1
|
Wang D, Unsal T, Kumseranee S, Punpruk S, Saleh MA, Alotaibi MD, Xu D, Gu T. Mitigation of carbon steel biocorrosion using a green biocide enhanced by a nature-mimicking anti-biofilm peptide in a flow loop. BIORESOUR BIOPROCESS 2022; 9:67. [PMID: 38647577 PMCID: PMC10992070 DOI: 10.1186/s40643-022-00553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Biocorrosion, also called microbiologically influenced corrosion (MIC), is a common operational threat to many industrial processes. It threatens carbon steel, stainless steel and many other metals. In the bioprocessing industry, reactor vessels in biomass processing and bioleaching are prone to MIC. MIC is caused by biofilms. The formation and morphology of biofilms can be impacted by fluid flow. Fluid velocity affects biocide distribution and MIC. Thus, assessing the efficacy of a biocide for the mitigation of MIC under flow condition is desired before a field trial. In this work, a benchtop closed flow loop bioreactor design was used to investigate the biocide mitigation of MIC of C1018 carbon steel at 25 °C for 7 days using enriched artificial seawater. An oilfield biofilm consortium was analyzed using metagenomics. The biofilm consortium was grown anaerobically in the flow loop which had a holding vessel for the culture medium and a chamber to hold C1018 carbon steel coupons. Peptide A (codename) was a chemically synthesized cyclic 14-mer (cys-ser-val-pro-tyr-asp-tyr-asn-trp-tyr-ser-asn-trp-cys) with its core 12-mer sequence originated from a biofilm dispersing protein secreted by a sea anemone which possesses a biofilm-free exterior. It was used as a biocide enhancer. The combination of 50 ppm (w/w) THPS (tetrakis hydroxymethyl phosphonium sulfate) biocide + 100 nM (180 ppb by mass) Peptide A resulted in extra 1-log reduction in the sulfate reducing bacteria (SRB) sessile cell count and the acid producing bacteria (APB) sessile cell count compared to 50 ppm THPS alone treatment. Furthermore, with the enhancement of 100 nM Peptide A, extra 44% reduction in weight loss and 36% abatement in corrosion pit depth were achieved compared to 50 ppm THPS alone treatment.
Collapse
Affiliation(s)
- Di Wang
- Shenyang National Lab for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Tuba Unsal
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA
- Institute of Marine Sciences and Management, Istanbul University, Istanbul, 34134, Turkey
| | | | | | - Mazen A Saleh
- Research and Development Center, Saudi Arabian Oil Company, Dhahran, 31311, Saudi Arabia
| | - Mohammed D Alotaibi
- Research and Development Center, Saudi Arabian Oil Company, Dhahran, 31311, Saudi Arabia
| | - Dake Xu
- Shenyang National Lab for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA.
| |
Collapse
|
2
|
Gaylarde C, Little B. Biodeterioration of stone and metal - Fundamental microbial cycling processes with spatial and temporal scale differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153193. [PMID: 35122860 DOI: 10.1016/j.scitotenv.2022.153193] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Fundamental processes for the biodeterioration of stone and metal involve many of the same microbially mediated reactions - oxidation, reduction, acid dissolution and elemental cycling - resulting from the activities of many of the same groups of environmental microorganisms. Differences depend on the nature of the substratum - stone vs. metal - and the composition of the surroundings, whether terrestrial (stone) or aquatic (stone and metal). Reactions within surface-related biofilms dominate the biodeterioration of metals and contribute greatly to the biodeterioration of stone. In the latter, phototrophic organisms, and especially cyanobacteria, are important first participants, while metal biodeterioration is almost entirely associated with bacteria, archaea and fungi. Biofilms on metal surfaces can produce chemical and electrochemical responses. While electrochemical responses are absent in stone, extracellular electron transfer can be a biodeterioration mechanism in some iron-rich rocks. Microorganisms in biofilms can penetrate and create fissures or cracks in stone and metals. However, the most obvious differences in the reactions of built stone and metal structures are related to the definition of failure, length of time required for a defined failure of the substratum, the area over which the failure occurs and the consequences of failure. Time and space are, similarly, quite distinct for biological breakdown and mineral cycling of metal and stone, with stone/rock cycling potentially occurring over thousands of years and kilometers.
Collapse
Affiliation(s)
- Christine Gaylarde
- Department of Microbiology and Plant Biology, Oklahoma University, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Brenda Little
- BJ Little Corrosion Consulting, LLC, 6528 Alakoko Drive, Diamondhead, MS 39525, USA.
| |
Collapse
|
3
|
Maeda Y. Roles of Sulfites in Reverse Osmosis (RO) Plants and Adverse Effects in RO Operation. MEMBRANES 2022; 12:170. [PMID: 35207091 PMCID: PMC8874662 DOI: 10.3390/membranes12020170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
More than 60 years have passed since UCLA first announced the development of an innovative asymmetric cellulose acetate reverse osmosis (RO) membrane in 1960. This innovation opened a gate to use RO for commercial use. RO is now ubiquitous in water treatment and has been used for various applications, including seawater desalination, municipal water treatment, wastewater reuse, ultra-pure water (UPW) production, and industrial process waters, etc. RO is a highly integrated system consisting of a series of unit processes: (1) intake system, (2) pretreatment, (3) RO system, (4) post-treatment, and (5) effluent treatment and discharge system. In each step, a variety of chemicals are used. Among those, sulfites (sodium bisulfite and sodium metabisulfite) have played significant roles in RO, such as dechlorination, preservatives, shock treatment, and sanitization, etc. Sulfites especially became necessary as dechlorinating agents because polyamide hollow-fiber and aromatic thin-film composite RO membranes developed in the late 1960s and 1970s were less tolerable with residual chlorine. In this review, key applications of sulfites are explained in detail. Furthermore, as it is reported that sulfites have some adverse effects on RO membranes and processes, such phenomena will be clarified. In particular, the following two are significant concerns using sulfites: RO membrane oxidation catalyzed by heavy metals and a trigger of biofouling. This review sheds light on the mechanism of membrane oxidation and triggering biofouling by sulfites. Some countermeasures are also introduced to alleviate such problems.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
4
|
Al-Moubaraki AH, Obot IB. Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Fida TT, Sharma M, Shen Y, Voordouw G. Microbial sulfite oxidation coupled to nitrate reduction in makeup water for oil production. CHEMOSPHERE 2021; 284:131298. [PMID: 34175514 DOI: 10.1016/j.chemosphere.2021.131298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Bisulfite is used as an oxygen scavenger in waters used for oil production to prevent oxygen-mediated pipeline corrosion. Analysis of nitrate-containing water injected with ammonium bisulfite indicated increased concentrations of ammonium, sulfate and nitrite. To understand the microbial process causing these changes, water samples were used in enrichments with bisulfite and nitrate. Oxidation of bisulfite, reduction of nitrate, change in microbial community composition and corrosivity of bisulfite were determined. The results indicated that the microbial community was dominated by Sulfuricurvum, a sulfite-oxidizing nitrate-reducing bacterium (StONRB). Plating of the enriched StONRB culture yielded the bacterial isolate Sulfuricurvum sp. TK005, which coupled bisulfite oxidation with nitrate reduction to form sulfate and nitrite. Bisulfite also induced chemical corrosion of carbon steel at a rate of 0.28 ± 0.18 mm yr-1. Bisulfite and the generated sulfate could serve as electron acceptors for sulfate-reducing microorganisms (SRM), which reduce sulfate and bisulfite to sulfide. Nitrate is frequently injected to injection waters to contain the activity of SRM in oil reservoirs. This study suggests an alternative bisulfite injection procedure: Injection of nitrate after the chemical reaction of bisulfite with oxygen is completed. This could maintain the oxygen scavenger function of bisulfite and SRM inhibitory activity of nitrate.
