1
|
Jiang Y, Chang Z, Xu Y, Zhan X, Wang Y, Gao M. Advances in molecular enzymology of β-1,3-glucanases: A comprehensive review. Int J Biol Macromol 2024; 279:135349. [PMID: 39242004 DOI: 10.1016/j.ijbiomac.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
β-1,3-Glucanases are essential enzymes involved in the hydrolysis of β-1,3-glucans, with significant biological and industrial relevance. These enzymes are derived from diverse sources, including bacteria, fungi, plants, and animals, each exhibiting unique substrate specificities and biochemical properties. This review provides an in-depth analysis of the natural sources and ecological roles of β-1,3-glucanases, exploring their enzymatic properties such as optimal pH, temperature, molecular weight, isoelectric points, and kinetic parameters, which are crucial for understanding their functionality and stability. Advances in molecular enzymology are discussed, focusing on gene cloning, expression in systems like Escherichia coli and Pichia pastoris, and structural-functional relationships. The reaction mechanisms and the role of non-catalytic carbohydrate-binding modules in enhancing substrate hydrolysis are examined. Industrial applications of β-1,3-glucanases are highlighted, including the production of β-1,3-glucooligosaccharides, uses in the food industry, biological control of plant pathogens, and nutritional roles. This review aims to provide a foundation for future research, improving the efficiency and robustness of β-1,3-glucanases for various industrial applications.
Collapse
Affiliation(s)
- Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zepeng Chang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Jiang C, Miao G, Li J, Zhang Z, Li J, Zhu S, Zhang J, Zhou X. Identification and Characterization of Two Novel Extracellular β-Glucanases from Chaetomium globosum against Fusarium sporotrichioides. Appl Biochem Biotechnol 2024; 196:3199-3215. [PMID: 37642922 DOI: 10.1007/s12010-023-04698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Chaetomium globosum can inhibit the growth of fusarium by means of their extracellular proteins. Two novel β-glucanases, designated Cgglu17A and Cgglu16B, were separated from the supernatant of C. globosum W7 and verified to have the ability to hydrolyze cell walls of Fusarium sporotrichioides MLS-19. Cgglu17A (397 amino acids) was classified as glycoside hydrolase family 17 while Cgglu16B belongs to the family16 (284 amino acids). Recombinant protein Cgglu17A was successfully expressed in Escherichia coli, and the enzymes were purified by affinity chromatography. Maximum activity of Cgglu17A appeared at the pH 5.5 and temperature 50 °C, but Cgglu16B shows the maximum activity at the pH 5.0 and temperature 50 °C. Most of heavy metal ions had inhibition effect on the two enzymes, but Cgglu17A and Cgglu16B were respectively activated by Ba2+ and Mn2+. Cgglu17A exhibited high substrate specificity, almost only catalyzing the cleavage of β-1,3-glycosidic bond, in various polysaccharose, to liberate glucose. However, Cgglu16B showed high catalytic activities to both β-1,3-glycosidic and β-1,3-1,4-glycosidic bonds. Cgglu17A was an exo-glucanase, but Cgglu16B was an endo-glucanase based on hydrolytic properties assay. Both of two enzymes showed potential antifungal activity, and the synergistic effect was observed in the germination experiment of pathogenic fungus. In conclusion, Cgglu17A (exo-1,3-β-glucanase) and Cgglu16B (endo-1,3(4)-β-glucanase) were confirmed to play a key role in the process of C. globosum controlling fusarium and have potential application value on industry and agriculture for the first time.
Collapse
Affiliation(s)
- Cheng Jiang
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China.
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, People's Republic of China.
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, People's Republic of China.
| | - Guopeng Miao
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, People's Republic of China
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, People's Republic of China
| | - Jialu Li
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
- Lanzhou Institute of Biological Products, Lanzhou, People's Republic of China
| | - Ziyu Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Jiamin Li
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Shuyan Zhu
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Jinhu Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Xingyu Zhou
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| |
Collapse
|
3
|
Földi C, Merényi Z, Balázs B, Csernetics Á, Miklovics N, Wu H, Hegedüs B, Virágh M, Hou Z, Liu XB, Galgóczy L, Nagy LG. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes). mSystems 2024; 9:e0120823. [PMID: 38334416 PMCID: PMC10949477 DOI: 10.1128/msystems.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.
Collapse
Affiliation(s)
- Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Bálint Balázs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - László Galgóczy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
4
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
5
|
Kobayashi N, Wada N, Yokoyama H, Tanaka Y, Suzuki T, Habu N, Konno N. Extracellular enzymes secreted in the mycelial block of Lentinula edodes during hyphal growth. AMB Express 2023; 13:36. [PMID: 37185915 PMCID: PMC10130320 DOI: 10.1186/s13568-023-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Lentinula edodes (shiitake mushroom) is one of the most widely cultivated edible mushrooms and is primarily cultivated using sawdust medium. While there have been improvements in the cultivation technology, the mechanism of mycelial block cultivation, such as mycelial growth and enzymatic sawdust degradation, has not been clarified. In this study, the mycelium was elongated longitudinally in the bottle sawdust culture for 27 days, and the cultivated sawdust medium was divided into three sections (top, middle, and bottom parts). To determine spatial heterogeneity in the enzyme secretion, the enzymatic activities of each part were analyzed. Lignocellulose degradation enzymes, such as endoglucanase, xylanase, and manganese peroxidase were highly secreted in the top part of the medium. On the other hand, amylase, pectinase, fungal cell wall degradation enzyme (β-1,3-glucanase, β-1,6-glucanase, and chitinase), and laccase activities were higher in the bottom part. The results indicate that the principal sawdust degradation occurs after mycelial colonization. Proteins with the laccase activity were purified from the bottom part of the medium, and three laccases, Lcc5, Lcc6 and Lcc13, were identified. In particular, the expression of Lcc13 gene was higher in the bottom part compared with the level in the top part, suggesting Lcc13 is mainly produced from the tip region and have important roles for mycelial spread and nutrient uptake during early stage of cultivation.
