1
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Kocsis B, Lee MK, Antal K, Yu JH, Pócsi I, Leiter É, Emri T. Genome-Wide Gene Expression Analyses of the AtfA/AtfB-Mediated Menadione Stress Response in Aspergillus nidulans. Cells 2023; 12:463. [PMID: 36766807 PMCID: PMC9913763 DOI: 10.3390/cells12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The bZIP transcription factors (TFs) govern regulation of development, secondary metabolism, and various stress responses in filamentous fungi. In this work, we carried out genome-wide expression studies employing Illumina RNAseq to understand the roles of the two bZIP transcription factors AtfA and AtfB in Aspergillus nidulans. Comparative analyses of transcriptomes of control, ΔatfA, ΔatfB, and ΔatfAΔatfB mutant strains were performed. Dependence of a gene on AtfA (AtfB) was decided by its differential downregulation both between the reference and ΔatfA (ΔatfB) strains and between the ΔatfB (ΔatfA) and the ΔatfAΔatfB strains in vegetatively grown cells (mycelia) and asexual spores (conidia) of menadione sodium bisulfite (MSB)-treated or untreated cultures. As AtfA is the primary bZIP TF governing stress-response in A. nidulans, the number of differentially expressed genes for ΔatfA was significantly higher than for ΔatfB in both mycelial and conidial samples, and most of the AtfB-dependent genes showed AtfA dependence, too. Moreover, the low number of genes depending on AtfB but not on AtfA can be a consequence of ΔatfA leading to downregulation of atfB expression. Conidial samples showed much higher abundance of atfA and atfB mRNAs and more AtfA- and AtfB-affected genes than mycelial samples. In the presence of MSB, the number of AtfB- (but not of AtfA-) affected genes decreased markedly, which was accompanied with decreased mRNA levels of atfB in MSB-treated mycelial (reference strain) and conidial (ΔatfA mutant) samples. In mycelia, the overlap between the AtfA-dependent genes in MSB-treated and in untreated samples was low, demonstrating that distinct genes can be under AtfA control under different conditions. Carbohydrate metabolism genes were enriched in the set of AtfA-dependent genes. Among them, AtfA-dependence of glycolytic genes in conidial samples was the most notable. Levels of transcripts of certain secondary metabolitic gene clusters, such as the Emericellamide cluster, also showed AtfA-dependent regulation. Genes encoding catalase and histidine-containing phosphotransfer proteins showed AtfA-dependence under all experimental conditions. There were 23 AtfB-dependent genes that did not depend on AtfA under any of our experimental conditions. These included a putative α-glucosidase (agdB), a putative α-amylase, calA, which is involved in early conidial germination, and an alternative oxidase. In summary, in A. nidulans there is a complex interaction between the two bZIP transcription factors, where AtfA plays the primary regulatory role.
Collapse
Affiliation(s)
- Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Mi-Kyung Lee
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Károly Antal
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Zoology, Eszterházy Károly Catholic University, Leányka Str. 6-8., 3300 Eger, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Erdmann EA, Nitsche S, Gorbushina AA, Schumacher J. Genetic Engineering of the Rock Inhabitant Knufia petricola Provides Insight Into the Biology of Extremotolerant Black Fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:862429. [PMID: 37746170 PMCID: PMC10512386 DOI: 10.3389/ffunb.2022.862429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 09/26/2023]
Abstract
Black microcolonial fungi (Ascomycetes from Arthonio-, Dothideo-, and Eurotiomycetes) are stress-tolerant and persistent dwellers of natural and anthropogenic extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) melanin in the multilayered cell walls. To understand how black fungi live, survive, colonize mineral substrates, and interact with phototrophs genetic methods are needed to test these functions and interactions. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a model for developing methods for genetic manipulation. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and the implementation of the three resistance selection markers genR (geneticin/nptII), baR (glufosinate/bar), and suR (chlorimuron ethyl/sur). The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter. The black-white screening due to the concurrent elimination of pks1 and phs1 (carotenoids) allows to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. The co-localization and interaction of the two K. petricola White Collar orthologs were demonstrated. Two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for a broad implementation in other fungi. This variety of genetic tools is opening a completely new perspective for mechanistic and very detailed study of expression, functioning and regulation of the genes/proteins encoded by the genomes of black fungi.