Collapse
Affiliation(s)
- Tekle Tafese Fida
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Mohita Sharma
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yin Shen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gerrit Voordouw
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
6
|
Grigoryan AA, Jalique DR, Stroes-Gascoyne S, Wolfaardt GM, Keech PG, Korber DR. Prediction of bacterial functional diversity in clay microcosms. Heliyon 2021; 7:e08131. [PMID: 34703919 PMCID: PMC8524152 DOI: 10.1016/j.heliyon.2021.e08131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/05/2021] [Accepted: 10/01/2021] [Indexed: 12/02/2022] Open
Abstract
Microorganisms in clay barriers could affect the long-term performance of waste containers in future deep geological repositories (DGR) for used nuclear fuel through production of corrosive metabolites (e.g., sulfide), which is why clay materials are highly compacted: to reduce both physical space and access to water for microorganisms to grow. However, the highly compacted nature of clays and the resulting low activity or dormancy of microorganisms complicate the extraction of biomarkers (i.e., PLFA, DNA etc.) from such barriers for predictive analysis of microbial risks. In order to overcome these challenges, we have combined culture- and 16S rRNA gene amplicon sequencing-based approaches to describe the functional diversity of microorganisms in several commercial clay products, including two different samples of Wyoming type MX-80 bentonite (Batch 1 and Batch 2), the reference clay for a future Canadian DGR, and Avonlea type Canaprill, a clay sample for comparison. Microorganisms from as-received bentonites were enriched in anoxic 10% w/v clay microcosms for three months at ambient temperature with addition of 10% hydrogen along with presumable indigenous organics and sulfate in the clay. High-throughput sequencing of 16S rRNA gene fragments indicated a high abundance of Gram-positive bacteria of the phylum Firmicutes (82%) in MX-80 Batch 1 incubations. Bacterial libraries from microcosms with MX-80 Batch 2 were enriched with Firmicutes (53%) and Chloroflexi (43%). Firmicutes also significantly contributed (<15%) to the bacterial community in Canaprill clay microcosm, which was dominated by Gram-negative Proteobacteria (>70%). Sequence analysis revealed presence of the bacterial families Peptostreptococcaceae, Clostridiaceae, Peptococcaceae, Bacillaceae, Enterobacteriaceae, Veillonellaceae, Tissierellaceae and Planococcaceae in MX-80 Batch 1 incubations; Bacillaceae, along with unidentified bacteria of the phylum Chloroflexi, in MX-80 Batch 2 clay microcosms, and Pseudomonadaceae, Hydrogenophilaceae, Bacillaceae, Desulfobacteraceae, Desulfobulbaceae, Peptococcaceae, Pelobacteraceae, Alcaligenaceae, Rhodospirillaceae in Canaprill microcosms. Exploration of potential metabolic pathways in the bacterial communities from the clay microcosms suggested variable patterns of sulfur cycling in the different clays with the possible prevalence of bacterial sulfate-reduction in MX-80 bentonite, and probably successive sulfate-reduction/sulfur-oxidation reactions in Canaprill microcosms. Furthermore, analysis of potential metabolic pathways in the bentonite enrichments suggested that bacteria with acid-producing capabilities (i.e., fermenters and acetogens) together with sulfide-producing prokaryotes might perhaps contribute to corrosion risks in clay systems. However, the low activity or dormancy of microorganisms in highly compacted bentonites as a result of severe environmental constraints (e.g., low water activity and high swelling pressure in the confined bentonite) in situ would be expected to largely inhibit bacterial activity in highly compacted clay-based barriers in a future DGR.