Collapse
Affiliation(s)
- Nanae Kobayashi
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Nagisa Wada
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Haruna Yokoyama
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Yuki Tanaka
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Tomohiro Suzuki
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naoto Habu
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naotake Konno
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
| |
Collapse
|
6
|
Vogt E, Sonderegger L, Chen YY, Segessemann T, Künzler M. Structural and Functional Analysis of Peptides Derived from KEX2-Processed Repeat Proteins in Agaricomycetes Using Reverse Genetics and Peptidomics. Microbiol Spectr 2022; 10:e0202122. [PMID: 36314921 PMCID: PMC9769878 DOI: 10.1128/spectrum.02021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Bioactivities of fungal peptides are of interest for basic research and therapeutic drug development. Some of these peptides are derived from "KEX2-processed repeat proteins" (KEPs), a recently defined class of precursor proteins that contain multiple peptide cores flanked by KEX2 protease cleavage sites. Genome mining has revealed that KEPs are widespread in the fungal kingdom. Their functions are largely unknown. Here, we present the first in-depth structural and functional analysis of KEPs in a basidiomycete. We bioinformatically identified KEP-encoding genes in the genome of the model agaricomycete Coprinopsis cinerea and established a detection protocol for the derived peptides by overexpressing the C. cinerea KEPs in the yeast Pichia pastoris. Using this protocol, which includes peptide extraction and mass spectrometry with data analysis using the search engine Mascot, we confirmed the presence of several KEP-derived peptides in C. cinerea, as well as in the edible mushrooms Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii. While CRISPR-mediated knockout of C. cinerea kep genes did not result in any detectable phenotype, knockout of kex genes caused defects in mycelial growth and fruiting body formation. These results suggest that KEP-derived peptides may play a role in the interaction of C. cinerea with the biotic environment and that the KEP-processing KEX proteases target a variety of substrates in agaricomycetes, including some important for mycelial growth and differentiation. IMPORTANCE Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far. Here, we present a protocol for the extraction and structural characterization of KEP-derived peptides from fungal culture supernatants and tissues. The protocol was successfully used to detect several linear and minimally modified KEP-derived peptides in the agaricomycetes C. cinerea, L. edodes, P. ostreatus, and P. eryngii. Our study establishes a new protocol for the targeted search of KEP-derived peptides in fungi, which will hopefully lead to the discovery of more of these interesting fungal peptides and allow a further characterization of KEPs.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Lukas Sonderegger
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Ying-Yu Chen
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Tina Segessemann
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| |
Collapse
|
7
|
Nakajima M. β-1,2-Glucans and associated enzymes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wen X, Geng F, Xu Y, Li X, Liu D, Liu Z, Luo Z, Wang J. Quantitative transcriptomic and metabolomic analyses reveal the changes in Tricholoma matsutake fruiting bodies during cold storage. Food Chem 2022; 381:132292. [DOI: 10.1016/j.foodchem.2022.132292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/05/2023]
|
9
|
Li Y, Ding S, Kitazawa H, Wang Y. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
11
|
Preparation, characterization, radical scavenging property and antidiabetic potential of laminarioligosaccharides derived from laminarin. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Yan D, Gao Q, Rong C, Liu Y, Song S, Yu Q, Zhou K, Liao Y. Comparative transcriptome analysis of abnormal cap and healthy fruiting bodies of the edible mushroom Lentinula edodes. Fungal Genet Biol 2021; 156:103614. [PMID: 34400332 DOI: 10.1016/j.fgb.2021.103614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Lentinula edodes, a commercially important mushroom, is cultivated worldwide. Artificially cultivated L. edodes often present with abnormal symptoms in the fruiting body, which affect their commercial value and reduce production efficiency. In this study, we carried out a comparative transcriptome analysis of normal fruiting body pileus (LeNP), normal margin in abnormal fruiting body pileus (LeAPNM), and abnormal margin in abnormal fruiting body pileus (LeAPAM). Metabolic pathways such as those involved in transmembrane transport, ribosome production, tryptophan metabolism, arginine and proline metabolism, and the metabolism of other amino acids were significantly enriched in LeAPAM. F-box, short-chain dehydrogenases/reductases, the major facilitator superfamily, and the FMN_red superfamily are related to malformation in L. edodes. Genes encoding heat shock proteins, G protein, and β-1,3-glucanase in the GH5 family showed different expression patterns, suggesting that these genes are involved in the development of L. edodes fruiting bodies. In particular, CAZymes, which are involved in the development of cell walls in L. edodes, were highly expressed in LeAPAM. According to TEM observation, the cell wall of LeAPAM samples showed significant thickening compared to the other samples. These results suggested that cell wall anabolism in LeAPAM samples was more active than that in normal fruiting bodies, enhancing the environmental adaptability of the fungus. This study provides preliminary data for future research aimed at solving the phenomenon of abnormal fruiting bodies of L. edodes.
Collapse
Affiliation(s)
- Dong Yan
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Qi Gao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China.
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Qiuyu Yu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Kaixin Zhou
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; College of Agriculture and Food Engineering, Baise University, 21 Zhongshan Second Street, Youjiang District, Guangxi 533000, China
| | - Yanling Liao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; College of Agriculture and Food Engineering, Baise University, 21 Zhongshan Second Street, Youjiang District, Guangxi 533000, China
| |
Collapse
|
13
|
Ruthes AC, Cantu-Jungles TM, Cordeiro LMC, Iacomini M. Prebiotic potential of mushroom d-glucans: implications of physicochemical properties and structural features. Carbohydr Polym 2021; 262:117940. [PMID: 33838817 DOI: 10.1016/j.carbpol.2021.117940] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Mushroom d-glucans are recognized as dietary fibers and as biologically active natural polysaccharides, with the advantages of being quite inexpensive for production, tolerable, and having a range of possible structures and physicochemical properties. The prebiotic potential of mushroom d-glucans has been explored in recent years, but the relationship between their various structural features and activity is poorly understood. This review focuses on comprehensively evaluating the prebiotic potential of mushroom d-glucans in face of their structural variations. Overall, mushroom d-glucans provide a unique set of different structures and physicochemical properties with prebiotic potential, where linkage type and solubility degree seem to be associated with prebiotic activity outcomes. The understanding of the effects of distinct structures and physicochemical properties in mushroom d-glucans on the gut microbiota contributes to the design and selection of new prebiotics in a more predictable way.
