1
|
Huang X, Li Y, Du H, Chen N. Comparative assessment of the intragenomic variations of dinoflagellate Tripos species through single-cell sequencing. MARINE POLLUTION BULLETIN 2024; 206:116690. [PMID: 39024906 DOI: 10.1016/j.marpolbul.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Tripos is a large dinoflagellate genus widely distributed in the world's oceans. Morphology-based species identification is inconclusive due to high morphological intraspecific variability. Metabarcoding analysis has been demonstrated to be effective for species identification and tracking their spatiotemporal dynamics. However, accumulating evidence suggests high levels of intragenomic variations (IGVs) are common in many algae, leading to concerns about overinterpretation of molecular diversity in metabarcoding studies. In this project, we evaluated and compared IGVs in Tripos species by conducting the first high-throughput sequencing (HTS) of 18S rDNA V4 of Tripos single cells. High numbers of haplotypes (19-172) were identified in each of the 30 Tripos cells. Each cell contained one dominant haplotype with high relative abundance and many haplotypes with lower abundances. Thus, the presence of multiple minor haplotypes substantially overestimate the molecular diversity identified in metabarcoding analysis, which encompass not only interspecific and intraspecific diversities, but high levels of IGVs.
Collapse
Affiliation(s)
- Xianliang Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yingchao Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haina Du
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Tian C, Jiang D, Hammer A, Sharpton T, Jiang Y. Compositional Graphical Lasso Resolves the Impact of Parasitic Infection on Gut Microbial Interaction Networks in a Zebrafish Model. J Am Stat Assoc 2023; 118:1500-1514. [PMID: 38143789 PMCID: PMC10746147 DOI: 10.1080/01621459.2022.2164287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Understanding how microbes interact with each other is key to revealing the underlying role that microorganisms play in the host or environment and to identifying microorganisms as an agent that can potentially alter the host or environment. For example, understanding how the microbial interactions associate with parasitic infection can help resolve potential drug or diagnostic test for parasitic infection. To unravel the microbial interactions, existing tools often rely on graphical models to infer the conditional dependence of microbial abundances to represent their interactions. However, current methods do not simultaneously account for the discreteness, compositionality, and heterogeneity inherent to microbiome data. Thus, we build a new approach called "compositional graphical lasso" upon existing tools by incorporating the above characteristics into the graphical model explicitly. We illustrate the advantage of compositional graphical lasso over current methods under a variety of simulation scenarios and on a benchmark study, the Tara Oceans Project. Moreover, we present our results from the analysis of a dataset from the Zebrafish Parasite Infection Study, which aims to gain insight into how the gut microbiome and parasite burden covary during infection, thus uncovering novel putative methods of disrupting parasite success. Our approach identifies changes in interaction degree between infected and uninfected individuals for three taxa, Photobacterium, Gemmobacter, and Paucibacter, which are inversely predicted by other methods. Further investigation of these method-specific taxa interaction changes reveals their biological plausibility. In particular, we speculate on the potential pathobiotic roles of Photobacterium and Gemmobacter in the zebrafish gut, and the potential probiotic role of Paucibacter. Collectively, our analyses demonstrate that compositional graphical lasso provides a powerful means of accurately resolving interactions between microbiota and can thus drive novel biological discovery.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Statistics, Oregon State University, Corvallis, OR
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, OR
| | - Austin Hammer
- Department of Microbiology, Oregon State University, Corvallis, OR
| | - Thomas Sharpton
- Department of Statistics, Oregon State University, Corvallis, OR
- Department of Microbiology, Oregon State University, Corvallis, OR
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR
| |
Collapse
|
3
|
Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME COMMUNICATIONS 2022; 2:36. [PMID: 37938286 PMCID: PMC9723720 DOI: 10.1038/s43705-022-00121-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/18/2023]
Abstract
Community dynamics are central in microbial ecology, yet we lack studies comparing diversity patterns among marine protists and prokaryotes over depth and multiple years. Here, we characterized microbes at the San-Pedro Ocean Time series (2005-2018), using SSU rRNA gene sequencing from two size fractions (0.2-1 and 1-80 μm), with a universal primer set that amplifies from both prokaryotes and eukaryotes, allowing direct comparisons of diversity patterns in a single set of analyses. The 16S + 18S rRNA gene composition in the small size fraction was mostly prokaryotic (>92%) as expected, but the large size fraction unexpectedly contained 46-93% prokaryotic 16S rRNA genes. Prokaryotes and protists showed opposite vertical diversity patterns; prokaryotic diversity peaked at mid-depth, protistan diversity at the surface. Temporal beta-diversity patterns indicated prokaryote communities were much more stable than protists. Although the prokaryotic communities changed monthly, the average community stayed remarkably steady over 14 years, showing high resilience. Additionally, particle-associated prokaryotes were more diverse than smaller free-living ones, especially at deeper depths, contributed unexpectedly by abundant and diverse SAR11 clade II. Eukaryotic diversity was strongly correlated with the diversity of particle-associated prokaryotes but not free-living ones, reflecting that physical associations result in the strongest interactions, including symbioses, parasitism, and decomposer relationships.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA.
