1
|
Chiarelli DP, Sharma BD, Hon S, Bergamo LW, Lynd LR, Olson DG. Expression and characterization of monofunctional alcohol dehydrogenase enzymes in Clostridium thermocellum. Metab Eng Commun 2024; 19:e00243. [PMID: 39040142 PMCID: PMC11260334 DOI: 10.1016/j.mec.2024.e00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Clostridium thermocellum is a thermophilic anaerobic bacterium that could be used for cellulosic biofuel production due to its strong native ability to consume cellulose, however its ethanol production ability needs to be improved to enable commercial application. In our previous strain engineering work, we observed a spontaneous mutation in the native adhE gene that reduced ethanol production. Here we attempted to complement this mutation by heterologous expression of 18 different alcohol dehydrogenase (adh) genes. We were able to express all of them successfully in C. thermocellum. Surprisingly, however, none of them increased ethanol production, and several actually decreased it. Our findings contribute to understanding the correlation between C. thermocellum ethanol production and Adh enzyme cofactor preferences. The identification of a set of adh genes that can be successfully expressed in this organism provides a foundation for future investigations into how the properties of Adh enzymes affect ethanol production.
Collapse
Affiliation(s)
- Daniela Prates Chiarelli
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Programa de Pós-Graduação Em Genética e Biologia Molecular, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bishal Dev Sharma
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luana Walravens Bergamo
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Programa de Pós-Graduação Em Genética e Biologia Molecular, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lee R. Lynd
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel G. Olson
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
2
|
Jilani SB, Alahuhta M, Bomble YJ, Olson DG. Cell-Free Systems Biology: Characterizing Central Metabolism of Clostridium thermocellum with a Three-Enzyme Cascade Reaction. ACS Synth Biol 2024. [PMID: 39387698 DOI: 10.1021/acssynbio.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Genetic approaches have been traditionally used to understand microbial metabolism, but this process can be slow in nonmodel organisms due to limited genetic tools. An alternative approach is to study metabolism directly in the cell lysate. This avoids the need for genetic tools and is routinely used to study individual enzymatic reactions but is not generally used to study systems-level properties of metabolism. Here we demonstrate a new approach that we call "cell-free systems biology", where we use well-characterized enzymes and multienzyme cascades to serve as sources or sinks of intermediate metabolites. This allows us to isolate subnetworks within metabolism and study their systems-level properties. To demonstrate this, we worked with a three-enzyme cascade reaction that converts pyruvate to 2,3-butanediol. Although it has been previously used in cell-free systems, its pH dependence was not well characterized, limiting its utility as a sink for pyruvate. We showed that improved proton accounting allowed better prediction of pH changes and that active pH control allowed 2,3-butanediol titers of up to 2.1 M (189 g/L) from acetoin and 1.6 M (144 g/L) from pyruvate. The improved proton accounting provided a crucial insight that preventing the escape of CO2 from the system largely eliminated the need for active pH control, dramatically simplifying our experimental setup. We then used this cascade reaction to understand limits to product formation in Clostridium thermocellum, an organism with potential applications for cellulosic biofuel production. We showed that the fate of pyruvate is largely controlled by electron availability and that reactions upstream of pyruvate limit overall product formation.
Collapse
Affiliation(s)
- S Bilal Jilani
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Markus Alahuhta
- National Renewable Energy Laboratory, Biosciences Center, Golden, Colorado 80401, United States
| | - Yannick J Bomble
- National Renewable Energy Laboratory, Biosciences Center, Golden, Colorado 80401, United States
| | - Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Koendjbiharie JG, Kuil T, Nurminen CMK, van Maris AJA. The 6-phosphofructokinase reaction in Acetivibrio thermocellus is both ATP- and pyrophosphate-dependent. Metab Eng 2024; 86:41-54. [PMID: 39245400 DOI: 10.1016/j.ymben.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Acetivibrio thermocellus (formerly Clostridium thermocellum) is a potential platform for lignocellulosic ethanol production. Its industrial application is hampered by low product titres, resulting from a low thermodynamic driving force of its central metabolism. It possesses both a functional ATP- and a functional PPi-dependent 6-phosphofructokinase (PPi-Pfk), of which only the latter is held responsible for the low driving force. Here we show that, following the replacement of PPi-Pfk by cytosolic pyrophosphatase and transaldolase, the native ATP-Pfk is able to carry the full glycolytic flux. Interestingly, the barely-detectable in vitro ATP-Pfk activities are only a fraction of what would be required, indicating its contribution to glycolysis has consistently been underestimated. A kinetic model demonstrated that the strong inhibition of ATP-Pfk by PPi can prevent futile cycling that would arise when both enzymes are active simultaneously. As such, there seems to be no need for a long-sought-after PPi-generating mechanism to drive glycolysis, as PPi-Pfk can simply use whatever PPi is available, and ATP-Pfk complements the rest of the PFK-flux. Laboratory evolution of the ΔPPi-Pfk strain, unable to valorize PPi, resulted in a mutation in the GreA transcription elongation factor. This mutation likely results in reduced RNA-turnover, hinting at transcription as a significant (and underestimated) source of anabolic PPi. Together with other mutations, this resulted in an A. thermocellus strain with the hitherto highest biomass-specific cellobiose uptake rate of 2.2 g/gx/h. These findings are both relevant for fundamental insight into dual ATP/PPi Pfk-nodes, which are not uncommon in other microorganisms, as well as for further engineering of A. thermocellus for consolidated bioprocessing.
Collapse
Affiliation(s)
- Jeroen G Koendjbiharie
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Carolus M K Nurminen
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
4
|
Daley SR, Kirby S, Sparling R. Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles. Can J Microbiol 2024; 70:370-383. [PMID: 38832648 DOI: 10.1139/cjm-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Consolidated bioprocessing candidate, Clostridium thermocellum, is a cellulose hydrolysis specialist, with the ability to ferment the released sugars to produce bioethanol. C. thermocellum is generally studied with model substrates Avicel and cellobiose to understand the metabolic pathway leading to ethanol. In the present study, adaptive laboratory evolution, allowing C. thermocellum DSM 1237 to adapt to growth on glucose, fructose, and sorbitol, with the prospect that some strains will adapt their metabolism to yield more ethanol. Adaptive growth on glucose and sorbitol resulted in an approximately 1 mM and 2 mM increase in ethanol yield per millimolar glucose equivalent, respectively, accompanied by a shift in the production of the other expected fermentation end products. The increase in ethanol yield observed for sorbitol adapted cells was due to the carbon source being more reduced compared to cellobiose. Glucose and cellobiose have similar oxidation states thus the increase in ethanol yield is due to the rerouting of electrons from other reduced metabolic products excluding H2 which did not decrease in yield. There was no increase in ethanol yield observed for fructose adapted cells, but there was an unanticipated elimination of formate production, also observed in sorbitol adapted cells suggesting that fructose has regulatory implications on formate production either at the transcription or protein level.
Collapse
Affiliation(s)
- Steve R Daley
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Samantha Kirby
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
6
|
Pech-Canul A, Hammer SK, Ziegler SJ, Richardson ID, Sharma BD, Maloney MI, Bomble YJ, Lynd LR, Olson DG. The role of AdhE on ethanol tolerance and production in Clostridium thermocellum. J Biol Chem 2024; 300:107559. [PMID: 39002679 PMCID: PMC11365378 DOI: 10.1016/j.jbc.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Many anaerobic microorganisms use the bifunctional aldehyde and alcohol dehydrogenase enzyme, AdhE, to produce ethanol. One such organism is Clostridium thermocellum, which is of interest for cellulosic biofuel production. In the course of engineering this organism for improved ethanol tolerance and production, we observed that AdhE was a frequent target of mutations. Here, we characterized those mutations to understand their effects on enzymatic activity, as well ethanol tolerance and product formation in the organism. We found that there is a strong correlation between NADH-linked alcohol dehydrogenase (ADH) activity and ethanol tolerance. Mutations that decrease NADH-linked ADH activity increase ethanol tolerance; correspondingly, mutations that increase NADH-linked ADH activity decrease ethanol tolerance. We also found that the magnitude of ADH activity did not play a significant role in determining ethanol titer. Increasing ADH activity had no effect on ethanol titer. Reducing ADH activity had indeterminate effects on ethanol titer, sometimes increasing and sometimes decreasing it. Finally, this study shows that the cofactor specificity of ADH activity was found to be the primary factor affecting ethanol yield. We expect that these results will inform efforts to use AdhE enzymes in metabolic engineering approaches.
Collapse
Affiliation(s)
- Angel Pech-Canul
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Sarah K Hammer
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Samantha J Ziegler
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Isaiah D Richardson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Bishal D Sharma
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marybeth I Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Yannick J Bomble
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| |
Collapse
|
7
|
Mazzoli R, Pescarolo S, Gilli G, Gilardi G, Valetti F. Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnol Adv 2024; 73:108379. [PMID: 38754796 DOI: 10.1016/j.biotechadv.2024.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Simone Pescarolo
- Biology applied to the environment, Laboratories of microbiology and ecotoxicology, Ecobioqual, Environment Park. Via Livorno 60, 10144 Torino, Italy
| | - Giorgio Gilli
- Department of Sciences of Public Health and Pediatrics, School of Medicine, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Gianfranco Gilardi
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Francesca Valetti
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
8
|
Callaghan MM, Thusoo E, Sharma BD, Getahun F, Stevenson DM, Maranas C, Olson DG, Lynd LR, Amador-Noguez D. Deuterated water as a substrate-agnostic isotope tracer for investigating reversibility and thermodynamics of reactions in central carbon metabolism. Metab Eng 2023; 80:254-266. [PMID: 37923005 DOI: 10.1016/j.ymben.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Stable isotope tracers are a powerful tool for the quantitative analysis of microbial metabolism, enabling pathway elucidation, metabolic flux quantification, and assessment of reaction and pathway thermodynamics. 13C and 2H metabolic flux analysis commonly relies on isotopically labeled carbon substrates, such as glucose. However, the use of 2H-labeled nutrient substrates faces limitations due to their high cost and limited availability in comparison to 13C-tracers. Furthermore, isotope tracer studies in industrially relevant bacteria that metabolize complex substrates such as cellulose, hemicellulose, or lignocellulosic biomass, are challenging given the difficulty in obtaining these as isotopically labeled substrates. In this study, we examine the potential of deuterated water (2H2O) as an affordable, substrate-neutral isotope tracer for studying central carbon metabolism. We apply 2H2O labeling to investigate the reversibility of glycolytic reactions across three industrially relevant bacterial species -C. thermocellum, Z. mobilis, and E. coli-harboring distinct glycolytic pathways with unique thermodynamics. We demonstrate that 2H2O labeling recapitulates previous reversibility and thermodynamic findings obtained with established 13C and 2H labeled nutrient substrates. Furthermore, we exemplify the utility of this 2H2O labeling approach by applying it to high-substrate C. thermocellum fermentations -a setting in which the use of conventional tracers is impractical-thereby identifying the glycolytic enzyme phosphofructokinase as a major bottleneck during high-substrate fermentations and unveiling critical insights that will steer future engineering efforts to enhance ethanol production in this cellulolytic organism. This study demonstrates the utility of deuterated water as a substrate-agnostic isotope tracer for examining flux and reversibility of central carbon metabolic reactions, which yields biological insights comparable to those obtained using costly 2H-labeled nutrient substrates.