Collapse
Affiliation(s)
- Eileen A. Erdmann
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Sarah Nitsche
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Anna A. Gorbushina
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Julia Schumacher
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Unraveling the regulation of sugar beet pulp utilization in the industrially relevant fungus Aspergillus niger. iScience 2022; 25:104065. [PMID: 35359804 PMCID: PMC8961234 DOI: 10.1016/j.isci.2022.104065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient utilization of agro-industrial waste, such as sugar beet pulp, is crucial for the bio-based economy. The fungus Aspergillus niger possesses a wide array of enzymes that degrade complex plant biomass substrates, and several regulators have been reported to play a role in their production. The role of the regulators GaaR, AraR, and RhaR in sugar beet pectin degradation has previously been reported. However, genetic regulation of the degradation of sugar beet pulp has not been assessed in detail. In this study, we generated a set of single and combinatorial deletion mutants targeting the pectinolytic regulators GaaR, AraR, RhaR, and GalX as well as the (hemi-)cellulolytic regulators XlnR and ClrB to address their relative contribution to the utilization of sugar beet pulp. We show that A. niger has a flexible regulatory network, adapting to the utilization of (hemi-)cellulose at early timepoints when pectin degradation is impaired. Major sugar beet pulp components are sequentially utilized by A. niger Contribution of major regulators toward sugar beet pulp utilization was compared Deletion of araR and clrB showed high impact on growth after 8 and 24 h, respectively
Collapse
|
5
|
Meng J, Németh Z, Peng M, Fekete E, Garrigues S, Lipzen A, Ng V, Savage E, Zhang Y, Grigoriev IV, Mäkelä MR, Karaffa L, de Vries RP. GalR, GalX and AraR co-regulate d-galactose and l-arabinose utilization in Aspergillus nidulans. Microb Biotechnol 2022; 15:1839-1851. [PMID: 35213794 PMCID: PMC9151342 DOI: 10.1111/1751-7915.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022] Open
Abstract
Filamentous fungi produce a wide variety of enzymes in order to efficiently degrade plant cell wall polysaccharides. The production of these enzymes is controlled by transcriptional regulators, which also control the catabolic pathways that convert the released monosaccharides. Two transcriptional regulators, GalX and GalR, control d-galactose utilization in the model filamentous fungus Aspergillus nidulans, while the arabinanolytic regulator AraR regulates l-arabinose catabolism. d-Galactose and l-arabinose are commonly found together in polysaccharides, such as arabinogalactan, xylan and rhamnogalacturonan I. Therefore, the catabolic pathways that convert d-galactose and l-arabinose are often also likely to be active simultaneously. In this study, we investigated the interaction between GalX, GalR and AraR in d-galactose and l-arabinose catabolism. For this, we generated single, double and triple mutants of the three regulators, and analysed their growth and enzyme and gene expression profiles. Our results clearly demonstrated that GalX, GalR and AraR co-regulate d-galactose catabolism in A. nidulans. GalX has a prominent role on the regulation of genes of d-galactose oxido-reductive pathway, while AraR can compensate for the absence of GalR and/or GalX.
Collapse
Affiliation(s)
- Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Zoltán Németh
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Vivian Ng
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Emily Savage
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yu Zhang
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary.,Institute of Metagenomics, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
6
|
Gila BC, Antal K, Birkó Z, Keserű JS, Pócsi I, Emri T. Strategies Shaping the Transcription of Carbohydrate-Active Enzyme Genes in Aspergillus nidulans. J Fungi (Basel) 2022; 8:jof8010079. [PMID: 35050018 PMCID: PMC8780418 DOI: 10.3390/jof8010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding the coordinated regulation of the hundreds of carbohydrate-active enzyme (CAZyme) genes occurring in the genomes of fungi has great practical importance. We recorded genome-wide transcriptional changes of Aspergillus nidulans cultivated on glucose, lactose, or arabinogalactan, as well as under carbon-starved conditions. We determined both carbon-stress-specific changes (weak or no carbon source vs. glucose) and carbon-source-specific changes (one type of culture vs. all other cultures). Many CAZyme genes showed carbon-stress-specific and/or carbon-source-specific upregulation on arabinogalactan (138 and 62 genes, respectively). Besides galactosidase and arabinan-degrading enzyme genes, enrichment of cellulolytic, pectinolytic, mannan, and xylan-degrading enzyme genes was observed. Fewer upregulated genes, 81 and 107 carbon stress specific, and 6 and 16 carbon source specific, were found on lactose and in carbon-starved cultures, respectively. They were enriched only in galactosidase and xylosidase genes on lactose and rhamnogalacturonanase genes in both cultures. Some CAZyme genes (29 genes) showed carbon-source-specific upregulation on glucose, and they were enriched in β-1,4-glucanase genes. The behavioral ecological background of these characteristics was evaluated to comprehensively organize our knowledge on CAZyme production, which can lead to developing new strategies to produce enzymes for plant cell wall saccharification.
Collapse
Affiliation(s)
- Barnabás Cs. Gila
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (B.C.G.); (I.P.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly Catholic University, Eszterházy tér 1, 3300 Eger, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.B.); (J.S.K.)
| | - Judit Sz. Keserű
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.B.); (J.S.K.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (B.C.G.); (I.P.)