| |
Collapse
|
4
|
Sehein TR, Gast RJ, Pachiadaki M, Guillou L, Edgcomb VP. Parasitic infections by Group II Syndiniales target selected dinoflagellate host populations within diverse protist assemblages in a model coastal pond. Environ Microbiol 2022; 24:1818-1834. [PMID: 35315564 DOI: 10.1111/1462-2920.15977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
Protists are integral to marine food webs and biogeochemical cycles; however, there is a paucity of data describing specific ecological niches for some of the most abundant taxa in marker gene libraries. Syndiniales are one such group, often representing the majority of sequence reads recovered from picoplankton samples across the global ocean. However, the prevalence and impacts of syndinian parasitism in marine environments remains unclear. We began to address these critical knowledge gaps by generating a high-resolution time series (March-October 2018) in a productive coastal pond. Seasonal shifts in protist populations, including parasitic Syndiniales, were documented during periods of higher primary productivity and increased summer temperature-driven stratification. Elevated concentrations of infected hosts and free-living parasite spores occurred at nearly monthly intervals in July, August, and September. We suggest intensifying stratification during this period correlated with the increased prevalence of dinoflagellates that were parasitized by Group II Syndiniales. Infections in some protist populations were comparable to previously reported large single-taxon dinoflagellate blooms. Infection dynamics in Salt Pond demonstrated the propagation of syndinian parasites through mixed protist assemblages and highlighted patterns of host/parasite interactions that better reflect many other marine environments where single taxon blooms are uncommon.
Collapse
Affiliation(s)
- Taylor R Sehein
- MIT-WHOI Joint Program in Biological Oceanography, Cambridge and Woods Hole, MA, United States
| | - Rebecca J Gast
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Maria Pachiadaki
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Laure Guillou
- Sorbonne Université & Centre National pour la Recherche Scientifique, Station Biologique de Roscoff, UMR7144, Roscoff, France
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
5
|
Gottschling M, Czech L, Mahé F, Adl S, Dunthorn M. The Windblown: Possible Explanations for Dinophyte DNA in Forest Soils. J Eukaryot Microbiol 2020; 68:e12833. [PMID: 33155377 DOI: 10.1111/jeu.12833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Dinophytes are widely distributed in marine- and fresh-waters, but have yet to be conclusively documented in terrestrial environments. Here, we evaluated the presence of these protists from an environmental DNA metabarcoding dataset of Neotropical rainforest soils. Using a phylogenetic placement approach with a reference alignment and tree, we showed that the numerous sequencing reads that were phylogenetically placed as dinophytes did not correlate with taxonomic assignment, environmental preference, nutritional mode, or dormancy. All the dinophytes in the soils are rather windblown dispersal units of aquatic species and are not biologically active residents of terrestrial environments.