Collapse
Affiliation(s)
- Melanie M Callaghan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eashant Thusoo
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Bishal D Sharma
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Fitsum Getahun
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Costas Maranas
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Daniel G Olson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Lee R Lynd
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Daniel Amador-Noguez
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Kuil T, Nurminen CMK, van Maris AJA. Pyrophosphate as allosteric regulator of ATP-phosphofructokinase in Clostridium thermocellum and other bacteria with ATP- and PP i-phosphofructokinases. Arch Biochem Biophys 2023; 743:109676. [PMID: 37380119 DOI: 10.1016/j.abb.2023.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The phosphofructokinase (Pfk) reaction represents one of the key regulatory points in glycolysis. While most organisms encode for Pfks that use ATP as phosphoryl donor, some organisms also encode for PPi-dependent Pfks. Despite this central role, the biochemical characteristics as well as the physiological role of both Pfks is often not known. Clostridium thermocellum is an example of a microorganism that encodes for both Pfks, however, only PPi-Pfk activity has been detected in cell-free extracts and little is known about the regulation and function of both enzymes. In this study, the ATP- and PPi-Pfk of C. thermocellum were purified and biochemically characterized. No allosteric regulators were found for PPi-Pfk amongst common effectors. With fructose-6-P, PPi, fructose-1,6-bisP, and Pi PPi-Pfk showed high specificity (KM < 0.62 mM) and maximum activity (Vmax > 156 U mg-1). In contrast, ATP-Pfk showed much lower affinity (K0.5 of 9.26 mM) and maximum activity (14.5 U mg-1) with fructose-6-P. In addition to ATP, also GTP, UTP and ITP could be used as phosphoryl donors. The catalytic efficiency with GTP was 7-fold higher than with ATP, suggesting that GTP is the preferred substrate. The enzyme was activated by NH4+, and pronounced inhibition was observed with GDP, FBP, PEP, and especially with PPi (Ki of 0.007 mM). Characterization of purified ATP-Pfks originating from eleven different bacteria, encoding for only ATP-Pfk or for both ATP- and PPi-Pfk, identified that PPi inhibition of ATP-Pfks could be a common phenomenon for organisms with a PPi-dependent glycolysis.
Collapse
Affiliation(s)
- Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Carolus M K Nurminen
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
10
|
Schroeder WL, Kuil T, van Maris AJA, Olson DG, Lynd LR, Maranas CD. A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis. Metab Eng 2023; 77:306-322. [PMID: 37085141 DOI: 10.1016/j.ymben.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PPi) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PPi sources are key to engineering its metabolism. Previous efforts to identify the primary pyrophosphate have been unsuccessful. Here, we explore pyrophosphate metabolism through reconstructing, updating, and analyzing a new genome-scale stoichiometric model for C. thermocellum, iCTH669. Hundreds of changes to the former GEM, iCBI655, including correcting cofactor usages, addressing charge and elemental balance, standardizing biomass composition, and incorporating the latest experimental evidence led to a MEMOTE score improvement to 94%. We found agreement of iCTH669 model predictions across all available fermentation and biomass yield datasets. The feasibility of hundreds of PPi synthesis routes, newly identified and previously proposed, were assessed through the lens of the iCTH669 model including biomass synthesis, tRNA synthesis, newly identified sources, and previously proposed PPi-generating cycles. In all cases, the metabolic cost of PPi synthesis is at best equivalent to investment of one ATP suggesting no direct energetic advantage for the cofactor substitution in C. thermocellum. Even though no unique source of PPi could be gleaned by the model, by combining with gene expression data two most likely scenarios emerge. First, previously investigated PPi sources likely account for most PPi production in wild-type strains. Second, alternate metabolic routes as encoded by iCTH669 can collectively maintain PPi levels even when previously investigated synthesis cycles are disrupted. Model iCTH669 is available at github.com/maranasgroup/iCTH669.
Collapse
Affiliation(s)
- Wheaton L Schroeder
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel G Olson
- Center for Bioenergy Innovation, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Lee R Lynd
- Center for Bioenergy Innovation, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
11
|
Chai G, Wang D, Zhang Y, Wang H, Li J, Jing X, Meng H, Wang Z, Guo Y, Jiang C, Li H, Lin Y. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: Performance dynamics and microbial community comparison. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117148. [PMID: 36584458 DOI: 10.1016/j.jenvman.2022.117148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation techniques utilizing sulfate-reducing bacteria (SRB) for acid mine drainage (AMD) treatment have attracted growing attention in recent years, yet substrate bioavailability for SRB is a key factor influencing treatment effectiveness and long-term stability. This study investigated the effects of external organic substrates, including four complex organic wastes (i.e., sugarcane bagasse, straw compost, shrimp shell (SS), and crab shell (CS)) and a small-molecule organic acid (i.e., propionate), on AMD removal performance and associated microbial communities during the 30-day operation of sulfate-reducing microcosms. The results showed that the pH values increased in all five microcosms, while CS exhibited the highest neutralization ability and a maximum alkalinity generation of 1507 mg/L (as CaCO3). Sulfate reduction was more effective in SS and CS microcosms, with sulfate removal efficiencies of 95.6% and 86.0%, respectively. All sulfate-reducing microcosms could remove heavy metals to different degrees, with the highest removal rate of >99.0% observed for aluminum. The removal efficiency of manganese, the most recalcitrant metal, was the highest (96%) in the CS microcosm. Correspondingly, SRB was more abundant in the CS and SS microcosms as revealed by sequencing analysis, while Desulfotomaculum was the dominant SRB in the CS microcosm, accounting for 10.8% of total effective bacterial sequences. Higher abundances of functional genes involved in fermentation and sulfur cycle were identified in CS and SS microcosms. This study suggests that complex organic wastes such as CS and SS could create and maintain preferable micro-environments for active growth and metabolism of functional microorganisms, thus offering a cost-efficient, stable, and environmental-friendly solution for AMD treatment and management.
Collapse
Affiliation(s)
- Guodong Chai
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yitong Zhang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Xiaosheng Jing
- Zhongsheng Environmental Technology Development Co., Ltd., Xi'an, Shaanxi, 710054, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhe Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuan Guo
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Huaien Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.
| | - Yishan Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
12
|
The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Appl Environ Microbiol 2023; 89:e0175322. [PMID: 36625594 PMCID: PMC9888227 DOI: 10.1128/aem.01753-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clostridium thermocellum is a cellulolytic thermophile that is considered for the consolidated bioprocessing of lignocellulose to ethanol. Improvements in ethanol yield are required for industrial implementation, but the incompletely understood causes of amino acid secretion impede progress. In this study, amino acid secretion was investigated via gene deletions in ammonium-regulated, nicotinamide adenine dinucleotide phosphate (NADPH)-supplying and NADPH-consuming pathways as well as via physiological characterization in cellobiose-limited or ammonium-limited chemostats. First, the contribution of the NADPH-supplying malate shunt was studied with strains using either the NADPH-yielding malate shunt (Δppdk) or a redox-independent conversion of PEP to pyruvate (Δppdk ΔmalE::Peno-pyk). In the latter, branched-chain amino acids, especially valine, were significantly reduced, whereas the ethanol yield increased from 46 to 60%, suggesting that the secretion of these amino acids balances the NADPH surplus from the malate shunt. The unchanged amino acid secretion in Δppdk falsified a previous hypothesis on an ammonium-regulated PEP-to-pyruvate flux redistribution. The possible involvement of another NADPH-supplier, namely, NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (nfnAB), was also excluded. Finally, the deletion of glutamate synthase (gogat) in ammonium assimilation resulted in the upregulation of NADPH-linked glutamate dehydrogenase activity and decreased amino acid yields. Since gogat in C. thermocellum is putatively annotated as ferredoxin-linked, a claim which is supported by the product redistribution observed in this study, this deletion likely replaced ferredoxin with NADPH in ammonium assimilation. Overall, these findings indicate that a need to reoxidize NADPH is driving the observed amino acid secretion, likely at the expense of the NADH needed for ethanol formation. This suggests that metabolic engineering strategies that simplify the redox metabolism and ammonium assimilation can contribute to increased ethanol yields. IMPORTANCE Improving the ethanol yield of C. thermocellum is important for the industrial implementation of this microorganism in consolidated bioprocessing. A central role of NADPH in driving amino acid byproduct formation was demonstrated by eliminating the NADPH-supplying malate shunt and separately by changing the cofactor specificity in ammonium assimilation. With amino acid secretion diverting carbon and electrons away from ethanol, these insights are important for further metabolic engineering to reach industrial requirements on ethanol yield. This study also provides chemostat data that are relevant for training genome-scale metabolic models and for improving the validity of their predictions, especially considering the reduced degree-of-freedom in the redox metabolism of the strains generated here. In addition, this study advances the fundamental understanding on the mechanisms underlying amino acid secretion in cellulolytic Clostridia as well as on the regulation and cofactor specificity in ammonium assimilation. Together, these efforts aid in the development of C. thermocellum for the sustainable consolidated bioprocessing of lignocellulose to ethanol with minimal pretreatment.