Collapse
Affiliation(s)
- Alexander A. Grigoryan
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
- Saudi Arabian Oil Company, Dhahran, Saudi Arabia
| | - Daphne R. Jalique
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
- Lallemand Inc., Saskatoon, Canada
| | - Simcha Stroes-Gascoyne
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Gideon M. Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Department of Microbiology, University of Stellenbosch, Cape Town, South Africa
| | | | - Darren R. Korber
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Lee HJ, Zhang N, Ganzoury MA, Wu Y, de Lannoy CF. Simultaneous Dechlorination and Advanced Oxidation Using Electrically Conductive Carbon Nanotube Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34084-34092. [PMID: 34270203 DOI: 10.1021/acsami.1c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrically conductive membranes have shown significant promise in combining conventional separations with in situ contaminant oxidation, but little has been done to consider chlorine removal. This study demonstrates the simultaneous chlorine removal and oxidation of organic compounds during filtration using an electrochemically assisted electrically conductive carbon nanotube (CNT) membrane. As much as 80% of chlorine was removed in the feed by CNT membranes at the initial phase of continuous filtration. The efficacy of these CNT membranes toward chlorine removal was dependent on the mass of CNTs within the membranes and the applied pressure to the membranes, indicating the central role of available CNT active sites and sufficient reaction time. Furthermore, the removal mechanism of chlorine by CNTs was revealed by studying the degradation of benzoic acid and cyclic voltammetry on the membrane surface. Reactive oxidants were generated by the reductive decomposition of chlorine through the catalytic interaction with CNTs. Subsequently, electrical potentials were applied to the CNT membrane surfaces during the filtration of chlorinated feed waters. The simultaneous decomposition of chlorine and oxidation of benzoic acid were significantly enhanced by applying a cathodic current to CNT membranes enabling continuous dechlorination. The cathodic current applied to CNT membranes is believed to regenerate CNT membranes by providing electrons for the reductive decomposition of chlorine. In situ chemical-free dechlorination coupled with membrane filtration offers great opportunity to reducing the environmental impact of desalination, while maximizing the lifetime of reverse osmosis membranes and demonstrating greener approaches available to industrial water treatment.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| | - Nan Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| | - Mohamed A Ganzoury
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| | - Yichen Wu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| | - Charles-François de Lannoy
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| |
Collapse
|
8
|
Ji Y, Zhang Z, Zhuang Y, Liao R, Zhou Z, Chen S. Molecular-level variation of dissolved organic matter and microbial structure of produced water during its early storage in Fuling shale gas field, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38361-38373. [PMID: 33733405 DOI: 10.1007/s11356-021-13228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Shale gas-produced water (PW), the waste fluid generated during gas production, contains a large number of organic contaminants and high salinity matrix. Previous studies generally focused on the end-of-pipe treatment of the PW and ignored the early collection process. In this study, the transformation of the molecular composition and microbial community structure of the PW in the transportation and storage process (i.e., from the gas-liquid separator to the storage tank) were investigated. As the PW was transported from the gas-liquid separator to the portable storage tank, the dissolved organic matter (DOM) showed greater saturation, less oxidation, and lower polarity. DOMs with high O/C and low H/C ratios (numbers of oxygen and hydrogen divided by numbers of carbon) were eliminated, which may be due to precipitation or adsorption by the solids suspended in the PW. The values of double-bond equivalent (DBE), DBE/C (DBE divided by the number of carbon), and aromatic index (AI) decreased, likely because of the microbial degradation of aromatic compounds. The PW in the gas-liquid separator presented a lower biodiversity than that in the storage tank. The microbial community in the storage tank showed the coexistence of anaerobes and aerobes. Genera related to biocorrosion and souring were detected in the two facilities, thus indicating the necessity of more efficient anticorrosion strategies. This study helps to enhance the understanding of the environmental behavior of PW during shale gas collection and provides a scientific reference for the design and formulation of efficient transportation and storage strategies to prevent and control the environmental risk of shale gas-derived PW.
Collapse
Affiliation(s)
- Yufei Ji
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yiling Zhuang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rugang Liao
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Zejun Zhou
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
9
|
Lekbach Y, Liu T, Li Y, Moradi M, Dou W, Xu D, Smith JA, Lovley DR. Microbial corrosion of metals: The corrosion microbiome. Adv Microb Physiol 2021; 78:317-390. [PMID: 34147188 DOI: 10.1016/bs.ampbs.2021.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microbially catalyzed corrosion of metals is a substantial economic concern. Aerobic microbes primarily enhance Fe0 oxidation through indirect mechanisms and their impact appears to be limited compared to anaerobic microbes. Several anaerobic mechanisms are known to accelerate Fe0 oxidation. Microbes can consume H2 abiotically generated from the oxidation of Fe0. Microbial H2 removal makes continued Fe0 oxidation more thermodynamically favorable. Extracellular hydrogenases further accelerate Fe0 oxidation. Organic electron shuttles such as flavins, phenazines, and possibly humic substances may replace H2 as the electron carrier between Fe0 and cells. Direct Fe0-to-microbe electron transfer is also possible. Which of these anaerobic mechanisms predominates in model pure culture isolates is typically poorly documented because of a lack of functional genetic studies. Microbial mechanisms for Fe0 oxidation may also apply to some other metals. An ultimate goal of microbial metal corrosion research is to develop molecular tools to diagnose the occurrence, mechanisms, and rates of metal corrosion to guide the implementation of the most effective mitigation strategies. A systems biology approach that includes innovative isolation and characterization methods, as well as functional genomic investigations, will be required in order to identify the diagnostic features to be gleaned from meta-omic analysis of corroding materials. A better understanding of microbial metal corrosion mechanisms is expected to lead to new corrosion mitigation strategies. The understanding of the corrosion microbiome is clearly in its infancy, but interdisciplinary electrochemical, microbiological, and molecular tools are available to make rapid progress in this field.
Collapse
Affiliation(s)
- Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Tao Liu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Yingchao Li
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, China
| | - Masoumeh Moradi
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Wenwen Dou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China.
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, CT, United States
| | - Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China; Department of Microbiology, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
10
|
Yang D, Jia R, Abd Rahman HB, Gu T. Preliminary Investigation of Utilization of a Cellulose-Based Polymer in Enhanced Oil Recovery by Oilfield Anaerobic Microbes and its Impact on Carbon Steel Corrosion. CORROSION 2020; 76:766-772. [DOI: 10.5006/3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Water injection increases reservoir pressure in enhanced oil recovery (EOR). Among other oilfield performance chemicals, an EOR polymer is added to the injection water to provide the viscosity necessary for effective displacement of viscous crude oil from the reservoir formation. However, these organic macromolecules may be degraded by microbes downhole, causing undesirable viscosity loss. The organic carbon utilization by the microbes promotes microbial metabolism, thus potentially exacerbating microbiologically influenced corrosion (MIC). In this preliminary laboratory investigation, 3,000 ppm (w/w) carboxymethyl cellulose sodium (CMCS), a commonly used EOR polymer, was found to be utilized by an oilfield biofilm consortium. This oilfield biofilm consortium consisted of bacteria (including that can degrade large organic molecules), sulfate-reducing bacteria (SRB), and other microorganisms. A 30-day incubation in 125 mL anaerobic vials was conducted with an artificial seawater medium without yeast extract and lactate supplements at 37°C. The polymer biodegradation led to 16% viscosity loss in the broth and a 30× higher SRB sessile cell count. Slightly increased MIC weight loss and pitting corrosion were observed on C1018 carbon steel coupons. Thus, the use of CMCS in EOR should take into the consideration of microbial degradation and its impact on MIC.