Collapse
Affiliation(s)
- Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, D-80638, Germany
| | - Lucas Czech
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, D-69118, Germany.,Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Frédéric Mahé
- CIRAD, UMR BGPI, Montpellier, F-34398, France.,BGPI, Université de Montpellier, CIRAD, IRD, Montpellier SupAgro, , Montpellier, France
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Micah Dunthorn
- Eukaryotic Microbiology, Faculty of Biology, Universität Duisburg-Essen, Essen, D-45141, Germany.,Centre for Water and Environmental Research (ZWU), Universität Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
6
|
Lin S, Hu Z, Deng Y, Shang L, Gobler CJ, Tang YZ. An assessment on the intrapopulational and intraindividual genetic diversity in LSU rDNA in the harmful algal blooms-forming dinoflagellate Margalefidinium (= Cochlodinium) fulvescens based on clonal cultures and bloom samples from Jiaozhou Bay, China. HARMFUL ALGAE 2020; 96:101821. [PMID: 32560829 DOI: 10.1016/j.hal.2020.101821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Large subunit ribosomal DNA (LSU rDNA) sequences have been increasingly used to infer the phylogeny and species identity of organisms, a few previous studies, however, have observed high intraspecific and even intraindividual variability in LSU rDNA in some dinoflagellate species due to, assumably, large copy numbers of rDNA in dinoflagellates. Since the copy number of LSU rDNA varies tremendously among dinoflagellate species, the intraspecific and intraindividual diversity for a species of particular interest thus needs to be investigated individually. As a toxic and HABs-forming dinoflagellate, Margalefidinium (= Cochlodinium) fulvescens has been observed to approach blooming density in Jiaozhou Bay, China since 2015 after numerous blooms having been reported from other countries. In trying to identify the source of this newly observed HABs-forming species in China by sequencing the LSU rDNA for both field samples and clonal cultures, we noticed and thus further investigated high intrapopulational and intraindividual genetic diversities of the dinoflagellate. The D1-D6 region of the LSU rDNA (1,435 bases) was amplified from 7 field samples (pooled cells) and 11 clonal cultures, cloned, sequenced, and analyzed phylogenetically for 2,341 sequences obtained. All the numbers of sequences obtained from each clonal culture were far less than the estimated rDNA copy number in M. fulvescens. In the clone library, only one unique sequence was contained in all samples as the most dominant sequence. We found high intrapopulational and intraindividual genetic diversity in M. fulvescens as reflected in the number of polymorphic sites and unique sequences in the clone library for different field samples and clonal cultures in comparison to other species. The mean number of nucleotide differences of each sequence from different field samples and clonal cultures were 6.43 and 4.42 bases, respectively, with the highest being 132 bases, nearly 10%. The sequences with highest variability may be easily annotated as different species if they were obtained from environmental genomic studies because sequence-based species identification in meta-barcoding studies often use "97% identity" threshold. Based on that the mean and overall intrapopulational genetic diversity calculated for 7 field samples was equivalent to the mean and overall intraindividual variability for 11 clonal cultures in indices of genetic diversity, together with the result of AMOVA analysis, we infer that the variability within individual cells (i.e. variability among LSU rDNA polymorphic copies) caused both the intraindividual and intrapopulational genetic diversities observed in the M. fulvescens population, and a higher interpopulational diversity may exist among different geographic populations. The results provide an insightful basis for such a comprehensive interpopulational comparison and important implications for identifying species and establishing new taxa based on the similarity comparison to reference sequences deposited in databases.
Collapse
Affiliation(s)
- Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Anderson SR, Harvey EL. Temporal Variability and Ecological Interactions of Parasitic Marine Syndiniales in Coastal Protist Communities. mSphere 2020; 5:e00209-20. [PMID: 32461270 PMCID: PMC7253595 DOI: 10.1128/msphere.00209-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Syndiniales are a ubiquitous group of protist parasites that infect and kill a wide range of hosts, including harmful bloom-forming dinoflagellates. Despite the importance of parasitism as an agent of plankton mortality, parasite-host dynamics remain poorly understood, especially over time, hindering the inclusion of parasitism in food web and ecosystem models. For a full year in the Skidaway River Estuary (Georgia), we employed weekly 18S rRNA sampling and co-occurrence network analysis to characterize temporal parasite-host infection dynamics of Syndiniales. Over the year, Syndiniales exhibited strong temporal variability, with higher relative abundance from June to October (7 to 28%) than other months in the year (0.01% to 6%). Nonmetric dimensional scaling of Syndiniales composition revealed tight clustering in June to October that coincided with elevated temperatures (23 to 31°C), though in general, abiotic factors poorly explained composition (canonical correspondence analysis [CCA] and partial least-squares [PLS]) and were less important in the network than biotic relationships. Syndiniales amplicon sequence variants (ASVs) were well represented in the co-occurrence network (20% of edges) and had significant positive associations (Spearman r > 0.7), inferred to be putative parasite-host relationships, with known dinoflagellate hosts (e.g., Akashiwo and Gymnodinium) and other protist groups (e.g., ciliates, radiolarians, and diatoms). Positive associations rarely involved a single Syndiniales and dinoflagellate species, implying flexible parasite-host infection dynamics. These findings provide insight into the temporal dynamics of Syndiniales over a full year and reinforce the importance of single-celled parasites in driving plankton population dynamics. Further empirical work is needed to confirm network interactions and to incorporate parasitism within the context of ecosystem models.IMPORTANCE Protist parasites in the marine alveolate group, Syndiniales, have been observed within infected plankton host cells for decades, and recently, global-scale efforts (Tara Ocean exploration) have confirmed their importance within microbial communities. Yet, protist parasites remain enigmatic, particularly with respect to their temporal dynamics and parasite-host interactions. We employed weekly 18S amplicon surveys over a full year in a coastal estuary, revealing strong temporal shifts in Syndiniales parasites, with highest relative abundance during warmer summer to fall months. Though influenced by temperature, Syndiniales population dynamics were also driven by a high frequency of biological interactions with other protist groups, as determined through co-occurrence network analysis. Parasitic interactions implied by the network highlighted a range of confirmed (dinoflagellates) and putative (diatoms) interactions and suggests parasites may be less selective in their preferred hosts. Understanding parasite-host dynamics over space and time will improve our ability to include parasitism as a loss term in microbial food web models.