Collapse
|
13
|
Increasing the Thermodynamic Driving Force of the Phosphofructokinase Reaction in
Clostridium thermocellum. Appl Environ Microbiol 2022; 88:e0125822. [PMID: 36286488 PMCID: PMC9680637 DOI: 10.1128/aem.01258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in
C. thermocellum
is believed to enable higher product titers.
Collapse
|
14
|
Huang JR, Chen X, Hu BB, Cheng JR, Zhu MJ. Bioaugmentation combined with biochar to enhance thermophilic hydrogen production from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2022; 348:126790. [PMID: 35104653 DOI: 10.1016/j.biortech.2022.126790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, Thermoanaerobacterium thermosaccharolyticum MJ2 and biochar were used to enhance thermophilic hydrogen production from sugarcane bagasse. MJ2 bioaugmentation notably increased the hydrogen production by 95.31%, which was further significantly improved by 158.10% by adding biochar. The addition of biochar promoted the degradation of substrate, improved the activities of hydrogenase and electron transfer system, and stimulated microbial growth and metabolism. Microbial community analysis showed that the relative abundance of Thermoanaerobacterium was significantly increased by bioaugmentation and further enriched by biochar. PICRUSt analysis showed that MJ2 combined with biochar promoted metabolic pathways related to substrate degradation and microbial metabolism. This study provides a novel enhancement method for hydrogen production of the cellulolytic microbial consortium by exogenous hydrogen-producing microorganism combined with biochar and deepens the understanding of its functional mechanism.
Collapse
Affiliation(s)
- Jin-Rong Huang
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jing-Rong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China; College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China.
| |
Collapse
|
15
|
Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Metab Eng 2022; 69:286-301. [PMID: 34982997 DOI: 10.1016/j.ymben.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
Abstract
Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can throttle back metabolic flow. By (i) elucidating internal metabolic fluxes in wild-type C. thermocellum grown on cellobiose via 13C-metabolic flux analysis (13C-MFA), (ii) parameterizing a core kinetic model, and (iii) subsequently deploying an ensemble-docking workflow for discovering substrate-level regulations, this paper aims to reveal some of these factors and expand our knowledgebase governing C. thermocellum metabolism. Generated 13C labeling data were used with 13C-MFA to generate a wild-type flux distribution for the metabolic network. Notably, flux elucidation through MFA alluded to serine generation via the mercaptopyruvate pathway. Using the elucidated flux distributions in conjunction with batch fermentation process yield data for various mutant strains, we constructed a kinetic model of C. thermocellum core metabolism (i.e. k-ctherm138). Subsequently, we used the parameterized kinetic model to explore the effect of removing substrate-level regulations on ethanol yield and titer. Upon exploring all possible simultaneous (up to four) regulation removals we identified combinations that lead to many-fold model predicted improvement in ethanol titer. In addition, by coupling a systematic method for identifying putative competitive inhibitory mechanisms using K-FIT kinetic parameterization with the ensemble-docking workflow, we flagged 67 putative substrate-level inhibition mechanisms across central carbon metabolism supported by both kinetic formalism and docking analysis.
Collapse
|
16
|
Functional analysis of H +-pumping membrane-bound pyrophosphatase, ADP-glucose synthase, and pyruvate phosphate dikinase as pyrophosphate sources in Clostridium thermocellum. Appl Environ Microbiol 2021; 88:e0185721. [PMID: 34936842 PMCID: PMC8863071 DOI: 10.1128/aem.01857-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atypical glycolysis of Clostridium thermocellum is characterized by the use of pyrophosphate (PPi) as phosphoryl donor for phosphofructokinase (Pfk) and pyruvate phosphate dikinase (Ppdk) reactions. Previously, biosynthetic PPi was calculated to be stoichiometrically insufficient to drive glycolysis. This study investigates the role of a H+-pumping membrane-bound pyrophosphatase, glycogen cycling, a predicted Ppdk-malate shunt cycle and acetate cycling in generating PPi. Knockout studies and enzyme assays confirmed that clo1313_0823 encodes a membrane-bound pyrophosphatase. Additionally, clo1313_0717-0718 was confirmed to encode ADP-glucose synthase by knockouts, glycogen measurements in C. thermocellum and heterologous expression in E. coli. Unexpectedly, individually-targeted gene deletions of the four putative PPi sources did not have a significant phenotypic effect. Although combinatorial deletion of all four putative PPi sources reduced the growth rate by 22% (0.30±0.01 h-1) and the biomass yield by 38% (0.18±0.00 gbiomass gsubstrate-1), this change was much smaller than what would be expected for stoichiometrically essential PPi-supplying mechanisms. Growth-arrested cells of the quadruple knockout readily fermented cellobiose indicating that the unknown PPi-supplying mechanisms are independent of biosynthesis. An alternative hypothesis that ATP-dependent Pfk activity circumvents a need for PPi altogether, was falsified by enzyme assays, heterologous expression of candidate genes and whole-genome sequencing. As a secondary outcome, enzymatic assays confirmed functional annotation of clo1313_1832 as ATP- and GTP-dependent fructokinase. These results indicate that the four investigated PPi sources individually and combined play no significant PPi-supplying role and the true source(s) of PPi, or alternative phosphorylating mechanisms, that drive glycolysis in C. thermocellum remain(s) elusive. IMPORTANCE Increased understanding of the central metabolism of C. thermocellum is important from a fundamental as well as from a sustainability and industrial perspective. In addition to showing that H+-pumping membrane-bound PPase, glycogen cycling, a Ppdk-malate shunt cycle, and acetate cycling are not significant sources of PPi supply, this study adds functional annotation of four genes and availability of an updated PPi stoichiometry from biosynthesis to the scientific domain. Together, this aids future metabolic engineering attempts aimed to improve C. thermocellum as a cell factory for sustainable and efficient production of ethanol from lignocellulosic material through consolidated bioprocessing with minimal pretreatment. Getting closer to elucidating the elusive source of PPi, or alternative phosphorylating mechanisms, for the atypical glycolysis is itself of fundamental importance. Additionally, the findings of this study directly contribute to investigations into trade-offs between thermodynamic driving force versus energy yield of PPi- and ATP-dependent glycolysis.
Collapse
|
17
|
Mazzoli R, Olson DG, Concu AM, Holwerda EK, Lynd LR. In vivo evolution of lactic acid hyper-tolerant Clostridium thermocellum. N Biotechnol 2021; 67:12-22. [PMID: 34915174 DOI: 10.1016/j.nbt.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
Lactic acid (LA) has several applications in the food, cosmetics and pharmaceutical industries, as well as in the production of biodegradable plastic polymers, namely polylactides. Industrial production of LA is essentially based on microbial fermentation. Recent reports have shown the potential of the cellulolytic bacterium Clostridium thermocellum for direct LA production from inexpensive lignocellulosic biomass. However, C. thermocellum is highly sensitive to acids and does not grow at pH < 6.0. Improvement of LA tolerance of this microorganism is pivotal for its application in cost-efficient production of LA. In the present study, the LA tolerance of C. thermocellum strains LL345 (wild-type fermentation profile) and LL1111 (high LA yield) was increased by adaptive laboratory evolution. At large inoculum size (10 %), the maximum tolerated LA concentration of strain LL1111 was more than doubled, from 15 g/L to 35 g/L, while subcultures evolved from LL345 showed 50-85 % faster growth in medium containing 45 g/L LA. Gene mutations (pyruvate phosphate dikinase, histidine protein kinase/phosphorylase) possibly affecting carbohydrate and/or phosphate metabolism have been detected in most LA-adapted populations. Although improvement of LA tolerance may sometimes also enable higher LA production in microorganisms, C. thermocellum LA-adapted cultures showed a yield of LA, and generally of other organic acids, similar to or lower than parental strains. Based on its improved LA tolerance and LA titer similar to its parent strain (LL1111), mixed adapted culture LL1630 showed the highest performing phenotype and could serve as a framework for improving LA production by further metabolic engineering.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy; Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Angela Maria Concu
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
18
|
Handling Several Sugars at a Time: a Case Study of Xyloglucan Utilization by Ruminiclostridium cellulolyticum. mBio 2021; 12:e0220621. [PMID: 34749527 PMCID: PMC8576529 DOI: 10.1128/mbio.02206-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xyloglucan utilization by Ruminiclostridium cellulolyticum was formerly shown to imply the uptake of large xylogluco-oligosaccharides, followed by cytosolic depolymerization into glucose, galactose, xylose, and cellobiose. This raises the question of how the anaerobic bacterium manages the simultaneous presence of multiple sugars. Using genetic and biochemical approaches targeting the corresponding metabolic pathways, we observed that, surprisingly, all sugars are catabolized, collectively, but glucose consumption is prioritized. Most selected enzymes display unusual features, especially the GTP-dependent hexokinase of glycolysis, which appeared reversible and crucial for xyloglucan utilization. In contrast, mutant strains lacking either galactokinase, cellobiose-phosphorylase, or xylulokinase still catabolize xyloglucan but display variably altered growth. Furthermore, the xylogluco-oligosaccharide depolymerization process appeared connected to the downstream pathways through an intricate network of competitive and noncompetitive inhibitions. Altogether, our data indicate that xyloglucan utilization by R. cellulolyticum relies on an energy-saving central carbon metabolism deviating from current bacterial models, which efficiently prevents carbon overflow. IMPORTANCE The study of the decomposition of recalcitrant plant biomass is of great interest as the limiting step of terrestrial carbon cycle and to produce plant-derived valuable chemicals and energy. While extracellular cellulose degradation and catabolism have been studied in detail, few publications describe the complete metabolism of hemicelluloses and, to date, the published models are limited to the extracellular degradation and sequential entry of simple sugars. Here, we describe how the model anaerobic bacterium Ruminiclostridium cellulolyticum deals with the synchronous intracellular release of glucose, galactose, xylose, and cellobiose upon cytosolic depolymerization of imported xyloglucan oligosaccharides. The described novel metabolic strategy involves the simultaneous activity of different metabolic pathways coupled to a network of inhibitions controlling the carbon flux and is distinct from the ubiquitously observed sequential uptake and metabolism of carbohydrates known as the diauxic shift. Our results highlight the diversity of cellular responses related to a complex environment.