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (B.C.G.); (I.P.)
- Correspondence:
| |
Collapse
|
7
|
Chen Q, Xu W, Wu H, Guang C, Zhang W, Mu W. An overview of D-galactose utilization through microbial fermentation and enzyme-catalyzed conversion. Appl Microbiol Biotechnol 2021; 105:7161-7170. [PMID: 34515844 DOI: 10.1007/s00253-021-11568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/05/2023]
Abstract
D-Galactose is an abundant carbohydrate monomer in nature and widely exists in macroalgae, plants, and dairy wastes. D-Galactose is useful as a raw material for biomass fuel production or low-calorie sweetener production, attracting increased attention. This article summarizes the studies on biotechnological processes for galactose utilization. Two main research directions of microbial fermentation and enzyme-catalyzed conversion from galactose-rich biomass are extensively reviewed. The review provides the recent discoveries for biofuel production from macroalgae, including the innovative methods in the pretreatment process and technological development in the fermentation process. As modern people pay more attention to health, enzyme technologies for low-calorie sweetener production are more urgently needed. D-Tagatose is a promising low-calorie alternative to sugar. We discuss the recent studies on characterization and genetic modification of L-arabinose isomerase to improve the bioconversion of D-galactose to D-tagatose. In addition, the trends and critical challenges in both research directions are outlined at the end. KEY POINTS: • The value and significance of galactose utilization are highlighted. • Biofuel production from galactose-rich biomass is accomplished by fermentation. • L-arabinose isomerase is a tool for bioconversion of D-galactose to D-tagatose.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Savinova OS, Chulkin AM, Savinova TS, Vavilova EA, Vasina DV, Solyev PN, Fedorova TV. Construction of the Heterologous Laccase Producer Aspergillus nidulans lac№4 (argB–) and Its Application for the Progesterone Transformation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 2019; 16:731-744. [PMID: 30194403 DOI: 10.1038/s41579-018-0075-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fungi contain a remarkable diversity of both primary and secondary metabolic pathways involved in ecologically specialized or accessory functions. Genes in these pathways are frequently physically linked on fungal chromosomes, forming metabolic gene clusters (MGCs). In this Review, we describe the diversity in the structure and content of fungal MGCs, their population-level and species-level variation, the evolutionary mechanisms that underlie their formation, maintenance and decay, and their ecological and evolutionary impact on fungal populations. We also discuss MGCs from other eukaryotes and the reasons for their preponderance in fungi. Improved knowledge of the evolutionary life cycle of MGCs will advance our understanding of the ecology of specialized metabolism and of the interplay between the lifestyle of an organism and genome architecture.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
10
|
Evolutionary Transition of GAL Regulatory Circuit from Generalist to Specialist Function in Ascomycetes. Trends Microbiol 2019; 26:692-702. [PMID: 29395731 DOI: 10.1016/j.tim.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022]
Abstract
The Gal4 transcription factor (TF) controls gene expression by binding the DNA sequence motif CGG(N11)CCG. Well studied versions regulate metabolism of glucose in Candida albicans and galactose in Saccharomyces cerevisiae. Gal4 is also found within Aspergillus species and shows a wide range of potential binding targets. Members of the CTG clade that reassigned CUG codons from leucine to serine lack the Gal80 binding domain of Gal4, and they use the TF to regulate only glycolytic genes. In this clade, the galactose catabolic pathway (also known as the Leloir pathway) genes are regulated by Rtg1/Rtg3. In the WGD species, the complete Gal4/Gal80 module is limited to regulation of the Leloir pathway, while glycolysis is controlled by Gcr1/Gcr2. This shows a switch of Gal4 from a generalist to a specialist within the ascomycetes, and the split of glucose and galactose metabolism into distinct regulatory circuits.
Collapse
|
11
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
12
|
l-Arabinose induces d-galactose catabolism via the Leloir pathway in Aspergillus nidulans. Fungal Genet Biol 2018; 123:53-59. [PMID: 30496805 DOI: 10.1016/j.fgb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/03/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
l-Arabinose and d-galactose are the principal constituents of l-arabinogalactan, and also co-occur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while l-arabinose is utilised faster in the presence than in the absence of d-galactose. Furthermore, the first two genes of the Leloir pathway for d-galactose catabolism - encoding d-galactose 1-epimerase and galactokinase - are induced more rapidly by l-arabinose than by d-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. d-Galactose 1-epimerase is hyperinduced by l-arabinose, d-xylose and l-arabitol but not by xylitol. The results suggest that in A. nidulans, l-arabinose and d-xylose - both requiring NADPH for their catabolisation - actively promote the enzyme infrastructure necessary to convert β-d-galactopyranose via the Leloir pathway with its α-anomer specific enzymes, into β-d-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of d-galactose.