Collapse
Affiliation(s)
- Andrea Caroline Ruthes
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Thaísa Moro Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
14
|
Jia X, Wang C, Du X, Peng H, Liu L, Xiao Y, He C. Specific hydrolysis of curdlan with a novel glycoside hydrolase family 128 β-1,3-endoglucanase containing a carbohydrate-binding module. Carbohydr Polym 2021; 253:117276. [DOI: 10.1016/j.carbpol.2020.117276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023]
|
15
|
Singh RP, Rajarammohan S, Thakur R, Hassan M. Linear and branched β-Glucans degrading enzymes from versatile Bacteroides uniformis JCM 13288 T and their roles in cooperation with gut bacteria. Gut Microbes 2020; 12:1-18. [PMID: 33043794 PMCID: PMC7553746 DOI: 10.1080/19490976.2020.1826761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
β-glucans are the dietary nutrients present in oats, barley, algae, and mushrooms. The macromolecules are well known for their immune-modulatory activity; however, how the human gut bacteria digest them is vaguely understood. In this study, Bacteroides uniformis JCM 13288 T was found to grow on laminarin, pustulan, and porphyran. We sequenced the genome of the strain, which was about 5.05 megabase pairs and contained 4868 protein-coding genes. On the basis of growth patterns of the bacterium, two putative polysaccharide utilization loci for β-glucans were identified from the genome, and associated four putative genes were cloned, expressed, purified, and characterized. Three glycoside hydrolases (GHs) that were endo-acting enzymes (BuGH16, BuGH30, and BuGH158), and one which was an exo-acting (BuGH3) enzyme. The BuGH3, BuGH16, and BuGH158 can cleave linear exo/endo- β- 1-3 linkages while BuGH30 can digest endo- β- 1-6 linkages. BuGH30 and BuGH158 were further explored for their roles in digesting β- glucans and generation of oligosaccharides, respectively. The BuGH30 predominately found to cleave long chain β- 1-6 linked glucans, and obtained final product was gentiobiose. The BuGH158 used for producing oligosaccharides varying from degree of polymerization 2 to 7 from soluble curdlan. We demonstrated that these oligosaccharides can be utilized by gut bacteria, which either did not grow or poorly grew on laminarin. Thus, B. uniformis JCM 13288 T is not only capable of utilizing β-glucans but also shares these glycans with human gut bacteria for potentially maintaining the gut microbial homeostasis.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India,CONTACT Ravindra Pal Singh Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Raksha Thakur
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Mohsin Hassan
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
16
|
Steindorff AS, Carver A, Calhoun S, Stillman K, Liu H, Lipzen A, He G, Yan M, Pangilinan J, LaButti K, Ng V, Bruns TD, Grigoriev IV. Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environ Microbiol 2020; 23:99-109. [PMID: 33034064 DOI: 10.1111/1462-2920.15273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/06/2020] [Indexed: 01/14/2023]
Abstract
Forest fires generate a large amount of carbon that remains resident on the site as dead and partially 'pyrolysed' (i.e. burnt) material that has long residency times and constitutes a significant pool in fire-prone ecosystems. In addition, fire-induced hydrophobic soil layers, caused by condensation of pyrolysed waxes and lipids, increase post-fire erosion and can lead to long-term productivity losses. A small set of pyrophilous fungi dominate post-fire soils and are likely to be involved with the degradation of all these compounds, yet almost nothing is currently known about what these fungi do or the metabolic processes they employ. In this study, we sequenced and analysed genomes from fungi isolated after Rim fire near Yosemite National Park in 2013 and showed the enrichment/expansion of CAZymes and families known to be involved in fruiting body initiation when compared to other basidiomycete fungi. We found gene families potentially involved in the degradation of the hydrophobic layer and pyrolysed organic matter, such as hydrophobic surface binding proteins, laccases (AA1_1), xylanases (GH10, GH11), fatty acid desaturases and tannases. Thus, pyrophilous fungi are important actors to restate the soil's functional capabilities.
Collapse
Affiliation(s)
- Andrei S Steindorff
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Akiko Carver
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Sara Calhoun
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Kyra Stillman
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Haowen Liu
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Guifen He
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Mi Yan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Jasmyn Pangilinan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Kurt LaButti
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Vivian Ng
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Thomas D Bruns
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| |
Collapse
|
17
|
Merényi Z, Prasanna AN, Wang Z, Kovács K, Hegedüs B, Bálint B, Papp B, Townsend JP, Nagy LG. Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Mol Biol Evol 2020; 37:2228-2240. [PMID: 32191325 PMCID: PMC7403615 DOI: 10.1093/molbev/msaa077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Arun N Prasanna
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| |
Collapse
|
18
|
Xie Y, Chang J, Kwan HS. Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain. Fungal Genet Biol 2020; 143:103432. [PMID: 32681999 DOI: 10.1016/j.fgb.2020.103432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The balance and interplay between sexual and asexual reproduction is one of the most intriguing mysteries in the study of fungi. The choice of developmental strategy reflects the ability of fungi to adapt to the changing environment. However, the evolution of developmental paths and the metabolic regulation during differentiation and morphogenesis are poorly understood. Here, an analysis was performed of carbohydrate metabolism and gene expression regulation during the early differentiation process from the vegetative mycelium, to the differentiated structures, fruiting body, oidia and sclerotia, of a homokaryotic fruiting Coprinopsis cinerea strain A43mutB43mut pab1-1 #326. Changes during morphogenesis and the evolution of developmental strategies were followed. Conversion between glucose and glycogen and between glucose and beta-glucan were the main carbon flows in the differentiation processes. Genes related to carbohydrate transport and metabolism were significantly differentially expressed among paths. Sclerotia displayed a set of specifically up-regulated genes that were enriched in the carbon metabolism and energy production and conversion processes. Evolutionary transcriptomic analysis of four developmental paths showed that all transcriptomes were under the purifying selection, and the more stressful the environment, the younger the transcriptome age. Oidiation has the lowest value of transcriptome age index (TAI) and transcriptome divergence index (TDI), while the fruiting process has the highest of both indexes. These findings provide new insights into the regulations of carbon metabolism and gene expressions during the early stages of fungal developmental paths differentiation, and improve our understanding of the evolutionary process of life history and reproductive strategy in fungi.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
19
|
Santos CR, Costa PACR, Vieira PS, Gonzalez SET, Correa TLR, Lima EA, Mandelli F, Pirolla RAS, Domingues MN, Cabral L, Martins MP, Cordeiro RL, Junior AT, Souza BP, Prates ÉT, Gozzo FC, Persinoti GF, Skaf MS, Murakami MT. Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family. Nat Chem Biol 2020; 16:920-929. [PMID: 32451508 DOI: 10.1038/s41589-020-0554-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/22/2020] [Indexed: 11/09/2022]
Abstract
The fundamental and assorted roles of β-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on β-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/β)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical β-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of β-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of β-1,3-glucans, which can be exploited for biotechnological applications.