Collapse
|
19
|
Hebdon SD, Gerritsen AT, Chen YP, Marcano JG, Chou KJ. Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in Clostridium thermocellum. Front Microbiol 2021; 12:695517. [PMID: 34566906 PMCID: PMC8457756 DOI: 10.3389/fmicb.2021.695517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Clostridium thermocellum is a thermophilic bacterium recognized for its natural ability to effectively deconstruct cellulosic biomass. While there is a large body of studies on the genetic engineering of this bacterium and its physiology to-date, there is limited knowledge in the transcriptional regulation in this organism and thermophilic bacteria in general. The study herein is the first report of a large-scale application of DNA-affinity purification sequencing (DAP-seq) to transcription factors (TFs) from a bacterium. We applied DAP-seq to > 90 TFs in C. thermocellum and detected genome-wide binding sites for 11 of them. We then compiled and aligned DNA binding sequences from these TFs to deduce the primary DNA-binding sequence motifs for each TF. These binding motifs are further validated with electrophoretic mobility shift assay (EMSA) and are used to identify individual TFs’ regulatory targets in C. thermocellum. Our results led to the discovery of novel, uncharacterized TFs as well as homologues of previously studied TFs including RexA-, LexA-, and LacI-type TFs. We then used these data to reconstruct gene regulatory networks for the 11 TFs individually, which resulted in a global network encompassing the TFs with some interconnections. As gene regulation governs and constrains how bacteria behave, our findings shed light on the roles of TFs delineated by their regulons, and potentially provides a means to enable rational, advanced genetic engineering of C. thermocellum and other organisms alike toward a desired phenotype.
Collapse
Affiliation(s)
- Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Alida T Gerritsen
- Computational Sciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yi-Pei Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Joan G Marcano
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
20
|
Utilization of Monosaccharides by Hungateiclostridium thermocellum ATCC 27405 through Adaptive Evolution. Microorganisms 2021; 9:microorganisms9071445. [PMID: 34361881 PMCID: PMC8303734 DOI: 10.3390/microorganisms9071445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Hungateiclostridium thermocellum ATCC 27405 is a promising bacterium for consolidated bioprocessing with a robust ability to degrade lignocellulosic biomass through a multienzyme cellulosomal complex. The bacterium uses the released cellodextrins, glucose polymers of different lengths, as its primary carbon source and energy. In contrast, the bacterium exhibits poor growth on monosaccharides such as fructose and glucose. This phenomenon raises many important questions concerning its glycolytic pathways and sugar transport systems. Until now, the detailed mechanisms of H. thermocellum adaptation to growth on hexose sugars have been relatively poorly explored. In this study, adaptive laboratory evolution was applied to train the bacterium in hexose sugars-based media, and genome resequencing was used to detect the genes that got mutated during adaptation period. RNA-seq data of the first culture growing on either fructose or glucose revealed that several glycolytic genes in the Embden–Mayerhof–Parnas pathway were expressed at lower levels in these cells than in cellobiose-grown cells. After seven consecutive transfer events on fructose and glucose (~42 generations for fructose-adapted cells and ~40 generations for glucose-adapted cells), several genes in the EMP glycolysis of the evolved strains increased the levels of mRNA expression, accompanied by a faster growth, a greater biomass yield, a higher ethanol titer than those in their parent strains. Genomic screening also revealed several mutation events in the genomes of the evolved strains, especially in those responsible for sugar transport and central carbon metabolism. Consequently, these genes could be applied as potential targets for further metabolic engineering to improve this bacterium for bio-industrial usage.
Collapse
|
21
|
Koendjbiharie JG, van Kranenburg R, Kengen SWM. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 2021; 45:fuaa061. [PMID: 33289792 PMCID: PMC8100219 DOI: 10.1093/femsre/fuaa061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
At the junction between the glycolysis and the tricarboxylic acid cycle-as well as various other metabolic pathways-lies the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node (PPO-node). These three metabolites form the core of a network involving at least eleven different types of enzymes, each with numerous subtypes. Obviously, no single organism maintains each of these eleven enzymes; instead, different organisms possess different subsets in their PPO-node, which results in a remarkable degree of variation, despite connecting such deeply conserved metabolic pathways as the glycolysis and the tricarboxylic acid cycle. The PPO-node enzymes play a crucial role in cellular energetics, with most of them involved in (de)phosphorylation of nucleotide phosphates, while those responsible for malate conversion are important redox enzymes. Variations in PPO-node therefore reflect the different energetic niches that organisms can occupy. In this review, we give an overview of the biochemistry of these eleven PPO-node enzymes. We attempt to highlight the variation that exists, both in PPO-node compositions, as well as in the roles that the enzymes can have within those different settings, through various recent discoveries in both bacteria and archaea that reveal deviations from canonical functions.
Collapse
Affiliation(s)
- Jeroen G Koendjbiharie
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
22
|
Yayo J, Kuil T, Olson DG, Lynd LR, Holwerda EK, van Maris AJA. Laboratory Evolution and Reverse Engineering of Clostridium thermocellum for Growth on Glucose and Fructose. Appl Environ Microbiol 2021; 87:e03017-20. [PMID: 33608285 PMCID: PMC8091016 DOI: 10.1128/aem.03017-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023] Open
Abstract
The native ability of Clostridium thermocellum to efficiently solubilize cellulose makes it an interesting platform for sustainable biofuel production through consolidated bioprocessing. Together with other improvements, industrial implementation of C. thermocellum, as well as fundamental studies into its metabolism, would benefit from improved and reproducible consumption of hexose sugars. To investigate growth of C. thermocellum on glucose or fructose, as well as the underlying molecular mechanisms, laboratory evolution was performed in carbon-limited chemostats with increasing concentrations of glucose or fructose and decreasing cellobiose concentrations. Growth on both glucose and fructose was achieved with biomass yields of 0.09 ± 0.00 and 0.18 ± 0.00 gbiomass gsubstrate-1, respectively, compared to 0.15 ± 0.01 gbiomass gsubstrate-1 for wild type on cellobiose. Single-colony isolates had no or short lag times on the monosaccharides, while wild type showed 42 ± 4 h on glucose and >80 h on fructose. With good growth on glucose, fructose, and cellobiose, the fructose isolates were chosen for genome sequence-based reverse metabolic engineering. Deletion of a putative transcriptional regulator (Clo1313_1831), which upregulated fructokinase activity, reduced lag time on fructose to 12 h with a growth rate of 0.11 ± 0.01 h-1 and resulted in immediate growth on glucose at 0.24 ± 0.01 h-1 Additional introduction of a G-to-V mutation at position 148 in cbpA resulted in immediate growth on fructose at 0.32 ± 0.03 h-1 These insights can guide engineering of strains for fundamental studies into transport and the upper glycolysis, as well as maximizing product yields in industrial settings.IMPORTANCEC. thermocellum is an important candidate for sustainable and cost-effective production of bioethanol through consolidated bioprocessing. In addition to unsurpassed cellulose deconstruction, industrial application and fundamental studies would benefit from improvement of glucose and fructose consumption. This study demonstrated that C. thermocellum can be evolved for reproducible constitutive growth on glucose or fructose. Subsequent genome sequencing, gene editing, and physiological characterization identified two underlying mutations with a role in (regulation of) transport or metabolism of the hexose sugars. In light of these findings, such mutations have likely (and unknowingly) also occurred in previous studies with C. thermocellum using hexose-based media with possible broad regulatory consequences. By targeted modification of these genes, industrial and research strains of C. thermocellum can be engineered to (i) reduce glucose accumulation, (ii) study cellodextrin transport systems in vivo, (iii) allow experiments at >120 g liter-1 soluble substrate concentration, or (iv) reduce costs for labeling studies.
Collapse
Affiliation(s)
- Johannes Yayo
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
23
|
Fenton CA, Tang Q, Olson DG, Maloney MI, Bose JL, Lynd LR, Fenton AW. Inhibition of Pyruvate Kinase From Thermoanaerobacterium saccharolyticum by IMP Is Independent of the Extra-C Domain. Front Microbiol 2021; 12:628308. [PMID: 33679651 PMCID: PMC7925390 DOI: 10.3389/fmicb.2021.628308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
The pyruvate kinase (PYK) isozyme from Thermoanaerobacterium saccharolyticum (TsPYK) has previously been used in metabolic engineering for improved ethanol production. This isozyme belongs to a subclass of PYK isozymes that include an extra C-domain. Like other isozymes that include this extra C-domain, we found that TsPYK is activated by AMP and ribose-5-phosphate (R5P). Our use of sugar-phosphate analogs generated a surprising result in that IMP and GMP are allosteric inhibitors (rather than activators) of TsPYK. We believe this to be the first report of any PYK isozyme being inhibited by IMP and GMP. A truncated protein that lacks the extra C-domain is also inhibited by IMP. A screen of several other bacterial PYK enzymes (include several that have the extra-C domain) indicates that the inhibition by IMP is specific to only a subset of those isozymes.