Collapse
|
13
|
Mäkelä M, DiFalco M, McDonnell E, Nguyen T, Wiebenga A, Hildén K, Peng M, Grigoriev I, Tsang A, de Vries R. Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli. Stud Mycol 2018; 91:79-99. [PMID: 30487660 PMCID: PMC6249967 DOI: 10.1016/j.simyco.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We classified the genes encoding carbohydrate-active enzymes (CAZymes) in 17 sequenced genomes representing 16 evolutionarily diverse Aspergillus species. We performed a phylogenetic analysis of the encoding enzymes, along with experimentally characterized CAZymes, to assign molecular function to the Aspergilli CAZyme families and subfamilies. Genome content analysis revealed that the numbers of CAZy genes per CAZy family related to plant biomass degradation follow closely the taxonomic distance between the species. On the other hand, growth analysis showed almost no correlation between the number of CAZyme genes and the efficiency in polysaccharide utilization. The exception is A. clavatus where a reduced number of pectinolytic enzymes can be correlated with poor growth on pectin. To gain detailed information on the enzymes used by Aspergilli to breakdown complex biomass, we conducted exoproteome analysis by mass spectrometry. These results showed that Aspergilli produce many different enzymes mixtures in the presence of sugar beet pulp and wheat bran. Despite the diverse enzyme mixtures produced, species of section Nigri, A. aculeatus, A. nidulans and A. terreus, produce mixtures of enzymes with activities that are capable of digesting all the major polysaccharides in the available substrates, suggesting that they are capable of degrading all the polysaccharides present simultaneously. For the other Aspergilli, typically the enzymes produced are targeted to a subset of polysaccharides present, suggesting that they can digest only a subset of polysaccharides at a given time.
Collapse
Affiliation(s)
- M.R. Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - M. DiFalco
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B1R6, Canada
| | - E. McDonnell
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B1R6, Canada
| | - T.T.M. Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B1R6, Canada
| | - A. Wiebenga
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - K. Hildén
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - M. Peng
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - I.V. Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94598, USA
| | - A. Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B1R6, Canada
| | - R.P. de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
14
|
Hu Y, Qin Y, Liu G. Collection and Curation of Transcriptional Regulatory Interactions in Aspergillus nidulans and Neurospora crassa Reveal Structural and Evolutionary Features of the Regulatory Networks. Front Microbiol 2018; 9:27. [PMID: 29403467 PMCID: PMC5780447 DOI: 10.3389/fmicb.2018.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Transcriptional regulation has important roles in various biological processes (e.g., development and metabolism) in filamentous fungi. However, regulatory interactions between transcription factors (TFs) and their target genes in these species have only been described in different forms by primary scientific literature, which limits the integrated analysis of these data. Here, we extensively curated the reported transcriptional regulatory interactions in Aspergillus nidulans and Neurospora crassa. For each interaction, the identifiers of involved proteins or genes were unified, and the types of supporting experiments were recorded. Then, transcriptional regulatory networks were reconstructed from the interactions supported by classical low-throughput experiments. Analysis of the networks revealed the presence of hub targets regulated by multiple TFs and network motifs of other structures (e.g., regulatory loops). Comparison of the regulatory interactions between the two species identified 33 conserved interactions supported by classical experiments in both species, most of which are involved in the regulation of metabolic genes. We anticipate the curated data would serve as a catalog for the studies of transcriptional regulation in filamentous fungi.