Collapse
Affiliation(s)
- Camila R Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Pedro A C R Costa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Plínio S Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | | | - Thamy L R Correa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Evandro A Lima
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Fernanda Mandelli
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Atílio T Junior
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Beatriz P Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Érica T Prates
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.
| |
Collapse
|
20
|
Glucanase-Induced Stipe Wall Extension Shows Distinct Differences from Chitinase-Induced Stipe Wall Extension of Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.01345-19. [PMID: 31444203 DOI: 10.1128/aem.01345-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 11/20/2022] Open
Abstract
This study reports that a high concentration of the endo-β-1,3-glucanase ENG (200 μg ml-1) induced heat-inactivated stipe wall extension of Coprinopsis cinerea, whereas a high concentration of the extracellular β-glucosidase BGL2 (1,000 μg ml-1) did not; however, in combination, low concentrations of ENG (25 μg ml-1) and BGL2 (260 μg ml-1) induced heat-inactivated stipe cell wall extension. In contrast to the previously reported chitinase-reconstituted stipe wall extension, β-1,3-glucanase-reconstituted heat-inactivated stipe cell wall extension initially exhibited a fast extension rate that quickly decreased to zero after approximately 60 min; the stipe cell wall extension induced by a high concentration of β-1,3-glucanase did not result in stipe breakage during measurement, and the inner surfaces of glucanase-reconstituted extended cell walls still remained as amorphous matrices that did not appear to have been damaged. These distinctive features of the β-1,3-glucanase-reconstituted wall extension may be because chitin chains are cross-linked not only to the nonreducing termini of the side chains and the backbones of β-1,6 branched β-1,3-glucans but also to other polysaccharides. Remarkably, a low concentration of either the β-1,3-glucanase ENG or of chitinase ChiE1 did not induce heat-inactivated stipe wall extension, but a combination of these two enzymes, each at a low concentration, showed stipe cell wall extension activity that exhibited a steady and continuous wall extension profile. Therefore, we concluded that the stipe cell wall extension is the result of the synergistic actions of glucanases and chitinases.IMPORTANCE We previously reported that the chitinase could induce stipe wall extension and was involved in stipe elongation growth of the mushroom Coprinopsis cinerea In this study, we explored that β-1,3-glucanase also induced stipe cell wall extension. Interestingly, the extension profile and extended ultra-architecture of β-1,3-glucanase-reconstituted stipe wall were different from those of chitinase-reconstituted stipe wall. However, β-1,3-glucanase cooperated with chitinase to induce stipe cell wall extension. The significance of this synergy between glucanases and chitinases is that it enables a low concentration of active enzymes to induce wall extension, and the involvement of β-1,3-glucanases is necessary for the cell wall remodeling and the addition of new β-glucans during stipe elongation growth.
Collapse
|
21
|
Almási É, Sahu N, Krizsán K, Bálint B, Kovács GM, Kiss B, Cseklye J, Drula E, Henrissat B, Nagy I, Chovatia M, Adam C, LaButti K, Lipzen A, Riley R, Grigoriev IV, Nagy LG. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. THE NEW PHYTOLOGIST 2019; 224:902-915. [PMID: 31257601 DOI: 10.1111/nph.16032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi.
Collapse
Affiliation(s)
- Éva Almási
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1022, Hungary
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | | | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - István Nagy
- Seqomics Ltd. Mórahalom, Mórahalom, 6782, Hungary
| | - Mansi Chovatia
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Catherine Adam
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| |
Collapse
|
22
|
Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc Natl Acad Sci U S A 2019; 116:7409-7418. [PMID: 30902897 DOI: 10.1073/pnas.1817822116] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
Collapse
|
23
|
Kumakura K, Hori C, Matsuoka H, Igarashi K, Samejima M. Protein components of water extracts from fruiting bodies of the reishi mushroom Ganoderma lucidum contribute to the production of functional molecules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:529-535. [PMID: 29931755 DOI: 10.1002/jsfa.9211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/30/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mushrooms have been widely considered as health foods as their extracts have anti-hypertensive and anti-tumor activities. After a thorough literature survey, we hypothesized that enzymes in mushroom extracts play an important role in synthesizing functional molecules. Therefore, in this study, proteins extracted from reishi mushroom (Ganoderma lucidum), which is used in oriental medicine, were identified by the proteomic approach, and appropriate extraction methods for improving angiotensin-converting enzyme (ACE) inhibitory activities were investigated. RESULTS Various glycoside hydrolases (GHs), such as β-N-acetylhexosaminidase (GH family 20), α-1,2-mannosidase (GH family 47), endo-β-1,3-glucanase (GH family 128), and β-1,3-glucanase (GH152), that degrade glycans in the fruiting body were identified. The residual glucanase activities generated β-oligosaccharides. Additionally, the glutamic acid protease of the peptidase G1 family was determined as the major protein in the extract, and the residual peptidase activity of the extracts was found to improve ACE inhibitory activities. Finally, it was observed that extraction at 50 °C is suitable for yielding functional molecules with high ACE inhibitory activities. CONCLUSION Water extraction is generally believed to extract only functional macromolecules that exist in mushroom fruiting bodies. This study proposed a new concept that describes how functional molecules are produced by enzymes, including proteases and GHs, during extraction. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kei Kumakura
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki-shi, Japan
| | - Chiaki Hori
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo-shi, Japan
| | - Hiroki Matsuoka
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki-shi, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Masahiro Samejima
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int J Biol Macromol 2018; 117:890-901. [DOI: 10.1016/j.ijbiomac.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022]
|
25
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Liang Y, Zhu L, Gao M, Wu J, Zhan X. Effective production of biologically active water-soluble β-1,3-glucan by a coupled system of Agrobacterium sp. and Trichoderma harzianum. Prep Biochem Biotechnol 2018; 48:446-456. [PMID: 29561218 DOI: 10.1080/10826068.2018.1452259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Water-soluble β-1,3-glucan (w-glucan) prepared from curdlan is reported to possess various bioactive and medicinal properties. To develop an efficient and cost-effective microbial fermentation method for the direct production of w-glucan, a coupled fermentation system of Agrobacterium sp. and Trichoderma harzianum (CFS-AT) was established. The effects of Tween-80, glucose flow rate, and the use of a dissolved oxygen (DO) control strategy on w-glucan production were assessed. The addition of 10 g L-1 Tween-80 to the CFS-AT enhanced w-glucan production, presumably by loosening the curdlan ultrastructure and increasing the efficiency of curdlan hydrolysis. A two-stage glucose and DO control strategy was optimal for w-glucan production. At the T. harzianum cell growth stage, the optimal glucose flow rate and agitation speed were 2.0 g L-1 hr-1 and 600 rpm, respectively, and at the w-glucan production stage, they were 0.5 g L-1 hr-1 and 400 rpm, respectively. W-glucan production reached 17.31 g L-1, with a degree of polymerization of 19-25. Furthermore, w-glucan at high concentrations exhibited anti-tumor activity against MCF-7, HepG2, and Hela cancer cells in vitro. This study provides a novel, cost-effective, eco-friendly, and efficient microbial fermentation method for the direct production of biologically active w-glucan.