Collapse
Affiliation(s)
- Dongqing Yang
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701
| | - Ru Jia
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701
| | - Hasrizal Bin Abd Rahman
- Hydrocarbon Recovery Technology, Group Research & Technology, Project Delivery & Technology, Petronas, Kuala Lumpur, 50088, Malaysia
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701
| |
Collapse
|
11
|
An BA, Kleinbub S, Ozcan O, Koerdt A. Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC). Front Microbiol 2020; 11:527. [PMID: 32296410 PMCID: PMC7136402 DOI: 10.3389/fmicb.2020.00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Currently, sulfate-reducing bacteria (SRB) is regarded as the main culprit of microbiologically influenced corrosion (MIC), mainly due to the low reported corrosion rates of other microorganisms. For example, the highest reported corrosion rate for methanogens is 0.065 mm/yr. However, by investigating methanogen-induced microbiologically influenced corrosion (Mi-MIC) using an in-house developed versatile multiport flow test column, extremely high corrosion rates were observed. We analyzed a large set of carbon steel beads, which were sectionally embedded into the test columns as substrates for iron-utilizing methanogen Methanobacterium IM1. After 14 days of operation using glass beads as fillers for section separation, the highest average corrosion rate of Methanobacterium IM1 was 0.2 mm/yr, which doubled that of Desulfovibrio ferrophilus IS5 and Desulfovibrio alaskensis 16109 investigated at the same conditions. At the most corroded region, nearly 80% of the beads lost 1% of their initial weight (fast-corrosion), resulting in an average corrosion rate of 0.2 mm/yr for Methanobacterium IM1-treated columns. When sand was used as filler material to mimic sediment conditions, average corrosion rates for Methanobacterium IM1 increased to 0.3 mm/yr (maximum 0.52 mm/yr) with over 83% of the beads having corrosion rates above 0.3 mm/yr. Scanning electron images of metal coupons extracted from the column showed methanogenic cells were clustered close to the metal surface. Methanobacterium IM1 is a hydrogenotrophic methanogen with higher affinity to metal than H2. Unlike SRB, Methanobacterium IM1 is not restricted to the availability of sulfate concentration in the environment. Thus, the use of the multiport flow column provided a new insight on the corrosion potential of methanogens, particularly in dynamic conditions, that offers new opportunities for monitoring and development of mitigation strategies. Overall, this study shows (1) under certain conditions methanogenic archaea can cause higher corrosion than SRB, (2) specific quantifications, i.e., maximum, average, and minimum corrosion rates can be determined, and (3) that spatial statistical evaluations of MIC can be carried out.
Collapse
Affiliation(s)
| | | | | | - Andrea Koerdt
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| |
Collapse
|
12
|
Procópio L. Microbial community profiles grown on 1020 carbon steel surfaces in seawater-isolated microcosm. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01547-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractCorrosion of metallic alloys is a concern worldwide, with impacts affecting different production sectors and consequent economic losses in the order of billions of dollars annually. Biocorrosion is a form of corrosion where the participation of microorganisms can induce, accelerate, or inhibit corrosive processes. In this study, it was evaluated that the changes in profile communities, by the sequencing of the 16S ribosomal gene, grown over steel coupons in a microcosm with no additional oxygen supplementation for 120 days. Analysis of abundance and diversity indices indicates marked changes in microbial structures throughout the 120-day period. Homology results of OTUs generated by Illumina sequencing indicated Proteobacteria phylum as the dominant group, comprising about 85.3% of the total OTUs, followed by Firmicutes and Bacteriodetes, both with 7.35%. Analyses at lower taxonomic levels suggested the presence of representatives described as corroders, such as Citreicella thiooxidans, Thalassospira sp., and Limnobacter thiooxidans. In conclusion, the results suggest that no additional oxygen supplementation profoundly altered the core of microbial communities, with a predominance of facultative anaerobic species.
Collapse
|
13
|
Procópio L. The era of 'omics' technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 2020; 42:341-356. [PMID: 31897850 DOI: 10.1007/s10529-019-02789-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022]
Abstract
Efforts to elucidate the relationships between microorganisms and metal corrosion were mainly directed to understanding the formation of biofilm structures grown on corroded surfaces. The emergence of high throughput DNA sequencing techniques has helped in the description of microbial species involved directly and indirectly in the corrosion processes of alloys. Coupled with sequencing from environmental samples, other methodologies such as metatranscriptome, metaproteomics and metabolomics have allowed a new horizon to be opened on the understanding of the role of corrosive microbial biofilm. Several groups of bacteria and archaea were identified, showing the dominance of Proteobacteria in several samples analyzed and members of groups that previously received less attention, such as Firmicutes and Bacteroidetes. Our research also shows that metagenomic studies describe the presence of various Archaea domain thermophilic and methanogenic groups associated with metal corrosion. Thus, opening the prospect of describing new microbial groups as possible participants in this current global concern.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias - Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Procópio L. The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 2019; 35:73. [DOI: 10.1007/s11274-019-2647-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
|
15
|
Shen Y, Agrawal A, Suri NK, An D, Voordouw JK, Clark RG, Jack TR, Miner K, Pederzolli R, Benko A, Voordouw G. Control of microbial sulfide production by limiting sulfate dispersal in a water-injected oil field. J Biotechnol 2018; 266:14-19. [PMID: 29197544 DOI: 10.1016/j.jbiotec.2017.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
Oil production by water injection often involves the use of makeup water to replace produced oil. Sulfate in makeup water is reduced by sulfate-reducing bacteria to sulfide, a process referred to as souring. In the MHGC field souring was caused by using makeup water with 4mM (384ppm) sulfate. Mixing with sulfate-free produced water gave injection water with 0.8mM sulfate. This was amended with nitrate to limit souring and was then distributed fieldwide. The start-up of an enhanced-oil-recovery pilot caused all sulfate-containing makeup water to be used for dissolution of polymer, which was then injected into a limited region of the field. Produced water from this pilot contained 10% of the injected sulfate concentration as sulfide, but was free of sulfate. Its use as makeup water in the main water plant of the field caused injection water sulfate to drop to zero. This in turn strongly decreased produced sulfide concentrations throughout the field and allowed a decreased injection of nitrate. The decreased injection of sulfate and nitrate caused major changes in the microbial community of produced waters. Limiting sulfate dispersal into a reservoir, which acts as a sulfate-removing biofilter, is thus a powerful method to decrease souring.