Collapse
Affiliation(s)
- Yibo Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China.,Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China.,National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
15
|
Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G. Carbon Catabolite Repression in Filamentous Fungi. Int J Mol Sci 2017; 19:ijms19010048. [PMID: 29295552 PMCID: PMC5795998 DOI: 10.3390/ijms19010048] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022] Open
Abstract
Carbon Catabolite Repression (CCR) has fascinated scientists and researchers around the globe for the past few decades. This important mechanism allows preferential utilization of an energy-efficient and readily available carbon source over relatively less easily accessible carbon sources. This mechanism helps microorganisms to obtain maximum amount of glucose in order to keep pace with their metabolism. Microorganisms assimilate glucose and highly favorable sugars before switching to less-favored sources of carbon such as organic acids and alcohols. In CCR of filamentous fungi, CreA acts as a transcription factor, which is regulated to some extent by ubiquitination. CreD-HulA ubiquitination ligase complex helps in CreA ubiquitination, while CreB-CreC deubiquitination (DUB) complex removes ubiquitin from CreA, which causes its activation. CCR of fungi also involves some very crucial elements such as Hexokinases, cAMP, Protein Kinase (PKA), Ras proteins, G protein-coupled receptor (GPCR), Adenylate cyclase, RcoA and SnfA. Thorough study of molecular mechanism of CCR is important for understanding growth, conidiation, virulence and survival of filamentous fungi. This review is a comprehensive revision of the regulation of CCR in filamentous fungi as well as an updated summary of key regulators, regulation of different CCR-dependent mechanisms and its impact on various physical characteristics of filamentous fungi.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Arif
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Benocci T, Aguilar-Pontes MV, Kun RS, Seiboth B, de Vries RP, Daly P. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei. FEBS Lett 2017; 592:60-70. [PMID: 29215697 DOI: 10.1002/1873-3468.12932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/18/2017] [Accepted: 11/29/2017] [Indexed: 11/11/2022]
Abstract
Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T. reesei ortholog of ARA1 from Pyricularia oryzae that regulates l-arabinose releasing and catabolic genes was deleted and characterized by growth profiling and transcriptomics along with a xyr1 mutant and xyr1/ara1 double mutant. Our results show that in addition to the l-arabinose-related role, T. reesei ARA1 is essential for expression of d-galactose releasing and catabolic genes, while XYR1 is not involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Roland Sándor Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, TU Wien, Vienna, Austria
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| |
Collapse
|
17
|
Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genomics 2017; 18:900. [PMID: 29169319 PMCID: PMC5701360 DOI: 10.1186/s12864-017-4164-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. Results The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Conclusions Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4164-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Birgit S Gruben
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: ATGM, Avans University of Applied Sciences, Lovensdijkstraat 61-63, 4818, AJ, Breda, The Netherlands
| | - Isabelle Benoit-Gelber
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Ronald P De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands. .,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands. .,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Growth and lovastatin production by Aspergillus terreus under different carbohyrates as carbon sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
20
|
Thieme N, Wu VW, Dietschmann A, Salamov AA, Wang M, Johnson J, Singan VR, Grigoriev IV, Glass NL, Somerville CR, Benz JP. The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:149. [PMID: 28616073 PMCID: PMC5469009 DOI: 10.1186/s13068-017-0807-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/29/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction. RESULTS The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. CONCLUSIONS PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.
Collapse
Affiliation(s)
- Nils Thieme
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Vincent W. Wu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - Axel Dietschmann
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Infection Biology, Institute for Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität, Erlangen-Nuremberg, Germany
| | - Asaf A. Salamov
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Jenifer Johnson
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Igor V. Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
- Environmental Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Chris R. Somerville
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - J. Philipp Benz
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
21
|
Ledesma-Amaro R, Nicaud JM. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends Biotechnol 2016; 34:798-809. [DOI: 10.1016/j.tibtech.2016.04.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
|
22
|
Zhang L, Lubbers RJM, Simon A, Stassen JHM, Vargas Ribera PR, Viaud M, van Kan JAL. A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea. Mol Microbiol 2016; 100:247-62. [PMID: 26691528 DOI: 10.1111/mmi.13314] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/16/2023]
Abstract
D-galacturonic acid (GalA) is the most abundant monosaccharide component of pectin. Previous transcriptome analysis in the plant pathogenic fungus Botrytis cinerea identified eight GalA-inducible genes involved in pectin decomposition, GalA transport and utilization. Co-expression of these genes indicates that a specific regulatory mechanism occurs in B. cinerea. In this study, promoter regions of these genes were analysed and eight conserved sequence motifs identified. The Bclga1 promoter, containing all these motifs, was functionally analysed and the motif designated GalA Responsive Element (GARE) was identified as the crucial cis-regulatory element in regulation of GalA utilization in B. cinerea. Yeast one-hybrid screening with the GARE motif led to identification of a novel Zn2 Cys6 transcription factor (TF), designated BcGaaR. Targeted knockout analysis revealed that BcGaaR is required for induction of GalA-inducible genes and growth of B. cinerea on GalA. A BcGaaR-GFP fusion protein was predominantly localized in nuclei in mycelium grown in GalA. Fluorescence in nuclei was much stronger in mycelium grown in GalA, as compared to fructose and glucose. This study provides the first report of a GalA-specific TF in filamentous fungi. Orthologs of BcGaaR are present in other ascomycete fungi that are able to utilize GalA, including Aspergillus spp., Trichoderma reesei and Neurospora crassa.