Collapse
Affiliation(s)
- Ying Liang
- a Ministry of Education, Key Lab Carbohydrate Chemical and Biotechnology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Li Zhu
- b Jiangsu Rayguang Biotech Co. Ltd. , Wuxi , Jiangsu , China
| | - Minjie Gao
- a Ministry of Education, Key Lab Carbohydrate Chemical and Biotechnology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Jianrong Wu
- a Ministry of Education, Key Lab Carbohydrate Chemical and Biotechnology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Xiaobei Zhan
- a Ministry of Education, Key Lab Carbohydrate Chemical and Biotechnology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| |
Collapse
|
27
|
Ni Z, Xu S, Bu J, Ying T. Secondary metabolism associated with softening of shiitake mushroom (Lentinula edodes) induced by O2depletion and CO2accumulation. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhendan Ni
- College of Biosystems Engineering and Food Science; Fuli Institute of Food Science; Key Laboratory of Agriculture Ministry for Postharvest Handling of Agro-Products; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Yuhangtang Road 588 Hangzhou 310058 China
| | - Shixiang Xu
- Natural Medicine Institute of Zhejiang Yangshengtang Co., LTD; Hangzhou 310007 China
| | - Jianwen Bu
- Department of Food Science and Engineering; Shandong Agriculture and Engineering University; Jinan 250100 China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science; Fuli Institute of Food Science; Key Laboratory of Agriculture Ministry for Postharvest Handling of Agro-Products; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Yuhangtang Road 588 Hangzhou 310058 China
| |
Collapse
|
28
|
Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis. Appl Environ Microbiol 2017; 83:AEM.02990-16. [PMID: 28314725 DOI: 10.1128/aem.02990-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks lignin peroxidase. To reveal genes involved in the loss of quality of Lentinula edodes postharvest fruiting bodies, transcriptome analysis was carried out using serial analysis of gene expression (SuperSAGE). This analysis revealed that many cell wall-related enzymes are upregulated after harvest, such as β-1,3-1,6-glucan-degrading enzymes in glycoside hydrolase (GH) families GH5, GH16, GH30, GH55, and GH128, and thaumatin-like proteins. In addition, we found that several chitin-related genes are upregulated, such as putative chitinases in GH family 18, exochitinases in GH20, and a putative chitosanase in GH family 75. The results suggest that cell wall-degrading enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative transcription factor genes were upregulated postharvest, such as genes containing high-mobility-group (HMG) domains and zinc finger domains. Several cell death-related proteins were also upregulated postharvest.IMPORTANCE Our data collectively suggest that there is a rapid fruiting body autolysis system in Lentinula edodes The genes for the loss of postharvest quality newly found in this research will be targets for the future breeding of strains that keep fresh longer than present strains. De novoLentinula edodes genome assembly data will be used for the construction of a complete Lentinula edodes chromosome map for future breeding.
Collapse
|
29
|
Production of high-value β-1,3-glucooligosaccharides by microwave-assisted hydrothermal hydrolysis of curdlan. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Expression and Characterization of a Novel Antifungal Exo-β-1,3-glucanase from Chaetomium cupreum. Appl Biochem Biotechnol 2016; 182:261-275. [DOI: 10.1007/s12010-016-2325-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
31
|
Qin Z, Yan Q, Yang S, Jiang Z. Modulating the function of a β-1,3-glucanosyltransferase to that of an endo-β-1,3-glucanase by structure-based protein engineering. Appl Microbiol Biotechnol 2016; 100:1765-1776. [PMID: 26490553 DOI: 10.1007/s00253-015-7057-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 02/08/2023]
Abstract
A glycoside hydrolase (GH) family 17 β-1,3-glucanosyltransferase (RmBgt17A) from Rhizomucor miehei CAU432 (CGMCC No. 4967) shared very low sequence homology (∼20 % identity) with that of other β-1,3-glucanases,despite their similar structural folds. Structural comparison and sequence alignment between RmBgt17A and GH family 17 β-1,3-glucanases suggested important roles for three residues (Tyr102, Trp157, and Glu158) located in the substrate-binding cleft of RmBgt17A in transglycosylation activity. A series of site-directed mutagenesis studies indicated that a single Glu-to-Ala mutation (E158A) modulates the function of RmBgt17A to that of a β-1,3-glucanase. Mutant E158A exhibited high hydrolytic activity (39.95 U/mg) toward reduced laminarin, 348.5-fold higher than the wild type. Optimal pH and temperature of the purified RmBgt17A-E158A were 4.5 and 55 °C, respectively. TLC analysis suggested that RmBgt17A-E158A is an endo-β-1,3-glucanase. Our study provides novel insight into protein engineering of the substrate-binding cleft of glycoside hydrolases to modulate the function of transglycosylation and hydrolysis.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| |
Collapse
|
32
|
A Novel Glycoside Hydrolase Family 5 β-1,3-1,6-Endoglucanase from Saccharophagus degradans 2-40T and Its Transglycosylase Activity. Appl Environ Microbiol 2016; 82:4340-4349. [PMID: 27208098 DOI: 10.1128/aem.00635-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In this study, we characterized Gly5M, originating from a marine bacterium, as a novel β-1,3-1,6-endoglucanase in glycoside hydrolase family 5 (GH5) in the Carbohydrate-Active enZyme database. The gly5M gene encodes Gly5M, a newly characterized enzyme from GH5 subfamily 47 (GH5_47) in Saccharophagus degradans 2-40(T) The gly5M gene was cloned and overexpressed in Escherichia coli Through analysis of the enzymatic reaction products by thin-layer chromatography, high-performance liquid chromatography, and matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry, Gly5M was identified as a novel β-1,3-endoglucanase (EC 3.2.1.39) and bacterial β-1,6-glucanase (EC 3.2.1.75) in GH5. The β-1,3-endoglucanase and β-1,6-endoglucanase activities were detected by using laminarin (a β-1,3-glucan with β-1,6-glycosidic linkages derived from brown macroalgae) and pustulan (a β-1,6-glucan derived from fungal cell walls) as the substrates, respectively. This enzyme also showed transglycosylase activity toward β-1,3-oligosaccharides when laminarioligosaccharides were used as the substrates. Since laminarin is the major form of glucan storage in brown macroalgae, Gly5M could be used to produce glucose and laminarioligosaccharides, using brown macroalgae, for industrial purposes. IMPORTANCE In this study, we have discovered a novel β-1,3-1,6-endoglucanase with a unique transglycosylase activity, namely, Gly5M, from a marine bacterium, Saccharophagus degradans 2-40(T) Gly5M was identified as the newly found β-1,3-endoglucanase and bacterial β-1,6-glucanase in GH5. Gly5M is capable of cleaving glycosidic linkages of both β-1,3-glucans and β-1,6-glucans. Gly5M also possesses a transglycosylase activity toward β-1,3-oligosacchrides. Due to the broad specificity of Gly5M, this enzyme can be used to produce glucose or high-value β-1,3- and/or β-1,6-oligosaccharides.