Collapse
Affiliation(s)
- Christopher A Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Qingling Tang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States.,Oak Ridge National Laboratories, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Marybeth I Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States.,Oak Ridge National Laboratories, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States.,Oak Ridge National Laboratories, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
24
|
Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Appl Environ Microbiol 2020; 86:AEM.01795-20. [PMID: 32978139 PMCID: PMC7657619 DOI: 10.1128/aem.01795-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/17/2020] [Indexed: 01/29/2023] Open
Abstract
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum were grown in cellobiose-limited chemostat cultures at a fixed dilution rate. C. thermocellum produced acetate, ethanol, formate, and lactate. Surprisingly, and in contrast to batch cultures, in cellobiose-limited chemostat cultures of T. saccharolyticum, ethanol was the main fermentation product. Enzyme assays confirmed that in C. thermocellum, glycolysis proceeds via pyrophosphate (PPi)-dependent phosphofructokinase (PFK), pyruvate-phosphate dikinase (PPDK), as well as a malate shunt for the conversion of phosphoenolpyruvate (PEP) to pyruvate. Pyruvate kinase activity was not detectable. In T. saccharolyticum, ATP but not PPi served as cofactor for the PFK reaction. High activities of both pyruvate kinase and PPDK were present, whereas the activities of a malate shunt enzymes were low in T. saccharolyticum In C. thermocellum, glycolysis via PPi-PFK and PPDK obeys the equation glucose + 5 NDP + 3 PPi → 2 pyruvate + 5 NTP + Pi (where NDP is nucleoside diphosphate and NTP is nucleoside triphosphate). Metabolic flux analysis of chemostat data with the wild type and a deletion mutant of the proton-pumping pyrophosphatase showed that a PPi-generating mechanism must be present that operates according to ATP + Pi → ADP + PPi Both organisms also produced significant amounts of amino acids in cellobiose-limited cultures. It was anticipated that this phenomenon would be suppressed by growth under nitrogen limitation. Surprisingly, nitrogen-limited chemostat cultivation of wild-type C. thermocellum revealed a bottleneck in pyruvate oxidation, as large amounts of pyruvate and amino acids, mainly valine, were excreted; up to 50% of the nitrogen consumed was excreted again as amino acids.IMPORTANCE This study discusses the fate of pyrophosphate in the metabolism of two thermophilic anaerobes that lack a soluble irreversible pyrophosphatase as present in Escherichia coli but instead use a reversible membrane-bound proton-pumping enzyme. In such organisms, the charging of tRNA with amino acids may become more reversible. This may contribute to the observed excretion of amino acids during sugar fermentation by Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Calculation of the energetic advantage of reversible pyrophosphate-dependent glycolysis, as occurs in Clostridium thermocellum, could not be properly evaluated, as currently available genome-scale models neglect the anabolic generation of pyrophosphate in, for example, polymerization of amino acids to protein. This anabolic pyrophosphate replaces ATP and thus saves energy. Its amount is, however, too small to cover the pyrophosphate requirement of sugar catabolism in glycolysis. Consequently, pyrophosphate for catabolism is generated according to ATP + Pi → ADP + PPi.
Collapse
|
25
|
Mazzoli R, Olson DG, Lynd LR. Construction of lactic acid overproducing Clostridium thermocellum through enhancement of lactate dehydrogenase expression. Enzyme Microb Technol 2020; 141:109645. [PMID: 33051021 DOI: 10.1016/j.enzmictec.2020.109645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Rapid expansion of global market of lactic acid (LA) has prompted research towards cheaper and more eco-friendly strategies for its production. Nowadays, LA is produced mainly through fermentation of simple sugars or starchy biomass (e.g. corn) and its price is relatively high. Lignocellulose could be an advantageous alternative feedstock for LA production owing to its high abundance and low cost. However, the most effective natural producers of LA cannot directly ferment lignocellulose. So far, metabolic engineering aimed at developing microorganisms combining efficient LA production and cellulose hydrolysis has been generally based on introducing designer cellulase systems in natural LA producers. In the present study, the approach consisted in improving LA production in the natural cellulolytic bacterium Clostridium thermocellum DSM1313. The expression of the native lactate dehydrogenase was enhanced by functional replacement of its original promoter with stronger ones resulting in a 10-fold increase in specific activity, which resulted in a 2-fold increase of LA yield. It is known that eliminating allosteric regulation can also increase lactic acid production in C. thermocellum, however we were unable to insert strong promoters upstream of the de-regulated ldh gene. A strategy combining these regulations and inactivation of parasitic pathways appears essential for developing a homolactic C. thermocellum.
Collapse
Affiliation(s)
- R Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy; Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| | - D G Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - L R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
26
|
Garschagen LS, Franke T, Deppenmeier U. An alternative pentose phosphate pathway in human gut bacteria for the degradation of C5 sugars in dietary fibers. FEBS J 2020; 288:1839-1858. [PMID: 32770699 DOI: 10.1111/febs.15511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
The microbial degradation of pentoses in the human gut is a crucial factor for the utilization of plant-based dietary fibers. A vast majority of gut microbes are able to use these C5-sugars as a carbon and energy source. However, the underlying metabolic pathways are not fully understood. Bioinformatic analysis showed that a large number of abundant gut bacteria lack genes encoding a transaldolase as a key enzyme of the pentose phosphate pathway. Among them was the important human gut microbe Prevotella copri, which was able to grow in minimal media containing xylose or hemicelluloses as the sole carbon source. Therefore, we looked for an alternative pathway for pentose conversion in P. copri using bioinformatics, enzyme activity assays, and the detection of intermediates of pentose metabolism. It became evident that the organism converted C5-sugars via the sedoheptulose-1,7-bisphosphate pathway (SBPP) to connect pentose metabolism with glycolysis. To circumvent the transaldolase reaction, P. copri uses the combined catalysis of a pyrophosphate-dependent phosphofructokinase and a fructose-bisphosphate aldolase. Furthermore, we present strong evidence that the SBPP is widely distributed in important gut bacteria, including members of the phyla Bacteroides, Firmicutes, Proteobacteria, Verrucomicrobia, and Lentisphaerae.
Collapse
Affiliation(s)
- Laura S Garschagen
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Thomas Franke
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Garcia S, Thompson RA, Giannone RJ, Dash S, Maranas CD, Trinh CT. Development of a Genome-Scale Metabolic Model of Clostridium thermocellum and Its Applications for Integration of Multi-Omics Datasets and Computational Strain Design. Front Bioeng Biotechnol 2020; 8:772. [PMID: 32974289 PMCID: PMC7471609 DOI: 10.3389/fbioe.2020.00772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 01/29/2023] Open
Abstract
Solving environmental and social challenges such as climate change requires a shift from our current non-renewable manufacturing model to a sustainable bioeconomy. To lower carbon emissions in the production of fuels and chemicals, plant biomass feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic thermophile Clostridium thermocellum is a promising bacterium for bioconversion due to its capability to efficiently degrade lignocellulosic biomass. However, the complex metabolism of C. thermocellum is not fully understood, hindering metabolic engineering to achieve high titers, rates, and yields of targeted molecules. In this study, we developed an updated genome-scale metabolic model of C. thermocellum that accounts for recent metabolic findings, has improved prediction accuracy, and is standard-conformant to ensure easy reproducibility. We illustrated two applications of the developed model. We first formulated a multi-omics integration protocol and used it to understand redox metabolism and potential bottlenecks in biofuel (e.g., ethanol) production in C. thermocellum. Second, we used the metabolic model to design modular cells for efficient production of alcohols and esters with broad applications as flavors, fragrances, solvents, and fuels. The proposed designs not only feature intuitive push-and-pull metabolic engineering strategies, but also present novel manipulations around important central metabolic branch-points. We anticipate the developed genome-scale metabolic model will provide a useful tool for system analysis of C. thermocellum metabolism to fundamentally understand its physiology and guide metabolic engineering strategies to rapidly generate modular production strains for effective biosynthesis of biofuels and biochemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sergio Garcia
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, United States.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - R Adam Thompson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Satyakam Dash
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Costas D Maranas
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, United States.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
28
|
Wu C, Cano M, Gao X, Lo J, Maness P, Xiong W. A quantitative lens on anaerobic life: leveraging the state-of-the-art fluxomics approach to explore clostridial metabolism. Curr Opin Biotechnol 2020; 64:47-54. [DOI: 10.1016/j.copbio.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
29
|
In Vivo Thermodynamic Analysis of Glycolysis in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Using 13C and 2H Tracers. mSystems 2020; 5:5/2/e00736-19. [PMID: 32184362 PMCID: PMC7380578 DOI: 10.1128/msystems.00736-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Thermodynamics constitutes a key determinant of flux and enzyme efficiency in metabolic networks. Here, we provide new insights into the divergent thermodynamics of the glycolytic pathways of C. thermocellum and T. saccharolyticum, two industrially relevant thermophilic bacteria whose metabolism still is not well understood. We report that while the glycolytic pathway in T. saccharolyticum is as thermodynamically favorable as that found in model organisms, such as E. coli or Saccharomyces cerevisiae, the glycolytic pathway of C. thermocellum operates near equilibrium. The use of a near-equilibrium glycolytic pathway, with potentially increased ATP yield, by this cellulolytic microbe may represent an evolutionary adaptation to growth on cellulose, but it has the drawback of being highly susceptible to product feedback inhibition. The results of this study will facilitate future engineering of high-performance strains capable of transforming cellulosic biomass to biofuels at high yields and titers. Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic anaerobic bacteria with complementary metabolic capabilities that utilize distinct glycolytic pathways for the conversion of cellulosic sugars to biofuels. We integrated quantitative metabolomics with 2H and 13C metabolic flux analysis to investigate the in vivo reversibility and thermodynamics of the central metabolic networks of these two microbes. We found that the glycolytic pathway in C. thermocellum operates remarkably close to thermodynamic equilibrium, with an overall drop in Gibbs free energy 5-fold lower than that of T. saccharolyticum or anaerobically grown Escherichia coli. The limited thermodynamic driving force of glycolysis in C. thermocellum could be attributed in large part to the small free energy of the phosphofructokinase reaction producing fructose bisphosphate. The ethanol fermentation pathway was also substantially more reversible in C. thermocellum than in T. saccharolyticum. These observations help explain the comparatively low ethanol titers of C. thermocellum and suggest engineering interventions that can be used to increase its ethanol productivity and glycolytic rate. In addition to thermodynamic analysis, we used our isotope tracer data to reconstruct the T. saccharolyticum central metabolic network, revealing exclusive use of the Embden-Meyerhof-Parnas (EMP) pathway for glycolysis, a bifurcated tricarboxylic acid (TCA) cycle, and a sedoheptulose bisphosphate bypass active within the pentose phosphate pathway. IMPORTANCE Thermodynamics constitutes a key determinant of flux and enzyme efficiency in metabolic networks. Here, we provide new insights into the divergent thermodynamics of the glycolytic pathways of C. thermocellum and T. saccharolyticum, two industrially relevant thermophilic bacteria whose metabolism still is not well understood. We report that while the glycolytic pathway in T. saccharolyticum is as thermodynamically favorable as that found in model organisms, such as E. coli or Saccharomyces cerevisiae, the glycolytic pathway of C. thermocellum operates near equilibrium. The use of a near-equilibrium glycolytic pathway, with potentially increased ATP yield, by this cellulolytic microbe may represent an evolutionary adaptation to growth on cellulose, but it has the drawback of being highly susceptible to product feedback inhibition. The results of this study will facilitate future engineering of high-performance strains capable of transforming cellulosic biomass to biofuels at high yields and titers.