Collapse
Affiliation(s)
- Lisha Zhang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Ronnie J M Lubbers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Adeline Simon
- UMR1290 BIOGER, INRA-AgroParisTech, Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France
| | - Joost H M Stassen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Pablo R Vargas Ribera
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Muriel Viaud
- UMR1290 BIOGER, INRA-AgroParisTech, Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| |
Collapse
|
23
|
Klaubauf S, Zhou M, Lebrun MH, de Vries RP, Battaglia E. A novel L-arabinose-responsive regulator discovered in the rice-blast fungus Pyricularia oryzae (Magnaporthe oryzae). FEBS Lett 2016; 590:550-8. [PMID: 26790567 DOI: 10.1002/1873-3468.12070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/19/2015] [Accepted: 01/04/2016] [Indexed: 11/12/2022]
Abstract
In this study we identified the L-arabinose-responsive regulator of Pyricularia oryzae that regulates L-arabinose release and catabolism. Previously we identified the Zn2Cys6 transcription factor (TF), AraR, that has this role in the Trichocomaceae family (Eurotiales), but is absent in other fungi. Candidate Zn2Cys6 TF genes were selected according to their transcript profiles on L-arabinose. Deletion mutants of these genes were screened for their growth phenotype on L-arabinose. One mutant, named Δara1, was further analyzed. Our analysis demonstrated that Ara1 from P. oryzae is the functional analog of AraR from A. niger, while there is no significant sequence similarity between them.
Collapse
Affiliation(s)
- Sylvia Klaubauf
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Marc-Henri Lebrun
- MPA, UMR 2847 CNRS-Bayer Crop science, Lyon, France.,UMR 1290 BIOGER-CPP, INRA, AgroParisTech, Campus AgroParisTech, Ave Louis Bretignières, F75850 Thiverval-Grignon, France
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, The Netherlands
| |
Collapse
|
24
|
Kowalczyk JE, Gruben BS, Battaglia E, Wiebenga A, Majoor E, de Vries RP. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression. PLoS One 2015; 10:e0143200. [PMID: 26580075 PMCID: PMC4651341 DOI: 10.1371/journal.pone.0143200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022] Open
Abstract
In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.
Collapse
Affiliation(s)
- Joanna E. Kowalczyk
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Birgit S. Gruben
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Ad Wiebenga
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Eline Majoor
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
25
|
Khosravi C, Benocci T, Battaglia E, Benoit I, de Vries RP. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:1-28. [PMID: 25596028 DOI: 10.1016/bs.aambs.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Collapse
|
26
|
Lazar Z, Gamboa-Meléndez H, Le Coq AMC, Neuvéglise C, Nicaud JM. Awakening the endogenous Leloir pathway for efficient galactose utilization by Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:185. [PMID: 26609320 PMCID: PMC4659199 DOI: 10.1186/s13068-015-0370-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/28/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Production of valuable metabolites by Yarrowia lipolytica using renewable raw materials is of major interest for sustainable food and energy. Galactose is a monosaccharide found in galactomannans, hemicelluloses, gums, and pectins. RESULTS Yarrowia lipolytica was found to express all the Leloir pathway genes for galactose utilization, which encode fully functional proteins. Gene organization and regulation in Y. lipolytica resembles filamentous fungi rather than Saccharomyces cerevisiae. After Y. lipolytica was grown on mixture of glucose and galactose, it was then able to metabolize galactose, including when glucose concentrations were higher than 4 g/L. However, glucose was still the preferred carbon source. Nonetheless, a strain overexpressing the four ylGAL genes of the Leloir pathway was able to efficiently use galactose as its sole carbon source. This mutant was used to produce citric acid and lipids from galactose; the yields were comparable to or greater than that obtained for the parental strain (W29) on glucose. CONCLUSIONS The construction of a Y. lipolytica strain able to produce citric acid and lipids from galactose is a very important step in bypassing issues related to the use of food-based substrates in industrial applications.
Collapse
Affiliation(s)
- Zbigniew Lazar
- />INRA, UMR1319 Micalis, 78352 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, 78352 Jouy-en-Josas, France
- />Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37/41, 51-630 Wroclaw, Poland
| | - Heber Gamboa-Meléndez
- />INRA, UMR1319 Micalis, 78352 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, 78352 Jouy-en-Josas, France
| | - Anne-Marie Crutz- Le Coq
- />INRA, UMR1319 Micalis, 78352 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, 78352 Jouy-en-Josas, France
| | - Cécile Neuvéglise
- />INRA, UMR1319 Micalis, 78352 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, 78352 Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- />INRA, UMR1319 Micalis, 78352 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, 78352 Jouy-en-Josas, France
| |
Collapse
|
27
|
Orosz A, Fekete E, Flipphi M, Karaffa L. Metabolism of D-galactose is dispensable for the induction of the beta-galactosidase (bgaD) and lactose permease (lacpA) genes in Aspergillus nidulans. FEMS Microbiol Lett 2014; 359:19-25. [PMID: 25145606 DOI: 10.1111/1574-6968.12555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022] Open
Abstract
In this study, we analyze the expression of the Aspergillus nidulans bgaD-lacpA gene couple (encoding an intracellular beta-galactosidase and a lactose permease) in the presence of D-galactose. This monosaccharide can be catabolized via alternative, independent pathways in this model organism. The inductive capabilities of intermediates of the two alternative routes of D-galactose utilization were addressed in loss-of-function mutants defective in a defined step in one of the two pathways. In a galactokinase (galE9) mutant, the cluster is strongly induced by D-galactose, suggesting that formation of Leloir pathway intermediates is not required. The expression profiles of bgaD and lacpA were similar in wild type, L-arabinitol dehydrogenase (araA1), and hexokinase (hxkA1) negative backgrounds, indicating that intermediates of the oxido-reductive pathway downstream of galactitol are not necessary either. Furthermore, bgaD-lacpA transcription was not induced in any of the tested strains when galactitol was provided as the growth substrate. An hxkA1/galE9 double mutant cannot grow on d-galactose at all, but still produced bgaD and lacpA transcripts upon transfer to d-galactose. We therefore concluded that the physiological inducer of the bgaD-lacpA gene cluster upon growth on D-galactose is the nonmetabolized sugar itself.