Collapse
|
33
|
Vasina DV, Pavlov AR, Koroleva OV. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol 2016; 16:106. [PMID: 27296712 PMCID: PMC4906887 DOI: 10.1186/s12866-016-0729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Fungi are organisms with the highest natural capacity to degrade lignocellulose substrates, which is enabled by complex systems of extracellular enzymes, whose expression and secretion depend on the characteristics of substrates and the environment. Results This study reports a secretome analysis for white-rot basidiomycete Trametes hirsuta cultivated on a synthetic media and a lignocellulose substrate. We demonstrate that T. hirsuta st. 072 produces multiple extracellular ligninolytic, cellulolytic, hemicellulolytic, peroxide generating, and proteolytic enzymes, as well as cerato-platanins. In contrast to other white rot species described earlier, which mostly secreted glucanases and mannosidases in response to the presence of the lignocellulose substrate, T. hirsuta expressed a spectrum of extracellular cellulolytic enzymes containing predominantly cellobiases and xylanases. As proteomic analysis could not detect lignin peroxidase (LiP) among the secreted lignin degrading enzymes, we attributed the observed extracellular LiP - like activity to the expressed versatile peroxidase (VP). An accessory enzyme, glyoxal oxidase, was found among the proteins secreted in the media during submerged cultivation of T. hirsuta both in the presence and in the absence of copper. However, aryl-alcohol oxidase (AAO) was not identified, despite the presence of AAO enzymatic activity secreted by the fungus. The spectra of the expressed enzymes dramatically changed depending on the growth conditions. Transfer from submerged cultivation to surface cultivation with the lignocellulose substrate switched off expression of exo-β-1,3-glucanase and α-amylase and turned on secretion of endo-β-1,3-glucanase and a range of glycosidases. In addition, an aspartic peptidase started being expressed instead of family S53 protease. For the first time, we report production of cerato-platanin proteins by Trametes species. The secretion of cerato-platanins was observed only in response to contact with lignocellulose, thus indicating a specific role of these proteins in degradation of the lignocellulose substrates. Conclusions Our results suggest a sequential mechanism of natural substrate degradation by T. hirsuta, in which the fungus produces different sets of enzymes to digest all main components of the substrate during cultivation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0729-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria V Vasina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia.
| | - Andrey R Pavlov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| | - Olga V Koroleva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| |
Collapse
|
34
|
Lebrigand K, He LD, Thakur N, Arguel MJ, Polanowska J, Henrissat B, Record E, Magdelenat G, Barbe V, Raffaele S, Barbry P, Ewbank JJ. Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes. PLoS Genet 2016; 12:e1006017. [PMID: 27153332 PMCID: PMC4859500 DOI: 10.1371/journal.pgen.1006017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/08/2016] [Indexed: 11/18/2022] Open
Abstract
Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode's response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen's genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the evolutionary arms race that exists between pathogen and host, to be studied.
Collapse
Affiliation(s)
- Kevin Lebrigand
- CNRS and University Nice Sophia Antipolis, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
| | - Le D. He
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Nishant Thakur
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Marie-Jeanne Arguel
- CNRS and University Nice Sophia Antipolis, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
| | - Jolanta Polanowska
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eric Record
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, Polytech Marseille, CP 925, Marseille, France
- Aix-Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Faculté des Sciences de Luminy-Polytech, CP 925, Marseille, France
| | - Ghislaine Magdelenat
- Commissariat à l'Energie Atomique, Institut de Génomique, Génoscope, Laboratoire de Biologie Moleculaire pour l'Etude des Génomes (LBioMEG), Evry, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique, Institut de Génomique, Génoscope, Laboratoire de Biologie Moleculaire pour l'Etude des Génomes (LBioMEG), Evry, France
| | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet Tolosan, France
| | - Pascal Barbry
- CNRS and University Nice Sophia Antipolis, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
- * E-mail: (PB); (JJE)
| | - Jonathan J. Ewbank
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
- * E-mail: (PB); (JJE)
| |
Collapse
|
35
|
Identification of early-response genes involved in cadmium resistance in shiitake mushrooms (Lentinula edodes). Mycol Prog 2015. [DOI: 10.1007/s11557-015-1136-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). J Proteomics 2015; 131:82-92. [PMID: 26477389 DOI: 10.1016/j.jprot.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Many cultivated rubber trees (Hevea brasiliensis) are invaded by various Phytophthora species fungi, especially in tropical regions which result in crop yield losses. Comparative proteome analysis coupled with liquid chromatography electrospray/ionization (LC-ESI) mass spectrometry identification was employed to investigate the relative abundance of defense related proteins in Phytophthora sp. susceptible (RRIM600) and tolerant (BPM24) clones of rubber tree. Proteome maps of non-rubber constituent of these two model clones show similar protein counts, although some proteins show significant alterations in their abundance. Most of the differentially abundant proteins found in the serum of BPM24 illustrate the accumulation of defense related proteins that participate in plant defense mechanisms such as beta-1,3-glucanase, chitinase, and lectin. SDS-PAGE and 2-D Western blot analysis showed greater level of accumulation of beta-1,3-glucanase and chitinase in latex serum of BPM24 when compared to RRIM600. A functional study of these two enzymes showed that BPM24 serum had greater beta-1,3-glucanase and chitinase activities than that of RRIM600. These up-regulated proteins are constitutively expressed and would serve to protect the rubber tree BPM24 from any fungal invader. The information obtained from this work is valuable for understanding of defense mechanisms and plantation improvement of H. brasiliensis. BIOLOGICAL SIGNIFICANCE Non-rubber constituents (latex serum) have almost no value and are treated as waste in the rubber agricultural industry. However, the serum of natural rubber latex contains biochemical substances. The comparative proteomics analysis of latex serum between tolerant and susceptible clones reveals that the tolerant BPM24 clone contained a high abundance of several classes of fungal pathogen-responsive proteins, such as glucanase and chitinase. Moreover, other proteins identified highlighted the accumulation of defensive-associated proteins participating in plant fungal immunity. The isolation of beta-1,3-glucanase, chitinase, and lectin from latex serum should be further investigated and may provide a therapeutic application. This investigation will lead to possible use of latex serum as a great biotechnological resource due to the large quantity of serum produced and the biochemicals contained therein.