Collapse
|
30
|
Koendjbiharie JG, Hon S, Pabst M, Hooftman R, Stevenson DM, Cui J, Amador-Noguez D, Lynd LR, Olson DG, van Kranenburg R. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase. J Biol Chem 2020; 295:1867-1878. [PMID: 31871051 PMCID: PMC7029132 DOI: 10.1074/jbc.ra119.011239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
The genomes of most cellulolytic clostridia do not contain genes annotated as transaldolase. Therefore, for assimilating pentose sugars or for generating C5 precursors (such as ribose) during growth on other (non-C5) substrates, they must possess a pathway that connects pentose metabolism with the rest of metabolism. Here we provide evidence that for this connection cellulolytic clostridia rely on the sedoheptulose 1,7-bisphosphate (SBP) pathway, using pyrophosphate-dependent phosphofructokinase (PPi-PFK) instead of transaldolase. In this reversible pathway, PFK converts sedoheptulose 7-phosphate (S7P) to SBP, after which fructose-bisphosphate aldolase cleaves SBP into dihydroxyacetone phosphate and erythrose 4-phosphate. We show that PPi-PFKs of Clostridium thermosuccinogenes and Clostridium thermocellum indeed can convert S7P to SBP, and have similar affinities for S7P and the canonical substrate fructose 6-phosphate (F6P). By contrast, (ATP-dependent) PfkA of Escherichia coli, which does rely on transaldolase, had a very poor affinity for S7P. This indicates that the PPi-PFK of cellulolytic clostridia has evolved the use of S7P. We further show that C. thermosuccinogenes contains a significant SBP pool, an unusual metabolite that is elevated during growth on xylose, demonstrating its relevance for pentose assimilation. Last, we demonstrate that a second PFK of C. thermosuccinogenes that operates with ATP and GTP exhibits unusual kinetics toward F6P, as it appears to have an extremely high degree of cooperative binding, resulting in a virtual on/off switch for substrate concentrations near its K½ value. In summary, our results confirm the existence of an SBP pathway for pentose assimilation in cellulolytic clostridia.
Collapse
Affiliation(s)
| | - Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830
| | - Martin Pabst
- Cell Systems Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Robert Hooftman
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jingxuan Cui
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Daniel Amador-Noguez
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830
| | - Richard van Kranenburg
- Corbion, 4206 AC Gorinchem, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
31
|
Mazzoli R, Olson D. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:111-161. [PMID: 32948265 DOI: 10.1016/bs.aambs.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second generation biorefining, namely fermentation processes based on lignocellulosic feedstocks, has attracted tremendous interest (owing to the large availability and low cost of this biomass) as a strategy to produce biofuels and commodity chemicals that is an alternative to oil refining. However, the innate recalcitrance of lignocellulose has slowed progress toward economically viable processes. Consolidated bioprocessing (CBP), i.e., single-step fermentation of lignocellulose may dramatically reduce the current costs of 2nd generation biorefining. Metabolic engineering has been used as a tool to develop improved microbial strains supporting CBP. Clostridium thermocellum is among the most efficient cellulose degraders isolated so far and one of the most promising host organisms for application of CBP. The development of efficient and reliable genetic tools has allowed significant progress in metabolic engineering of this strain aimed at expanding the panel of growth substrates and improving the production of a number of commodity chemicals of industrial interest such as ethanol, butanol, isobutanol, isobutyl acetate and lactic acid. The present review aims to summarize recent developments in metabolic engineering of this organism which currently represents a reference model for the development of biocatalysts for 2nd generation biorefining.
Collapse
|
32
|
Singhvi MS, Gokhale DV. Lignocellulosic biomass: Hurdles and challenges in its valorization. Appl Microbiol Biotechnol 2019; 103:9305-9320. [DOI: 10.1007/s00253-019-10212-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022]
|
33
|
Near-equilibrium glycolysis supports metabolic homeostasis and energy yield. Nat Chem Biol 2019; 15:1001-1008. [PMID: 31548693 PMCID: PMC10184052 DOI: 10.1038/s41589-019-0364-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 07/26/2019] [Indexed: 01/31/2023]
Abstract
Glycolysis plays a central role in producing ATP and biomass. Its control principles, however, remain incompletely understood. Here, we develop a method that combines 2H and 13C tracers to determine glycolytic thermodynamics. Using this method, we show that, in conditions and organisms with relatively slow fluxes, multiple steps in glycolysis are near to equilibrium, reflecting spare enzyme capacity. In Escherichia coli, nitrogen or phosphorus upshift rapidly increases the thermodynamic driving force, deploying the spare enzyme capacity to increase flux. Similarly, respiration inhibition in mammalian cells rapidly increases both glycolytic flux and the thermodynamic driving force. The thermodynamic shift allows flux to increase with only small metabolite concentration changes. Finally, we find that the cellulose-degrading anaerobe Clostridium cellulolyticum exhibits slow, near-equilibrium glycolysis due to the use of pyrophosphate rather than ATP for fructose-bisphosphate production, resulting in enhanced per-glucose ATP yield. Thus, near-equilibrium steps of glycolysis promote both rapid flux adaptation and energy efficiency.
Collapse
|
34
|
Influence of substrate loadings on the consolidated bioprocessing of rice straw and sugarcane bagasse biomass using Ruminiclostridium thermocellum. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Dash S, Olson DG, Joshua Chan SH, Amador-Noguez D, Lynd LR, Maranas CD. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab Eng 2019; 55:161-169. [PMID: 31220663 DOI: 10.1016/j.ymben.2019.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Clostridium thermocellum is a candidate for consolidated bioprocessing by carrying out both cellulose solubilization and fermentation. However, despite significant efforts the maximum ethanol titer achieved to date remains below industrially required targets. Several studies have analyzed the impact of increasing ethanol concentration on C. thermocellum's membrane properties, cofactor pool ratios, and altered enzyme regulation. In this study, we explore the extent to which thermodynamic equilibrium limits maximum ethanol titer. We used the max-min driving force (MDF) algorithm (Noor et al., 2014) to identify the range of allowable metabolite concentrations that maintain a negative free energy change for all reaction steps in the pathway from cellobiose to ethanol. To this end, we used a time-series metabolite concentration dataset to flag five reactions (phosphofructokinase (PFK), fructose bisphosphate aldolase (FBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH)) which become thermodynamic bottlenecks under high external ethanol concentrations. Thermodynamic analysis was also deployed in a prospective mode to evaluate genetic interventions which can improve pathway thermodynamics by generating minimal set of reactions or elementary flux modes (EFMs) which possess unique genetic variations while ensuring mass and redox balance with ethanol production. MDF evaluation of all generated (336) EFMs indicated that, i) pyruvate phosphate dikinase (PPDK) has a higher pathway MDF than the malate shunt alternative due to limiting CO2 concentrations under physiological conditions, and ii) NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) can alleviate thermodynamic bottlenecks at high ethanol concentrations due to cofactor modification and reduction in ATP generation. The combination of ATP linked phosphofructokinase (PFK-ATP) and NADPH linked alcohol dehydrogenase (ADH-NADPH) with NADPH linked aldehyde dehydrogenase (ALDH-NADPH) or ferredoxin: NADP + oxidoreductase (NADPH-FNOR) emerges as the best intervention strategy for ethanol production that balances MDF improvements with ATP generation, and appears to functionally reproduce the pathway employed by the ethanologen Thermoanaerobacterium saccharolyticum. Expanding the list of measured intracellular metabolites and improving the quantification accuracy of measurements was found to improve the fidelity of pathway thermodynamics analysis in C. thermocellum. This study demonstrates even before addressing an organism's enzyme kinetics and allosteric regulations, pathway thermodynamics can flag pathway bottlenecks and identify testable strategies for enhancing pathway thermodynamic feasibility and function.
Collapse
Affiliation(s)
- Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
36
|
Mukherjee M, Sarkar P, Goswami G, Das D. Regulation of butanol biosynthesis in Clostridium acetobutylicum ATCC 824 under the influence of zinc supplementation and magnesium starvation. Enzyme Microb Technol 2019; 129:109352. [PMID: 31307579 DOI: 10.1016/j.enzmictec.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
Present study reports modulation in butanol biosynthesis in Clostridium acetobutylicum ATCC 824 under the influence of zinc supplementation or magnesium starvation either individually or in combination. An improvement in butanol titer from 11.83 g L-1 in control to 13.72 g L-1, 15.79 g L-1, and 19.18 g L-1 was achieved when organism was grown on magnesium starved, zinc supplemented and combined zinc supplemented-magnesium starved fermentation medium, respectively. The elevation in butanol biosynthesis was associated with raised glucose utilization, reduced ethanol production and early induction of solventogenesis. Change in these phenotypic traits of the organism may be attributed to multi-level modulation in central carbon metabolism e.g., upregulation of glycolytic pathway; upregulation in thiolase activity; key intermediate enzyme for biosynthesis of acids and solvent; upregulation in the activity of butyrylaldehyde dehydrogenase & butanol dehydrogenase, the enzymes responsible for butanol biosynthesis and downregulation in alcohol dehydrogenase, redirecting carbon flux from ethanol to butanol.
