidynema appendiculatum and those that were nematode-free, and complemented our study by characterizing the hindgut microbial communities of lab-reared P. americana naturally infected with Hammerschmidtiella diesingi and Thelastoma bulhoesi, artificially infected with L. appendiculatum, and those that were nematode-free. Our results revealed that the fore- and midgut of naturally infected and nematode-free P. fuliginosa have close microbial communities, which is in contrast with hindgut communities; the hindgut communities of both cockroaches exhibit higher microbial diversities in the presence of their natural parasites and marked differences were observed in the abundance of the most representative taxa, namely Firmicutes, Proteobacteria, and Bacteroidetes. Our results have provided basic information and encourage further studies on multitrophic interactions in the cockroach gut as well as the thelastomatid nematodes that play a role in this environment.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University1200 Matsumoto, Kasugai, Aichi 487–8501Japan
- NemaLab/ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de ÉvoraNúcleo da Mitra, Ap. 94, 7002–554 ÉvoraPortugal
| | - Sota Ozawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University1200 Matsumoto, Kasugai, Aichi 487–8501Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University1200 Matsumoto, Kasugai, Aichi 487–8501Japan
| |
Collapse
|