Collapse
|
37
|
Zhou Y, Zhang W, Liu Z, Wang J, Yuan S. Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies. MICROBIOLOGY-SGM 2015. [PMID: 26199012 DOI: 10.1099/mic.0.000143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using a combined chromatography method, we simultaneously purified three protein fractions (II-2, II-3 and II-4) with 1,3-β-glucanase activity from extraction of pilei of Coprinopsis cinerea fruiting bodies. MALDI-TOF/TOF amino acid sequencing showed that these three fractions matched a putative exo-1,3-β-glucanase, a putative glucan 1,3-β-glucosidase and a putative glycosyl hydrolase family 16 protein annotated in the C. cinerea genome, respectively; however, they were characterized as a 1,3-β-glucosidase, an exo-1,3-β-glucanase and an endo-1,3-β-glucanase, respectively, by analysis of their substrate specificities and modes of action. This study explored how these three 1,3-β-glucoside hydrolases synergistically acted on laminarin: the endo-1,3-β-glucanase hydrolysed internal glycosidic bonds of laminarin to generate 1,3-β-oligosaccharides of various lengths, the exo-1,3-β-glucanase cleaved the longer-chain laminarioligosaccharides into short-chain disaccharides, laminaribiose and gentiobiose, and the 1,3-β-glucosidase further hydrolysed laminaribiose to glucose. The remaining gentiobiose must be hydrolysed by other 1,6-β-glucosidases. Therefore, the endo-1,3-β-glucanase, exo-1,3-β-glucanase and 1,3-β-glucosidase may act synergistically to completely degrade the 1,3-β-glucan backbone of the C. cinerea cell wall during fruiting body autolysis. These three 1,3-β-glucoside hydrolases share a similar optimum pH and optimum temperature, supporting the speculation that these enzymes work together under the same conditions to degrade 1,3-β-glucan in the C. cinerea cell wall during fruiting body autolysis.
Collapse
Affiliation(s)
- Yajun Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenming Zhang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jun Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
38
|
Konno N, Nakade K, Nishitani Y, Mizuno M, Sakamoto Y. Lentinan degradation in the Lentinula edodes fruiting body during postharvest preservation is reduced by downregulation of the exo-β-1,3-glucanase EXG2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8153-7. [PMID: 25033107 DOI: 10.1021/jf501578w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lentinan from Lentinula edodes fruiting bodies (shiitake mushrooms) is a valuable β-glucan for medical purposes based on its anticancer activity and immunomodulating activity. However, lentinan content in fruiting bodies decreases after harvesting and storage due to an increase in glucanase activity. In this study, we downregulated the expression of an exo-β-1,3-glucanase, exg2, in L. edodes using RNA interference. In the wild-type strain, β-1,3-glucanase activity in fruiting bodies remarkably increased after harvesting, and 41.7% of the lentinan content was lost after 4 days of preservation. The EXG2 downregulated strain showed significantly lower lentinan degrading activity (60-70% of the wild-type strain) in the fruiting bodies 2-4 days after harvesting. The lentinan content of fresh fruiting bodies was similar in the wild-type and EXG2 downregulated strains, but in the downregulated strain, only 25.4% of the lentinan was lost after 4 days, indicating that downregulation of EXG2 enables keeping the lentinan content high longer.
Collapse
MESH Headings
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/supply & distribution
- Crops, Agricultural/enzymology
- Crops, Agricultural/growth & development
- Crops, Agricultural/metabolism
- Down-Regulation
- Food Preservation
- Food, Genetically Modified
- Fruiting Bodies, Fungal/enzymology
- Fruiting Bodies, Fungal/growth & development
- Fruiting Bodies, Fungal/metabolism
- Fungal Proteins/antagonists & inhibitors
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Glucan 1,3-beta-Glucosidase/antagonists & inhibitors
- Glucan 1,3-beta-Glucosidase/genetics
- Glucan 1,3-beta-Glucosidase/metabolism
- Hydrolysis
- Immunologic Factors/isolation & purification
- Immunologic Factors/metabolism
- Immunologic Factors/supply & distribution
- Japan
- Lentinan/isolation & purification
- Lentinan/metabolism
- Lentinan/supply & distribution
- Organisms, Genetically Modified/growth & development
- Organisms, Genetically Modified/metabolism
- RNA Interference
- Recombinant Proteins/metabolism
- Shiitake Mushrooms/enzymology
- Shiitake Mushrooms/growth & development
- Shiitake Mushrooms/metabolism
- Time Factors
- Transformation, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Naotake Konno
- Iwate Biotechnology Research Center , 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | | | | | | | | |
Collapse
|
39
|
Purification and characterization of a new endo-β-1,3-glucanase exhibiting a high specificity for curdlan for production of β-1,3-glucan oligosaccharides. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0108-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Zhou P, Chen Z, Yan Q, Yang S, Hilgenfeld R, Jiang Z. The structure of a glycoside hydrolase family 81 endo-β-1,3-glucanase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2027-38. [PMID: 24100321 DOI: 10.1107/s090744491301799x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/29/2013] [Indexed: 11/11/2022]
Abstract