Collapse
Affiliation(s)
- Sean R Anderson
- Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia, USA
| | | |
Collapse
|
8
|
Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, Marie D, Porcel BM, Siano R, Szymczak J, Wolf M, Guillou L. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep 2020; 10:2531. [PMID: 32054950 PMCID: PMC7018713 DOI: 10.1038/s41598-020-59524-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/27/2020] [Indexed: 12/02/2022] Open
Abstract
As critical primary producers and recyclers of organic matter, the diversity of marine protists has been extensively explored by high-throughput barcode sequencing. However, classification of short metabarcoding sequences into traditional taxonomic units is not trivial, especially for lineages mainly known by their genetic fingerprints. This is the case for the widespread Amoebophrya ceratii species complex, parasites of their dinoflagellate congeners. We used genetic and phenotypic characters, applied to 119 Amoebophrya individuals sampled from the same geographic area, to construct practical guidelines for species delineation that could be applied in DNA/RNA based diversity analyses. Based on the internal transcribed spacer (ITS) regions, ITS2 compensatory base changes (CBC) and genome k-mer comparisons, we unambiguously defined eight cryptic species among closely related ribotypes that differed by less than 97% sequence identity in their SSU rDNA. We then followed the genetic signatures of these parasitic species during a three-year survey of Alexandrium minutum blooms. We showed that these cryptic Amoebophrya species co-occurred and shared the same ecological niche. We also observed a maximal ecological fitness for parasites having narrow to intermediate host ranges, reflecting a high cost for infecting a broader host range. This study suggests that a complete taxonomic revision of these parasitic dinoflagellates is long overdue to understand their diversity and ecological role in the marine plankton.
Collapse
Affiliation(s)
- Ruibo Cai
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Ehsan Kayal
- Sorbonne Université, CNRS, FR2424 ABIMS, Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC, Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, US
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Erwan Corre
- Sorbonne Université, CNRS, FR2424 ABIMS, Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Christian Jeanthon
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Betina M Porcel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University Evry, Université Paris-Saclay, 91057, Evry, France
| | - Raffaele Siano
- Ifremer-Centre de Bretagne, Département/Unité/Laboratoire ODE/DYNECO/Pelagos, Z.I. Technopôle Brest-Iroise, Pointe du Diable BP70, 29280, Plouzané, France
| | - Jeremy Szymczak
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France.
| |
Collapse
|
9
|
Sassenhagen I, Irion S, Jardillier L, Moreira D, Christaki U. Protist Interactions and Community Structure During Early Autumn in the Kerguelen Region (Southern Ocean). Protist 2019; 171:125709. [PMID: 32004979 DOI: 10.1016/j.protis.2019.125709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 12/01/2019] [Indexed: 02/03/2023]
Abstract
This study investigated protist community composition and biotic interactions focusing on microplankton at four distinct sites around the Kerguelen Islands (Southern Ocean) after the summer phytoplankton bloom. Protist diversity in different size fractions, sampled with Niskin bottles and plankton nets, was assessed by sequencing of the V4 18S rDNA region. Combining different approaches, i.e. sequencing of different plankton size fractions, and isolation and sequencing of single cells, provided new insights into microbial interactions in protist communities. The communities displayed high variability, including short-term fluctuations in relative abundance of large protists (>35μm) highlighted by the plankton net samples. Size fractionation of protist communities showed high concentrations of free Syndiniales spores but relatively few Syndiniales associated with microplankton, suggesting low parasitic infection in early autumn. Co-variance network analyses and sequencing of individually isolated single cells highlighted the important role of Rhizaria as consumers of a wide range of different diatom taxa. The data also raised the hypothesis that different Syndiniales clades might be directly or indirectly associated with some diatom genera, thus suggesting a potentially wider host range of these parasites than has been previously reported. These associations and the potential impact on carbon fluxes are discussed.