Collapse
Affiliation(s)
- Mayurketan Mukherjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Payel Sarkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Gargi Goswami
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
37
|
Koendjbiharie JG, Wevers K, van Kranenburg R. Assessing Cofactor Usage in Pseudoclostridium thermosuccinogenes via Heterologous Expression of Central Metabolic Enzymes. Front Microbiol 2019; 10:1162. [PMID: 31178853 PMCID: PMC6543838 DOI: 10.3389/fmicb.2019.01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudoclostridium thermosuccinogenes and Hungateiclostridium thermocellum are being studied for their potential to contribute to a more sustainable bio-based economy. Both species were shown previously to rely on GTP or pyrophosphate instead of ATP as cofactors in specific reactions of central energy metabolism for reasons that are not well understood yet. Since it is often impossible to predict cofactor specificity from the primary protein structure, thirteen enzymes from P. thermosuccinogenes were cloned and heterologous expressed in Escherichia coli to assess the cofactor usage in vitro and paint a more complete picture of the cofactor usage in the central metabolism of P. thermosuccinogenes. The assays were conducted with heat-treated E. coli cell-free extract devoid of background activity to allow the quick assessment of a relatively large number of (thermophilic) enzymes. Selected enzymes were also purified to allow the determination of the enzyme kinetics for competing cofactors. Following the results of the glucokinase (GK), galactokinase, xylulokinase (XK), and ribokinase assays, it seems that phosphorylation of monosaccharides by and large is mainly GTP-dependent. Some possible implications of this relating to the adenylate/guanylate energy charge are discussed here. Besides the highly expressed pyrophosphate-dependent 6-phosphofructokinase, another 6-phosphofructokinase was found to be equally dependent on ATP and GTP, while no 6-phosphofructokinase activity could be demonstrated for a third. Both type I glyceraldehyde 3-phosphate dehydrogenases were found to be NAD+-dependent, and further, acetate kinase, isocitrate dehydrogenase, and three enzymes predicted to be responsible for the interconversion of phosphoenolpyruvate and pyruvate (i.e., pyruvate kinase; pyruvate, phosphate dikinase; phosphoenolpyruvate synthase), were also assessed.
Collapse
Affiliation(s)
| | - Kimberly Wevers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
38
|
Ng CY, Wang L, Chowdhury A, Maranas CD. Pareto Optimality Explanation of the Glycolytic Alternatives in Nature. Sci Rep 2019; 9:2633. [PMID: 30796263 PMCID: PMC6384925 DOI: 10.1038/s41598-019-38836-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/10/2019] [Indexed: 01/02/2023] Open
Abstract
The Entner-Doudoroff (ED) and Embden-Meyerhof-Parnas (EMP) glycolytic pathways are largely conserved across glycolytic species in nature. Is this a coincidence, convergent evolution or there exists a driving force towards either of the two pathway designs? We addressed this question by first employing a variant of the optStoic algorithm to exhaustively identify over 11,916 possible routes between glucose and pyruvate at different pre-determined stoichiometric yields of ATP. Subsequently, we analyzed the thermodynamic feasibility of all the pathways at physiological metabolite concentrations and quantified the protein cost of the feasible solutions. Pareto optimality analysis between energy efficiency and protein cost reveals that the naturally evolved ED and EMP pathways are indeed among the most protein cost-efficient pathways in their respective ATP yield categories and remain thermodynamically feasible across a wide range of ATP/ADP ratios and pathway intermediate metabolite concentration ranges. In contrast, pathways with higher ATP yield (>2) while feasible, are bound within stringent and often extreme operability ranges of cofactor and intermediate metabolite concentrations. The preponderance of EMP and ED is thus consistent with not only optimally balancing energy yield vs. enzyme cost but also with ensuring operability for wide metabolite concentration ranges and ATP/ADP ratios.
Collapse
Affiliation(s)
- Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anupam Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
39
|
Control and regulation of the pyrophosphate-dependent glucose metabolism in Entamoeba histolytica. Mol Biochem Parasitol 2019; 229:75-87. [PMID: 30772421 DOI: 10.1016/j.molbiopara.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/10/2023]
Abstract
Entamoeba histolytica has neither Krebs cycle nor oxidative phosphorylation activities; therefore, glycolysis is the main pathway for ATP supply and provision of carbon skeleton precursors for the synthesis of macromolecules. Glucose is metabolized through fermentative glycolysis, producing ethanol as its main end-product as well as some acetate. Amoebal glycolysis markedly differs from the typical Embden-Meyerhof-Parnas pathway present in human cells: (i) by the use of inorganic pyrophosphate, instead of ATP, as the high-energy phospho group donor; (ii) with one exception, the pathway enzymes can catalyze reversible reactions under physiological conditions; (iii) there is no allosteric regulation and sigmoidal kinetic behavior of key enzymes; and (iv) the presence of some glycolytic and fermentation enzymes similar to those of anaerobic bacteria. These peculiarities bring about alternative mechanisms of control and regulation of the PPi-dependent fermentative glycolysis in the parasite in comparison to the ATP-dependent and allosterically regulated glycolysis in many other eukaryotic cells. In this review, the current knowledge of the carbohydrate metabolism enzymes in E. histolytica is analyzed. Thermodynamics and stoichiometric analyses indicate 2 to 3.5 ATP yield per glucose metabolized, instead of the often presumed 5 ATP/glucose ratio. PPi derived from anabolism seems insufficient for PPi-glycolysis; hence, alternative ways of PPi supply are also discussed. Furthermore, the underlying mechanisms of control and regulation of the E. histolytica carbohydrate metabolism, analyzed by applying integral and systemic approaches such as Metabolic Control Analysis and kinetic modeling, contribute to unveiling alternative and promising drug targets.
Collapse
|
40
|
Xiong W, Lo J, Chou KJ, Wu C, Magnusson L, Dong T, Maness P. Isotope-Assisted Metabolite Analysis Sheds Light on Central Carbon Metabolism of a Model Cellulolytic Bacterium Clostridium thermocellum. Front Microbiol 2018; 9:1947. [PMID: 30190711 PMCID: PMC6115520 DOI: 10.3389/fmicb.2018.01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023] Open
Abstract
Cellulolytic bacteria have the potential to perform lignocellulose hydrolysis and fermentation simultaneously. The metabolic pathways of these bacteria, therefore, require more comprehensive and quantitative understanding. Using isotope tracer, gas chromatography-mass spectrometry, and metabolic flux modeling, we decipher the metabolic network of Clostridium thermocellum, a model cellulolytic bacterium which represents as an attractive platform for conversion of lignocellulose to dedicated products. We uncover that the Embden-Meyerhof-Parnas (EMP) pathway is the predominant glycolytic route whereas the Entner-Doudoroff (ED) pathway and oxidative pentose phosphate pathway are inactive. We also observe that C. thermocellum's TCA cycle is initiated by both Si- and Re-citrate synthase, and it is disconnected between 2-oxoglutarate and oxaloacetate in the oxidative direction; C. thermocellum uses a citramalate shunt to synthesize isoleucine; and both the one-carbon pathway and the malate shunt are highly active in this bacterium. To gain a quantitative understanding, we further formulate a fluxome map to quantify the metabolic fluxes through central metabolic pathways. This work represents the first global in vivo investigation of the principal carbon metabolism of C. thermocellum. Our results elucidate the unique structure of metabolic network in this cellulolytic bacterium and demonstrate the capability of isotope-assisted metabolite studies in understanding microbial metabolism of industrial interests.
Collapse
Affiliation(s)
- Wei Xiong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Jonathan Lo
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Chao Wu
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Tao Dong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - PinChing Maness
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
41
|
Investigating the Central Metabolism of Clostridium thermosuccinogenes. Appl Environ Microbiol 2018; 84:AEM.00363-18. [PMID: 29678919 DOI: 10.1128/aem.00363-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/15/2018] [Indexed: 01/28/2023] Open
Abstract
Clostridium thermosuccinogenes is a thermophilic anaerobic bacterium able to convert various carbohydrates to succinate and acetate as main fermentation products. Genomes of the four publicly available strains have been sequenced, and the genome of the type strain has been closed. The annotated genomes were used to reconstruct the central metabolism, and enzyme assays were used to validate annotations and to determine cofactor specificity. The genes were identified for the pathways to all fermentation products, as well as for the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. Notably, a candidate transaldolase was lacking, and transcriptomics during growth on glucose versus that on xylose did not provide any leads to potential transaldolase genes or alternative pathways connecting the C5 with the C3/C6 metabolism. Enzyme assays showed xylulokinase to prefer GTP over ATP, which could be of importance for engineering xylose utilization in related thermophilic species of industrial relevance. Furthermore, the gene responsible for malate dehydrogenase was identified via heterologous expression in Escherichia coli and subsequent assays with the cell extract, which has proven to be a simple and powerful method for the basal characterization of thermophilic enzymes.IMPORTANCE Running industrial fermentation processes at elevated temperatures has several advantages, including reduced cooling requirements, increased reaction rates and solubilities, and a possibility to perform simultaneous saccharification and fermentation of a pretreated biomass. Most studies with thermophiles so far have focused on bioethanol production. Clostridium thermosuccinogenes seems an attractive production organism for organic acids, succinic acid in particular, from lignocellulosic biomass-derived sugars. This study provides valuable insights into its central metabolism and GTP and PPi cofactor utilization.