Collapse
Affiliation(s)
- Y Shen
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - A Agrawal
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - N K Suri
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - D An
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - J K Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - R G Clark
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - T R Jack
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - K Miner
- Baker Hughes, Redcliff, AB, T0J 2P0, Canada
| | | | - A Benko
- Enerplus Corporation, Calgary, AB, T2P 2Z1, Canada
| | - G Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
16
|
Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill. Appl Environ Microbiol 2017; 83:AEM.00784-17. [PMID: 28778895 DOI: 10.1128/aem.00784-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi (Dehalococcoidia), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts.IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial communities in coastal marshes is poorly known, with limited investigation of potential changes in bacterial communities in response to various environmental stressors. The Deepwater Horizon oil spill provided an unprecedented opportunity to study the long-term effects of an oil spill on microbial systems in marshes. Compared to previous studies, the significance of our research stems from (i) a broader geographic range of studied marshes, (ii) an extended time frame of data collection that includes prespill conditions, (iii) a more accurate procedure using biomarker indices to understand oiling, and (iv) an examination of other potential stressors linked to in situ environmental changes, aside from oil exposure.
Collapse
|
17
|
An BA, Shen Y, Voordouw G. Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite. Front Microbiol 2017; 8:1164. [PMID: 28680423 PMCID: PMC5478722 DOI: 10.3389/fmicb.2017.01164] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in shale oil fields are still poorly known. We obtained samples of injection, produced and facility waters from a Bakken shale oil field in Saskatchewan, Canada with a resident temperature of 60°C. The injection water had a lower salinity (0.7 Meq of NaCl) than produced or facility waters (0.6-3.6 Meq of NaCl). Salinities of the latter decreased with time, likely due to injection of low salinity water, which had 15-30 mM sulfate. Batch cultures of field samples showed sulfate-reducing and nitrate-reducing bacteria activities at different salinities (0, 0.5, 0.75, 1.0, 1.5, and 2.5 M NaCl). Notably, at high salinity nitrite accumulated, which was not observed at low salinity, indicating potential for nitrate-mediated souring control at high salinity. Continuous culture chemostats were established in media with volatile fatty acids (a mixture of acetate, propionate and butyrate) or lactate as electron donor and nitrate or sulfate as electron acceptor at 0.5 to 2.5 M NaCl. Microbial community analyses of these cultures indicated high proportions of Halanaerobium, Desulfovermiculus, Halomonas, and Marinobacter in cultures at 2.5 M NaCl, whereas Desulfovibrio, Geoalkalibacter, and Dethiosulfatibacter were dominant at 0.5 M NaCl. Use of bioreactors to study the effect of nitrate injection on sulfate reduction showed that accumulation of nitrite inhibited SRB activity at 2.5 M but not at 0.5 M NaCl. High proportions of Halanaerobium and Desulfovermiculus were found at 2.5 M NaCl in the absence of nitrate, whereas high proportions of Halomonas and no SRB were found in the presence of nitrate. A diverse microbial community dominated by the SRB Desulfovibrio was observed at 0.5 M NaCl both in the presence and absence of nitrate. Our results suggest that nitrate injection can prevent souring provided that the salinity is maintained at a high level. Thus, reinjection of high salinity produced water amended with nitrate maybe be a cost effective method for souring control.
Collapse
Affiliation(s)
- Biwen A An
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAlberta, AB, Canada
| | - Yin Shen
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAlberta, AB, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAlberta, AB, Canada
| |
Collapse
|
18
|
Li XX, Liu JF, Zhou L, Mbadinga SM, Yang SZ, Gu JD, Mu BZ. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir. Front Microbiol 2017. [PMID: 28638372 PMCID: PMC5461352 DOI: 10.3389/fmicb.2017.01011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5'-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Serge M Mbadinga
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong KongHong Kong, Hong Kong
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghai, China
| |
Collapse
|
19
|
Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Appl Environ Microbiol 2017; 83:AEM.02983-16. [PMID: 28130297 DOI: 10.1128/aem.02983-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
Abstract
Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera (Paracoccus-Thauera), Desulfobulbus, and Syntrophomonas-Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 107/ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex.IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO2 was needed to prevent souring in both. Our data also suggest that propionate is a good substrate to enumerate oil field SRB.
Collapse
|
20
|
Conlette OC, Emmanuel NE, Chijoke OG. Methanogen Population of an Oil Production Skimmer Pit and the Effects of Environmental Factors and Substrate Availability on Methanogenesis and Corrosion Rates. MICROBIAL ECOLOGY 2016; 72:175-184. [PMID: 27075654 DOI: 10.1007/s00248-016-0764-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Assessment of microbial communities from an oil production skimmer pit using 16S rRNA gene sequencing technique revealed massive dominance of methanogenic archaea in both the skimmer pit water and sediment samples. The dominant genera of methanogens involved are mostly the acetotrophic Methanosaeta (36-83 %), and the hydrogenotrophic Methanococcus (49 %) indicating that methanogenesis is the dominant terminal metabolic process in the skimmer pit. Further studies showed that the methanogens had their optimal activity at pH 6-6.5, salinity of 100 mM, and temperature of 35-45 °C. When appropriate substrates are available and utilized by methanogens, methane production correlates with general corrosion rates (r = +0.927; p < 0.01), and under different conditions of pH, salinity and temperature, methane production showed significantly strong positive correlations (r = +0.824, +0.827, and +0.805; p < 0.01, respectively) with general corrosion rates. To the best of our knowledge, this research work was the first to assess microbial community composition of an oil production skimmer pit at Escravos facility in Nigeria.
Collapse
Affiliation(s)
- Okoro Chuma Conlette
- Department of Biology, Microbiology and Biotechnology, Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Nwezza Elebe Emmanuel
- Department of Mathemetics/Computer science/Statistics/Informatics, Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | | |
Collapse
|
21
|
Voordouw G, Menon P, Pinnock T, Sharma M, Shen Y, Venturelli A, Voordouw J, Sexton A. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples. Front Microbiol 2016; 7:351. [PMID: 27047467 PMCID: PMC4805590 DOI: 10.3389/fmicb.2016.00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/07/2016] [Indexed: 12/03/2022] Open
Abstract
Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (105/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (106/ml) and SRB (108/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows estimation of the probability of high rate events that may lead to failure.