Collapse
Affiliation(s)
- Anita Orosz
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
28
|
Kowalczyk JE, Benoit I, de Vries RP. Regulation of plant biomass utilization in Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:31-56. [PMID: 24767425 DOI: 10.1016/b978-0-12-800260-5.00002-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of fungi to survive in every known biotope, both natural and man-made, relies in part on their ability to use a wide range of carbon sources. Fungi degrade polymeric carbon sources present in the environment (polysaccharides, proteins, and lignins) to use the monomeric components as nutrients. However, the available carbon sources vary strongly in nature, both between biotopes and in time. The degradation of polymeric carbon sources is mediated through the production of a broad range of enzymes, the production of which is tightly controlled by a network of regulators and linked to the activation of catabolic pathways to convert the released monomers. This review summarizes the knowledge of Aspergillus regulators involved in plant biomass utilization.
Collapse
Affiliation(s)
| | - Isabelle Benoit
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Brown NA, Ries LNA, Goldman GH. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol 2014; 72:48-63. [PMID: 25011009 DOI: 10.1016/j.fgb.2014.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
The utilisation of lignocellulosic plant biomass as an abundant, renewable feedstock for green chemistries and biofuel production is inhibited by its recalcitrant nature. In the environment, lignocellulolytic fungi are naturally capable of breaking down plant biomass into utilisable saccharides. Nonetheless, within the industrial context, inefficiencies in the production of lignocellulolytic enzymes impede the implementation of green technologies. One of the primary causes of such inefficiencies is the tight transcriptional control of lignocellulolytic enzymes via carbon catabolite repression. Fungi coordinate metabolism, protein biosynthesis and secretion with cellular energetic status through the detection of intra- and extra-cellular nutritional signals. An enhanced understanding of the signals and signalling pathways involved in regulating the transcription, translation and secretion of lignocellulolytic enzymes is therefore of great biotechnological interest. This comparative review describes how nutrient sensing pathways regulate carbon catabolite repression, metabolism and the utilisation of alternative carbon sources in Saccharomyces cerevisiae and ascomycete fungi.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil; Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, Brazil.
| |
Collapse
|
30
|
Todd RB, Zhou M, Ohm RA, Leeggangers HACF, Visser L, de Vries RP. Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics 2014; 15:214. [PMID: 24650355 PMCID: PMC3998117 DOI: 10.1186/1471-2164-15-214] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been analysed and appears to be highly variable with some regulators widely conserved and others showing narrow distribution. Although genome-scale transcription factor surveys have been performed before, no global study into the prevalence of specific regulators across the fungal kingdom has been presented. Results In this study we have analysed the number of members for 37 regulator classes in 77 ascomycete and 31 basidiomycete fungal genomes and revealed significant differences between ascomycetes and basidiomycetes. In addition, we determined the presence of 64 regulators characterised in ascomycetes across these 108 genomes. This demonstrated that overall the highest presence of orthologs is in the filamentous ascomycetes. A significant number of regulators lacked orthologs in the ascomycete yeasts and the basidiomycetes. Conversely, of seven basidiomycete regulators included in the study, only one had orthologs in ascomycetes. Conclusions This study demonstrates a significant difference in the regulatory repertoire of ascomycete and basidiomycete fungi, at the level of both regulator class and individual regulator. This suggests that the current regulatory systems of these fungi have been mainly developed after the two phyla diverged. Most regulators detected in both phyla are involved in central functions of fungal physiology and therefore were likely already present in the ancestor of the two phyla.