Collapse
|
42
|
Whitham JM, Moon JW, Rodriguez M, Engle NL, Klingeman DM, Rydzak T, Abel MM, Tschaplinski TJ, Guss AM, Brown SD. Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:98. [PMID: 29632556 PMCID: PMC5887222 DOI: 10.1186/s13068-018-1095-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/24/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Clostridium (Ruminiclostridium) thermocellum is a model fermentative anaerobic thermophile being studied and engineered for consolidated bioprocessing of lignocellulosic feedstocks into fuels and chemicals. Engineering efforts have resulted in significant improvements in ethanol yields and titers although further advances are required to make the bacterium industry-ready. For instance, fermentations at lower pH could enable co-culturing with microbes that have lower pH optima, augment productivity, and reduce buffering cost. C. thermocellum is typically grown at neutral pH, and little is known about its pH limits or pH homeostasis mechanisms. To better understand C. thermocellum pH homeostasis we grew strain LL1210 (C. thermocellum DSM1313 Δhpt ΔhydG Δldh Δpfl Δpta-ack), currently the highest ethanol producing strain of C. thermocellum, at different pH values in chemostat culture and applied systems biology tools. RESULTS Clostridium thermocellum LL1210 was found to be growth-limited below pH 6.24 at a dilution rate of 0.1 h-1. F1F0-ATPase gene expression was upregulated while many ATP-utilizing enzymes and pathways were downregulated at pH 6.24. These included most flagella biosynthesis genes, genes for chemotaxis, and other motility-related genes (> 50) as well as sulfate transport and reduction, nitrate transport and nitrogen fixation, and fatty acid biosynthesis genes. Clustering and enrichment of differentially expressed genes at pH values 6.48, pH 6.24 and pH 6.12 (washout conditions) compared to pH 6.98 showed inverse differential expression patterns between the F1F0-ATPase and genes for other ATP-utilizing enzymes. At and below pH 6.24, amino acids including glutamate and valine; long-chain fatty acids, their iso-counterparts and glycerol conjugates; glycolysis intermediates 3-phosphoglycerate, glucose 6-phosphate, and glucose accumulated intracellularly. Glutamate was 267 times more abundant in cells at pH 6.24 compared to pH 6.98, and intercellular concentration reached 1.8 μmol/g pellet at pH 5.80 (stopped flow). CONCLUSIONS Clostridium thermocellum LL1210 can grow under slightly acidic conditions, similar to limits reported for other strains. This foundational study provides a detailed characterization of a relatively acid-intolerant bacterium and provides genetic targets for strain improvement. Future studies should examine adding gene functions used by more acid-tolerant bacteria for improved pH homeostasis at acidic pH values.
Collapse
Affiliation(s)
- Jason M. Whitham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Thomas Rydzak
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
- Present Address: Department of Biological Science, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Malaney M. Abel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Science Center, National Laboratory, Oak Ridge, TN USA
- Present Address: LanzaTech, Inc., Skokie, IL USA
| |
Collapse
|
43
|
Gilna P, Lynd LR, Mohnen D, Davis MF, Davison BH. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:285. [PMID: 29213324 PMCID: PMC5707806 DOI: 10.1186/s13068-017-0971-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. A perspective on the aspects of successful center operation is presented.
Collapse
Affiliation(s)
- Paul Gilna
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
| | - Lee R. Lynd
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Debra Mohnen
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Mark F. Davis
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Brian H. Davison
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
| |
Collapse
|
44
|
Hackmann TJ, Ngugi DK, Firkins JL, Tao J. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ Microbiol 2017; 19:4670-4683. [PMID: 28892251 DOI: 10.1111/1462-2920.13929] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 11/27/2022]
Abstract
Bacteria have been thought to follow only a few well-recognized biochemical pathways when fermenting glucose or other hexoses. These pathways have been chiseled in the stone of textbooks for decades, with most sources rendering them as they appear in the classic 1986 text by Gottschalk. Still, it is unclear how broadly these pathways apply, given that they were established and delineated biochemically with only a few model organisms. Here, we show that well-recognized pathways often cannot explain fermentation products formed by bacteria. In the most extensive analysis of its kind, we reconstructed pathways for glucose fermentation from genomes of 48 species and subspecies of bacteria from one environment (the rumen). In total, 44% of these bacteria had atypical pathways, including several that are completely unprecedented for bacteria or any organism. In detail, 8% of bacteria had an atypical pathway for acetate formation; 21% of bacteria had an atypical pathway for propionate or succinate formation; 6% of bacteria had an atypical pathway for butyrate formation and 33% of bacteria had an atypical or incomplete Embden-Meyerhof-Parnas pathway. This study shows that reconstruction of metabolic pathways - a common goal of omics studies - could be incorrect if well-recognized pathways are used for reference. Furthermore, it calls for renewed efforts to delineate fermentation pathways biochemically.
Collapse
Affiliation(s)
- Timothy J Hackmann
- Department of Animal Science, University of Florida, P.O. Box 110910, Gainesville, FL 32611, USA
| | - David Kamanda Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jeffrey L Firkins
- Department of Animal Science, The Ohio State University, 2029 Fyffe Rd, Columbus, OH 43210, USA
| | - Junyi Tao
- Department of Animal Science, University of Florida, P.O. Box 110910, Gainesville, FL 32611, USA
| |
Collapse
|
45
|
Thompson RA, Trinh CT. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations. Biotechnol Bioeng 2017; 114:2592-2604. [PMID: 28671264 DOI: 10.1002/bit.26374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
As a model thermophilic bacterium for the production of second-generation biofuels, the metabolism of Clostridium thermocellum has been widely studied. However, most studies have characterized C. thermocellum metabolism for growth at relatively low substrate concentrations. This outlook is not industrially relevant, however, as commercial viability requires substrate loadings of at least 100 g/L cellulosic materials. Recently, a wild-type C. thermocellum DSM1313 was cultured on high cellulose loading batch fermentations and reported to produce a wide range of fermentative products not seen at lower substrate concentrations, opening the door for a more in-depth analysis of how this organism will behave in industrially relevant conditions. In this work, we elucidated the interconnectedness of overflow metabolism and growth cessation in C. thermocellum during high cellulose loading batch fermentations (100 g/L). Metabolic flux and thermodynamic analyses suggested that hydrogen and formate accumulation perturbed the complex redox metabolism and limited conversion of pyruvate to acetyl-CoA conversion, likely leading to overflow metabolism and growth cessation in C. thermocellum. Pyruvate formate lyase (PFL) acts as an important redox valve and its flux is inhibited by formate accumulation. Finally, we demonstrated that manipulation of fermentation conditions to alleviate hydrogen accumulation could dramatically alter the fate of pyruvate, providing valuable insight into process design for enhanced C. thermocellum production of chemicals and biofuels. Biotechnol. Bioeng. 2017;114: 2592-2604. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- R Adam Thompson
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville and Oak Ridge National Laboratory, Oak Ridge, Tennessee.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Cong T Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville and Oak Ridge National Laboratory, Oak Ridge, Tennessee.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.,Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
46
|
Shen Q, Tan H, Xing GW, Zheng J, Jia Z. A new method to investigate the catalytic mechanism of YhdE pyrophosphatase by using a pyrophosphate fluorescence probe. Sci Rep 2017; 7:8169. [PMID: 28811554 PMCID: PMC5557916 DOI: 10.1038/s41598-017-08368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023] Open
Abstract
YhdE is a Maf (multicopy associated filamentation) proteins from Escherichia coli which exhibits pyrophosphatase activity towards selected nucleotides, although its catalytic mechanism remains unclear. Herein we used a novel fluorescence probe (4-isoACBA–Zn(II) complex) to characterize the enzymatic properties of YhdE and its mutant, establishing a new method for assaying pyrophosphatase catalytic function. Our results reveal for the first time that the new fluorescence sensor confers high sensitivity and specificity and pyrophosphate (PPi) is the direct catalytic product of YhdE. Crystal structures of a mutant in the active-site loop (YhdE_E33A) show conformational flexibility implicated in the catalytic mechanism of YhdE. ITC experiments and computational docking further reveal that Asp70 and substrate dTTP coordinate Mn2+. Quantum mechanics calculations indicate that YhdE hydrolysis appears to follow a stepwise pathway in which a water molecule first attacks the α-phosphorus atom in the substrate, followed by the release of PPi from the pentavalent intermediate.
Collapse
Affiliation(s)
- Qingya Shen
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Zongchao Jia
- Department of Biochemical and Molecular Science, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
47
|
Dash S, Khodayari A, Zhou J, Holwerda EK, Olson DG, Lynd LR, Maranas CD. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:108. [PMID: 28469704 PMCID: PMC5414155 DOI: 10.1186/s13068-017-0792-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. RESULTS In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances, and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis-Menten kinetic parameters. CONCLUSIONS The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.
Collapse
Affiliation(s)
- Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, 126 Land and Water Research Building, University Park, PA 16802 USA
| | - Ali Khodayari
- Department of Chemical Engineering, The Pennsylvania State University, 126 Land and Water Research Building, University Park, PA 16802 USA
| | - Jilai Zhou
- Thayer School of Engineering at Dartmouth College, Hanover, NH USA
| | | | - Daniel G. Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH USA
| | - Lee R. Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, 126 Land and Water Research Building, University Park, PA 16802 USA
| |
Collapse
|
48
|
Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metab Eng 2017; 41:182-191. [PMID: 28400329 DOI: 10.1016/j.ymben.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022]
Abstract
Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.
Collapse
Affiliation(s)
- Thomas Rydzak
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Margaret Sladek
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Evert K Holwerda
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Thayer School of Engineering at Dartmouth College, Hanover, NH, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
| |
Collapse
|
49
|
Dumitrache A, Klingeman DM, Natzke J, Rodriguez M, Giannone RJ, Hettich RL, Davison BH, Brown SD. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells. Sci Rep 2017; 7:43583. [PMID: 28240279 PMCID: PMC5327387 DOI: 10.1038/srep43583] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.
Collapse
Affiliation(s)
- Alexandru Dumitrache
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Dawn M Klingeman
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Jace Natzke
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Miguel Rodriguez
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Richard J Giannone
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Robert L Hettich
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Brian H Davison
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Steven D Brown
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| |
Collapse
|
50
|
Taillefer M, Sparling R. Glycolysis as the Central Core of Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 156:55-77. [PMID: 26907549 DOI: 10.1007/10_2015_5003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The increasing concerns of greenhouse gas emissions have increased the interest in dark fermentation as a means of productions for industrial chemicals, especially from renewable cellulosic biomass. However, the metabolism, including glycolysis, of many candidate organisms for cellulosic biomass conversion through consolidated bioprocessing is still poorly understood and the genomes have only recently been sequenced. Because a variety of industrial chemicals are produced directly from sugar metabolism, the careful understanding of glycolysis from a genomic and biochemical point of view is essential in the development of strategies for increasing product yields and therefore increasing industrial potential. The current review discusses the different pathways available for glycolysis along with unexpected variations from traditional models, especially in the utilization of alternate energy intermediates (GTP, pyrophosphate). This reinforces the need for a careful description of interactions between energy metabolites and glycolysis enzymes for understanding carbon and electron flux regulation.
Collapse
Affiliation(s)
- M Taillefer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - R Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|