Collapse
Affiliation(s)
- Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Priyesh Menon
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Tijan Pinnock
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Mohita Sharma
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Yin Shen
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Amanda Venturelli
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Johanna Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | | |
Collapse
|
22
|
An D, Dong X, An A, Park HS, Strous M, Voordouw G. Metagenomic Analysis Indicates Epsilonproteobacteria as a Potential Cause of Microbial Corrosion in Pipelines Injected with Bisulfite. Front Microbiol 2016; 7:28. [PMID: 26858705 PMCID: PMC4729907 DOI: 10.3389/fmicb.2016.00028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 11/29/2022] Open
Abstract
Sodium bisulfite (SBS) is used as an oxygen scavenger to decrease corrosion in pipelines transporting brackish subsurface water used in the production of bitumen by steam-assisted gravity drainage. Sequencing 16S rRNA gene amplicons has indicated that SBS addition increased the fraction of the sulfate-reducing bacteria (SRB) Desulfomicrobium, as well as of Desulfocapsa, which can also grow by disproportionating sulfite into sulfide, sulfur, and sulfate. SRB use cathodic H2, formed by reduction of aqueous protons at the iron surface, or use low potential electrons from iron and aqueous protons directly for sulfate reduction. In order to reveal the effects of SBS treatment in more detail, metagenomic analysis was performed with pipe-associated solids (PAS) scraped from a pipe section upstream (PAS-616P) and downstream (PAS-821TP) of the SBS injection point. A major SBS-induced change in microbial community composition and in affiliated hynL genes for the large subunit of [NiFe] hydrogenase was the appearance of sulfur-metabolizing Epsilonproteobacteria of the genera Sulfuricurvum and Sulfurovum. These are chemolithotrophs, which oxidize sulfide or sulfur with O2 or reduce sulfur with H2. Because O2 was absent, this class likely catalyzed reduction of sulfur (S0) originating from the metabolism of bisulfite with cathodic H2 (or low potential electrons and aqueous protons) originating from the corrosion of steel (Fe0). Overall this accelerates reaction of of S0 and Fe0 to form FeS, making this class a potentially powerful contributor to microbial corrosion. The PAS-821TP metagenome also had increased fractions of Deltaproteobacteria including the SRB Desulfomicrobium and Desulfocapsa. Altogether, SBS increased the fraction of hydrogen-utilizing Delta- and Epsilonproteobacteria in brackish-water-transporting pipelines, potentially stimulating anaerobic pipeline corrosion if dosed in excess of the intended oxygen scavenger function.
Collapse
Affiliation(s)
- Dongshan An
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geosciences, University of Calgary Calgary, AB, Canada
| | - Annie An
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Hyung S Park
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Marc Strous
- Department of Geosciences, University of Calgary Calgary, AB, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
23
|
Mand J, Park HS, Okoro C, Lomans BP, Smith S, Chiejina L, Voordouw G. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field. Front Microbiol 2016; 6:1538. [PMID: 26793176 PMCID: PMC4707241 DOI: 10.3389/fmicb.2015.01538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 11/26/2022] Open
Abstract
Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.
Collapse
Affiliation(s)
- Jaspreet Mand
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Hyung S Park
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of CalgaryCalgary, AB, Canada; Cormetrics Ltd.Calgary, AB, Canada
| | - Chuma Okoro
- Department of Biology, Microbiology and Biotechnology, Federal University, Ndufu-Alike, Ikwo Ebonyi, Nigeria
| | - Bart P Lomans
- Shell Global Solutions International Rijswijk, Netherlands
| | - Seun Smith
- Shell Nigeria Exploration and Petroleum Company Lagos, Nigeria
| | - Leo Chiejina
- Shell Petroleum Development Company of Nigeria Port Harcourt, Nigeria
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
24
|
Andreolli M, Albertarelli N, Lampis S, Brignoli P, Khoei NS, Vallini G. Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community. World J Microbiol Biotechnol 2015; 32:6. [DOI: 10.1007/s11274-015-1967-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022]
|
25
|
Cho KC, Lee DG, Fuller ME, Hatzinger PB, Condee CW, Chu KH. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:42-51. [PMID: 25935409 DOI: 10.1016/j.jhazmat.2015.04.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions.