Collapse
Affiliation(s)
- Richard B Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Culleton H, McKie V, de Vries RP. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned fromAspergillus? Biotechnol J 2013; 8:884-94. [DOI: 10.1002/biot.201200382] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022]
|
32
|
ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the β-mannan utilization system in Aspergillus oryzae. Fungal Genet Biol 2012; 49:987-95. [DOI: 10.1016/j.fgb.2012.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022]
|
33
|
Gruben BS, Zhou M, de Vries RP. GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger. FEBS Lett 2012; 586:3980-5. [PMID: 23063944 DOI: 10.1016/j.febslet.2012.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
Abstract
Galactose catabolism in Aspergillus nidulans is regulated by at least two regulators, GalR and GalX. In Aspergillus niger only GalX is present, and its role in d-galactose catabolism in this fungus was investigated. Phenotypic and gene expression analysis of a wild type and a galX disruptant revealed that GalX regulates the d-galactose oxido-reductive pathway, but not the Leloir pathway in A. niger.
Collapse
Affiliation(s)
- Birgit S Gruben
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
34
|
Mojzita D, Herold S, Metz B, Seiboth B, Richard P. L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi. J Biol Chem 2012; 287:26010-8. [PMID: 22654107 DOI: 10.1074/jbc.m112.372755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well established Leloir pathway for the catabolism of d-galactose in fungi, the oxidoreductive pathway has been recently identified. In this oxidoreductive pathway, D-galactose is converted via a series of NADPH-dependent reductions and NAD(+)-dependent oxidations into D-fructose. The pathway intermediates include galactitol, L-xylo-3-hexulose, and d-sorbitol. This study identified the missing link in the pathway, the L-xylo-3-hexulose reductase that catalyzes the conversion of L-xylo-3-hexulose to D-sorbitol. In Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger, we identified the genes lxr4 and xhrA, respectively, that encode the l-xylo-3-hexulose reductases. The deletion of these genes resulted in no growth on galactitol and in reduced growth on D-galactose. The LXR4 was heterologously expressed, and the purified protein showed high specificity for L-xylo-3-hexulose with a K(m) = 2.0 ± 0.5 mm and a V(max) = 5.5 ± 1.0 units/mg. We also confirmed that the product of the LXR4 reaction is D-sorbitol.
Collapse
Affiliation(s)
- Dominik Mojzita
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | | | | | | | | |
Collapse
|
35
|
Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans. Fungal Genet Biol 2012; 49:415-25. [PMID: 22445777 DOI: 10.1016/j.fgb.2012.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/21/2022]
Abstract
Lactose is intracellularly hydrolysed by Aspergillus nidulans. Classical mutation mapping data and the physical characteristics of the previously purified glycosyl hydrolase facilitated identification of the clustered, divergently transcribed intracellular β-galactosidase (bgaD) and lactose permease (lacpA) genes. At the transcript level, bgaD and lacpA were coordinately expressed in response to d-galactose, lactose or l-arabinose, while no transcription was detectable in the additional presence of glucose. In contrast, creA loss-of-function mutants derepressed for both genes to a considerable extent (even) under non-inducing or repressing growth conditions. Lactose- and d-galactose induction nevertheless occurred only in the absence of glucose, indicating a regulatory role for CreA-independent repression. Remarkably, bgaD deletion mutants grew normal on lactose. In contrast, lacpA deletants grew at a much slower rate in lactose liquid medium than wild-type while strains that carried more than one copy of lacpA grew faster, showing that transport is the limiting step in lactose catabolism. The effect of lacpA gene deletion on lactose uptake was exacerbated at lower substrate concentrations, evidence for the existence of a second transport system with a lower affinity for this disaccharide in A. nidulans.
Collapse
|
36
|
Fekete E, de Vries RP, Seiboth B, vanKuyk PA, Sándor E, Fekete E, Metz B, Kubicek CP, Karaffa L. D-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger. FEMS Microbiol Lett 2012; 329:198-203. [PMID: 22324294 DOI: 10.1111/j.1574-6968.2012.02524.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/28/2022] Open
Abstract
The majority of black Aspergilli (Aspergillus section Nigri), including Aspergillus niger, as well as many other Ascomycetes fail to germinate on d-galactose as a sole carbon source. Here, we provide evidence that the ability of A. niger to transport D-galactose is growth stage dependent, being absent in the conidiospores but present in the mycelia. Despite earlier claims, we could identify galactokinase activity in growing cells and all genes of the Leloir pathway (responsible for channelling D-galactose into the EMP pathway) are well induced on D-galactose (and also on lactose, D-xylose and L-arabinose) in the mycelial stage. Expression of all Leloir pathway genes was also detectable in conidiospores, although galE (encoding a galactokinase) and galD (encoding a galactose-1-phosphate uridylyl transferase) were expressed poorly. These results suggest that the D-galactose-negative phenotype of A. niger conidiospores may be due to the lack of inducer uptake.
Collapse
Affiliation(s)
- Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|