Endo-β-1,3-glucanases catalyze the hydrolysis of β-1,3-glycosidic linkages in glucans. They are also responsible for rather diverse physiological functions such as carbon utilization, cell-wall organization and pathogen defence. Glycoside hydrolase (GH) family 81 mainly consists of β-1,3-glucanases from fungi, higher plants and bacteria. A novel GH family 81 β-1,3-glucanase gene (RmLam81A) from Rhizomucor miehei was expressed in Escherichia coli. Purified RmLam81A was crystallized and the structure was determined in two crystal forms (form I-free and form II-Se) at 2.3 and 2.0 Å resolution, respectively. Here, the crystal structure of a member of GH family 81 is reported for the first time. The structure of RmLam81A is greatly different from all endo-β-1,3-glucanase structures available in the Protein Data Bank. The overall structure of the RmLam81A monomer consists of an N-terminal β-sandwich domain, a C-terminal (α/α)6 domain and an additional domain between them. Glu553 and Glu557 are proposed to serve as the proton donor and basic catalyst, respectively, in a single-displacement mechanism. In addition, Tyr386, Tyr482 and Ser554 possibly contribute to both the position or the ionization state of the basic catalyst Glu557. The first crystal structure of a GH family 81 member will be helpful in the study of the GH family 81 proteins and endo-β-1,3-glucanases.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Takeda T, Nakano Y, Takahashi M, Sakamoto Y, Konno N. Polysaccharide-inducible endoglucanases from Lentinula edodes exhibit a preferential hydrolysis of 1,3-1,4-β-glucan and xyloglucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7591-7598. [PMID: 23889585 DOI: 10.1021/jf401543m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three genes encoding glycoside hydrolase family 12 (GH12) enzymes from Lentinula edodes, namely Lecel12A, Lecel12B, and Lecel12C, were newly cloned by PCR using highly conserved sequence primers. To investigate enzymatic properties, recombinant enzymes encoded by L. edodes DNAs and GH12 genes from Postia placenta (PpCel12A and PpCel12B) and Schizophyllum commune (ScCel12A) were prepared in Brevibacillus choshinensis. Recombinant LeCel12A, PpCel12A, and PpCel12B, which were grouped in GH12 subfamily 1, preferentially hydrolyzed 1,3-1,4-β-glucan. By contrast, LeCel12B, LeCel12C, and ScCel12A, members of the subfamily 2, exhibited specific hydrolysis of xyloglucan. These results suggest that two subfamilies of GH12 are separated based on the substrate specificity. Transcript levels of L. edodes genes increased 72 h after growth of L. edodes mycelia cells in the presence of plant cell wall polymers such as xyloglucan, 1,3-1,4-β-glucan, and cellulose. These results suggest that L. edodes GH12 enzymes have evolved to hydrolyze 1,3-1,4-β-glucan and xyloglucan, which might enhance hyphal extension and nutrient acquisition.
Collapse
Affiliation(s)
- Takumi Takeda
- Iwate Biotechnology Research Center , 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | | | | | | | | |
Collapse
|
42
|
Characterization of a broad-specificity β-glucanase acting on β-(1,3)-, β-(1,4)-, and β-(1,6)-glucans that defines a new glycoside hydrolase family. Appl Environ Microbiol 2012; 78:8540-6. [PMID: 23023747 DOI: 10.1128/aem.02572-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here we report the cloning of the Pa_3_10940 gene from the coprophilic fungus Podospora anserina, which encodes a C-terminal family 1 carbohydrate binding module (CBM1) linked to a domain of unknown function. The function of the gene was investigated by expression of the full-length protein and a truncated derivative without the CBM1 domain in the yeast Pichia pastoris. Using a library of polysaccharides of different origins, we demonstrated that the full-length enzyme displays activity toward a broad range of β-glucan polysaccharides, including laminarin, curdlan, pachyman, lichenan, pustulan, and cellulosic derivatives. Analysis of the products released from polysaccharides revealed that this β-glucanase is an exo-acting enzyme on β-(1,3)- and β-(1,6)-linked glucan substrates and an endo-acting enzyme on β-(1,4)-linked glucan substrates. Hydrolysis of short β-(1,3), β-(1,4), and β-(1,3)/β-(1,4) gluco-oligosaccharides confirmed this striking feature and revealed that the enzyme performs in an exo-type mode on the nonreducing end of gluco-oligosaccharides. Excision of the CBM1 domain resulted in an inactive enzyme on all substrates tested. To our knowledge, this is the first report of an enzyme that displays bifunctional exo-β-(1,3)/(1,6) and endo-β-(1,4) activities toward beta-glucans and therefore cannot readily be assigned to existing Enzyme Commission groups. The amino acid sequence has high sequence identity to hypothetical proteins within the fungal taxa and thus defines a new family of glycoside hydrolases, the GH131 family.
Collapse
|
43
|
Konno N, Takahashi H, Nakajima M, Takeda T, Sakamoto Y. Characterization of β-N-acetylhexosaminidase (LeHex20A), a member of glycoside hydrolase family 20, from Lentinula edodes (shiitake mushroom). AMB Express 2012; 2:29. [PMID: 22656067 PMCID: PMC3430601 DOI: 10.1186/2191-0855-2-29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/13/2012] [Indexed: 01/29/2023] Open
Abstract
We purified and cloned a β-N-acetylhexosaminidase, LeHex20A, with a molecular mass of 79 kDa from the fruiting body of Lentinula edodes (shiitake mushroom). The gene lehex20a gene had 1,659 nucleotides, encoding 553 amino acid residues. Sequence analysis indicated that LeHex20A belongs to glycoside hydrolase (GH) family 20, and homologues of lehex20a are broadly represented in the genomes of basidiomycetes. Purified LeHex20A hydrolyzed the terminal monosaccharide residues of β-N-acetylgalactosaminides and β-N-acetylglucosaminides, indicating that LeHex20A is a β-N-acetylhexosaminidase classified into EC 3.2.1.52. The maximum LeHex20A activity was observed at pH 4.0 and 50°C. The kinetic constants were estimated using chitooligosaccharides with degree of polymerization 2-6. GH20 β-N-acetylhexosaminidases generally prefer chitobiose among natural substrates. However, LeHex20A had the highest catalytic efficiency (kcat/Km) for chitotetraose, and the Km values for GlcNAc6 were 3.9-fold lower than for chitobiose. Furthermore, the enzyme partially hydrolyzed amorphous chitin polymers. These results indicate that LeHex20A can produce N-acetylglucosamine from long-chain chitomaterials.
Collapse
Affiliation(s)
- Naotake Konno
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Masahiro Nakajima
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Takumi Takeda
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| |
Collapse
|