Collapse
Affiliation(s)
- Kun-Ching Cho
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Do Gyun Lee
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | | | | | | | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
26
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
27
|
Yang F, Shi B, Bai Y, Sun H, Lytle DA, Wang D. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes. WATER RESEARCH 2014; 59:46-57. [PMID: 24784453 DOI: 10.1016/j.watres.2014.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
The chemical stability of iron corrosion scales and the microbial community of biofilm in drinking water distribution system (DWDS) can have great impact on the iron corrosion and corrosion product release, which may result in "red water" issues, particularly under the situation of source water switch. In this work, experimental pipe loops were set up to investigate the effect of sulfate on the dynamical transformation characteristics of iron corrosion products and bacterial community in old cast iron distribution pipes. All the test pipes were excavated from existing DWDS with different source water supply histories, and the test water sulfate concentration was in the range of 50-350 mg/L. Pyrosequencing of 16S rRNA was used for bacterial community analysis. The results showed that iron release increased markedly and even "red water" occurred for pipes with groundwater supply history when feed water sulfate elevated abruptly. However, the iron release of pipes with only surface water supply history changed slightly without noticeable color even the feed water sulfate increased multiply. The thick-layered corrosion scales (or densely distributed tubercles) on pipes with surface water supply history possessed much higher stability due to the larger proportion of stable constituents (mainly Fe3O4) in their top shell layer; instead, the rather thin and uniform non-layered corrosion scales on pipes with groundwater supply history contained relatively higher proportion of less stable iron oxides (e.g. β-FeOOH, FeCO3 and green rust). The less stable corrosion scales tended to be more stable with sulfate increase, which was evidenced by the gradually decreased iron release and the increased stable iron oxides. Bacterial community analysis indicated that when switching to high sulfate water, iron reducing bacteria (IRB) maintained dominant for pipes with stable corrosion scales, while significant increase of sulfur oxidizing bacteria (SOB), sulfate reducing bacteria (SRB) and iron oxidizing bacteria (IOB) was observed for pipes with less stable corrosion scales.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Baoyou Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaohui Bai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Darren A Lytle
- United States Environmental Protection Agency, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
28
|
Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields. Appl Microbiol Biotechnol 2014; 98:8017-29. [DOI: 10.1007/s00253-014-5843-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
29
|
Mand J, Park HS, Jack TR, Voordouw G. The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 2014; 5:268. [PMID: 24917861 PMCID: PMC4043135 DOI: 10.3389/fmicb.2014.00268] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
Microbially influenced corrosion (MIC) of iron (Fe(0)) by sulfate-reducing bacteria (SRB) has been studied extensively. Through a mechanism, that is still poorly understood, electrons or hydrogen (H2) molecules are removed from the metal surface and used as electron donor for sulfate reduction. The resulting ferrous ions precipitate in part with the sulfide produced, forming characteristic black iron sulfide. Hydrogenotrophic methanogens can also contribute to MIC. Incubation of pipeline water samples, containing bicarbonate and some sulfate, in serum bottles with steel coupons and a headspace of 10% (vol/vol) CO2 and 90% N2, indicated formation of acetate and methane. Incubation of these samples in serum bottles, containing medium with coupons and bicarbonate but no sulfate, also indicated that formation of acetate preceded the formation of methane. Microbial community analyses of these enrichments indicated the presence of Acetobacterium, as well as of hydrogenotrophic and acetotrophic methanogens. The formation of acetate by homoacetogens, such as Acetobacterium woodii from H2 (or Fe(0)) and CO2, is potentially important, because acetate is a required carbon source for many SRB growing with H2 and sulfate. A consortium of the SRB Desulfovibrio vulgaris Hildenborough and A. woodii was able to grow in defined medium with H2, CO2, and sulfate, because A. woodii provides the acetate, needed by D. vulgaris under these conditions. Likewise, general corrosion rates of metal coupons incubated with D. vulgaris in the presence of acetate or in the presence of A. woodii were higher than in the absence of acetate or A. woodii, respectively. An extended MIC model capturing these results is presented.
Collapse
Affiliation(s)
- Jaspreet Mand
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Hyung Soo Park
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Thomas R Jack
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
30
|
Okoro C, Smith S, Chiejina L, Lumactud R, An D, Park HS, Voordouw J, Lomans BP, Voordouw G. Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria. ACTA ACUST UNITED AC 2014; 41:665-78. [DOI: 10.1007/s10295-014-1401-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Samples were obtained from the Obigbo field, located onshore in the Niger delta, Nigeria, from which oil is produced by injection of low-sulfate groundwater, as well as from the offshore Bonga field from which oil is produced by injection of high-sulfate (2,200 ppm) seawater, amended with 45 ppm of calcium nitrate to limit reservoir souring. Despite low concentrations of sulfate (0–7 ppm) and nitrate (0 ppm), sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (NRB) were present in samples from the Obigbo field. Biologically active deposits (BADs), scraped from corrosion-failed sections of a water- and of an oil-transporting pipeline (both Obigbo), had high counts of SRB and high sulfate and ferrous iron concentrations. Analysis of microbial community composition by pyrosequencing indicated anaerobic, methanogenic hydrocarbon degradation to be a dominant process in all samples from the Obigbo field, including the BADs. Samples from the Bonga field also had significant activity of SRB, as well as of heterotrophic and of sulfide-oxidizing NRB. Microbial community analysis indicated high proportions of potentially thermophilic NRB and near-absence of microbes active in methanogenic hydrocarbon degradation. Anaerobic incubation of Bonga samples with steel coupons gave moderate general corrosion rates of 0.045–0.049 mm/year, whereas near-zero general corrosion rates (0.001–0.002 mm/year) were observed with Obigbo water samples. Hence, methanogens may contribute to corrosion at Obigbo, but the low general corrosion rates cannot explain the reasons for pipeline failures in the Niger delta. A focus of future work should be on understanding the role of BADs in enhancing under-deposit pitting corrosion.
Collapse
Affiliation(s)
- Chuma Okoro
- grid.442619.c Department of Biological Sciences Caleb University Lagos Nigeria
| | - Seun Smith
- Shell Nigeria Exploration and Production Company (SNEPCO) Lagos Nigeria
| | - Leo Chiejina
- Shell Petroleum Development Company (SPDC) of Nigeria Port Harcourt Nigeria
| | - Rhea Lumactud
- grid.17063.33 0000 0001 2157 2938 Department of Physical and Environmental Sciences University of Toronto Scarborough M1C 1A4 Toronto ON Canada
- grid.22072.35 0000000419367697 Department of Biological Sciences University of Calgary 2500 University Dr. NW T2N 1N4 Calgary AB Canada
| | - Dongshan An
- grid.22072.35 0000000419367697 Department of Biological Sciences University of Calgary 2500 University Dr. NW T2N 1N4 Calgary AB Canada
| | - Hyung Soo Park
- grid.22072.35 0000000419367697 Department of Biological Sciences University of Calgary 2500 University Dr. NW T2N 1N4 Calgary AB Canada
| | - Johanna Voordouw
- grid.22072.35 0000000419367697 Department of Biological Sciences University of Calgary 2500 University Dr. NW T2N 1N4 Calgary AB Canada
| | - Bart P Lomans
- grid.422154.4 0000000404726394 Shell Global Solutions International BV 2280 AB Rijswijk The Netherlands
| | - Gerrit Voordouw
- grid.22072.35 0000000419367697 Department of Biological Sciences University of Calgary 2500 University Dr. NW T2N 1N4 Calgary AB Canada
| |
Collapse
|
31
|
Liang R, Grizzle RS, Duncan KE, McInerney MJ, Suflita JM. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Front Microbiol 2014; 5:89. [PMID: 24639674 PMCID: PMC3944610 DOI: 10.3389/fmicb.2014.00089] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/18/2014] [Indexed: 11/13/2022] Open
Abstract
Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.
Collapse
Affiliation(s)
| | | | | | | | - Joseph M. Suflita
- Department of Microbiology and Plant Biology, OU Biocorrosion Center, University of OklahomaNorman, OK, USA
| |
Collapse
|
32
|
Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 2013; 80:1226-36. [PMID: 24317078 DOI: 10.1128/aem.02848-13] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen ("chemical microbially influenced corrosion"; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons ("electrical microbially influenced corrosion"; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments.
Collapse
|
33
|
Stipanicev M, Turcu F, Esnault L, Rosas O, Basseguy R, Sztyler M, Beech IB. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: laboratory investigation. Bioelectrochemistry 2013; 97:76-88. [PMID: 24169516 DOI: 10.1016/j.bioelechem.2013.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/17/2013] [Accepted: 09/25/2013] [Indexed: 11/29/2022]
Abstract
Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -800<E(OCP)/mV (vs. SCE)<-700. Generally, the overall corrosion rate, expressed as 1/(Rp/Ω), was lower in the inoculated seawater though they varied significantly on both reactors. Initial and final corrosion rates were virtually identical, namely initial 1/(Rp/Ω)=2×10(-6)±5×10(-7) and final 1/(Rp/Ω)=1.1×10(-5)±2.5×10(-6). Measured data, including electrochemical noise transients and statistical parameters (0.05<Localized Index<1; -5<Skewness<-5; Kurtosis>45), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies.
Collapse
Affiliation(s)
- Marko Stipanicev
- Det Norske Veritas, Johan Berentsens vei 109-111, 5163 Laksevåg, Bergen, Norway; Laboratoire de Génie Chimique CNRS-INPT, Université de Toulouse, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Florin Turcu
- Det Norske Veritas, Johan Berentsens vei 109-111, 5163 Laksevåg, Bergen, Norway
| | - Loïc Esnault
- Det Norske Veritas, Johan Berentsens vei 109-111, 5163 Laksevåg, Bergen, Norway
| | - Omar Rosas
- Laboratoire de Génie Chimique CNRS-INPT, Université de Toulouse, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Régine Basseguy
- Laboratoire de Génie Chimique CNRS-INPT, Université de Toulouse, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Magdalena Sztyler
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Iwona B Beech
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK; Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, USA
| |
Collapse
|
34
|
Soh J, Dong X, Caffrey SM, Voordouw G, Sensen CW. Phoenix 2: a locally installable large-scale 16S rRNA gene sequence analysis pipeline with Web interface. J Biotechnol 2013; 167:393-403. [PMID: 23871656 DOI: 10.1016/j.jbiotec.2013.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
We have developed Phoenix 2, a ribosomal RNA gene sequence analysis pipeline, which can be used to process large-scale datasets consisting of more than one hundred environmental samples and containing more than one million reads collectively. Rapid handling of large datasets is made possible by the removal of redundant sequences, pre-partitioning of sequences, parallelized clustering per partition, and subsequent merging of clusters. To build the pipeline, we have used a combination of open-source software tools and custom-developed Perl scripts. For our project we utilize hardware-accelerated searches, but it is possible to reconfigure the analysis pipeline for use with generic computing infrastructure only, with a considerable reduction in speed. The set of analysis results produced by Phoenix 2 is comprehensive, including taxonomic annotations using multiple methods, alpha diversity indices, beta diversity measurements, and a number of visualizations. To date, the pipeline has been used to analyze more than 1500 environmental samples from a wide variety of microbial communities, which are part of our Hydrocarbon Metagenomics Project (http://www.hydrocarbonmetagenomics.com). The software package can be installed as a local software suite with a Web interface. Phoenix 2 is freely available from http://sourceforge.net/projects/phoenix2.
Collapse
Affiliation(s)
- Jung Soh
- Visual Genomics Centre, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | |
Collapse
|
35
|
Jayashree S, Pushpanathan M, Rajendhran J, Gunasekaran P. Microbial Diversity and Phylogeny Analysis of Buttermilk, a Fermented Milk Product, Employing 16S rRNA-Based Pyrosequencing. FOOD BIOTECHNOL 2013. [DOI: 10.1080/08905436.2013.811084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl Environ Microbiol 2013; 79:5059-68. [PMID: 23770914 DOI: 10.1128/aem.01251-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266-269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.
Collapse
|
37
|
Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM. Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 2012; 81:124-33. [DOI: 10.1111/j.1574-6941.2012.01328.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/21/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Carolina Berdugo-Clavijo
- Petroleum Microbiology Research Group, Department of Biological Sciences; University of Calgary; Calgary; AB; Canada
| | - Xiaoli Dong
- Visual Genomics Centre, Faculty of Medicine; University of Calgary; Calgary; AB; Canada
| | - Jung Soh
- Visual Genomics Centre, Faculty of Medicine; University of Calgary; Calgary; AB; Canada
| | - Christoph W. Sensen
- Visual Genomics Centre, Faculty of Medicine; University of Calgary; Calgary; AB; Canada
| | - Lisa M. Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences; University of Calgary; Calgary; AB; Canada
| |
Collapse
|
38
|
Agrawal A, Park HS, Nathoo S, Gieg LM, Jack TR, Miner K, Ertmoed R, Benko A, Voordouw G. Toluene depletion in produced oil contributes to souring control in a field subjected to nitrate injection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1285-1292. [PMID: 22148580 DOI: 10.1021/es203748b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Souring in the Medicine Hat Glauconitic C field, which has a low bottom-hole temperature (30 °C), results from the presence of 0.8 mM sulfate in the injection water. Inclusion of 2 mM nitrate to decrease souring results in zones of nitrate-reduction, sulfate-reduction, and methanogenesis along the injection water flow path. Microbial community analysis by pyrosequencing indicated dominant community members in each of these zones. Nitrate breakthrough was observed in 2-PW, a major water- and sulfide-producing well, after 4 years of injection. Sulfide concentrations at four other production wells (PWs) also reached zero, causing the average sulfide concentration in 14 PWs to decrease significantly. Interestingly, oil produced by 2-PW was depleted of toluene, the preferred electron donor for nitrate reduction. 2-PW and other PWs with zero sulfide produced 95% water and 5% oil. At 2 mM nitrate and 5 mM toluene, respectively, this represents an excess of electron acceptor over electron donor. Hence, continuous nitrate injection can change the composition of produced oil and nitrate breakthrough is expected first in PWs with a low oil to water ratio, because oil from these wells is treated on average with more nitrate than is oil from PWs with a high oil to water ratio.
Collapse
Affiliation(s)
- Akhil Agrawal
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|