Collapse
Affiliation(s)
- Ingrid Sassenhagen
- Laboratoire d'Océanologie et Géosciences, UMR CNRS 8187, Université du Littoral Côte d'Opale, 32 Avenue du Maréchal Foch, 62930 Wimereux, France.
| | - Solène Irion
- Laboratoire d'Océanologie et Géosciences, UMR CNRS 8187, Université du Littoral Côte d'Opale, 32 Avenue du Maréchal Foch, 62930 Wimereux, France
| | - Ludwig Jardillier
- Unité d'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Rue du doyen A. Guinier bât. 360, 91405 Orsay Cedex, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Rue du doyen A. Guinier bât. 360, 91405 Orsay Cedex, France
| | - Urania Christaki
- Laboratoire d'Océanologie et Géosciences, UMR CNRS 8187, Université du Littoral Côte d'Opale, 32 Avenue du Maréchal Foch, 62930 Wimereux, France
| |
Collapse
|
10
|
A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum. PLoS One 2019; 14:e0212912. [PMID: 30818350 PMCID: PMC6394959 DOI: 10.1371/journal.pone.0212912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Amoebophrya is part of an enigmatic, diverse, and ubiquitous marine alveolate lineage known almost entirely from anonymous environmental sequencing. Two cultured Amoebophrya strains grown on core dinoflagellate hosts were used for transcriptome sequencing. BLASTx using different genetic codes suggests that Amoebophyra sp. ex Karlodinium veneficum uses the three typical stop codons (UAA, UAG, and UGA) to encode amino acids. When UAA and UAG are translated as glutamine about half of the alignments have better BLASTx scores, and when UGA is translated as tryptophan one fifth have better scores. However, the sole stop codon appears to be UGA based on conserved genes, suggesting contingent translation of UGA. Neither host sequences, nor sequences from the second strain, Amoebophrya sp. ex Akashiwo sanguinea had similar results in BLASTx searches. A genome survey of Amoebophyra sp. ex K. veneficum showed no evidence for transcript editing aside from mitochondrial transcripts. The dynein heavy chain (DHC) gene family was surveyed and of 14 transcripts only two did not use UAA, UAG, or UGA in a coding context. Overall the transcriptome displayed strong bias for A or U in third codon positions, while the tRNA genome survey showed bias against codons ending in U, particularly for amino acids with two codons ending in either C or U. Together these clues suggest contingent translation mechanisms in Amoebophyra sp. ex K. veneficum and a phylogenetically distinct instance of genetic code modification.
Collapse
|
11
|
Wang Y, Wang C, Jiang Y, Katz LA, Gao F, Yan Y. Further analyses of variation of ribosome DNA copy number and polymorphism in ciliates provide insights relevant to studies of both molecular ecology and phylogeny. SCIENCE CHINA-LIFE SCIENCES 2019; 62:203-214. [PMID: 30671886 DOI: 10.1007/s11427-018-9422-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
Abstract
Sequence-based approaches, such as analyses of ribosome DNA (rDNA) clone libraries and high-throughput amplicon sequencing, have been used extensively to infer evolutionary relationships and elucidate the biodiversity in microbial communities. However, recent studies demonstrate both rDNA copy number variation and intra-individual (intra-genomic) sequence variation in many organisms, which challenges the application of the rDNA-based surveys. In ciliates, an ecologically important clade of microbial eukaryotes, rDNA copy number and sequence variation are rarely studied. In the present study, we estimate the intraindividual small subunit rDNA (SSU rDNA) copy number and sequence variation in a wide range of taxa covering nine classes and 18 orders of the phylum Ciliophora. Our studies reveal that: (i) intra-individual sequence variation of SSU rDNA is ubiquitous in all groups of ciliates detected and the polymorphic level varies among taxa; (ii) there is a most common version of SSU rDNA sequence in each cell that is highly predominant and may represent the germline micronuclear template; (iii) compared with the most common version, other variant sequences differ in only 1-3 nucleotides, likely generated during macronuclear (somatic) amplification; (iv) the intra-cell sequence variation is unlikely to impact phylogenetic analyses; (v) the rDNA copy number in ciliates is highly variable, ranging from 103 to 106, with the highest record in Stentor roeselii. Overall, these analyses indicate the need for careful consideration of SSU rDNA variation in analyses of the role of ciliates in ecosystems.
Collapse
Affiliation(s)
- Yurui Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Chundi Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, 01063, USA
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China.
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China.
- Department of Biological Sciences, Smith College, Northampton, MA, 01063, USA.
| |
Collapse
|
12
|
Wang F, Xie Y, Wu W, Sun P, Wang L, Huang B. Picoeukaryotic Diversity And Activity in the Northwestern Pacific Ocean Based on rDNA and rRNA High-Throughput Sequencing. Front Microbiol 2019; 9:3259. [PMID: 30687258 PMCID: PMC6333705 DOI: 10.3389/fmicb.2018.03259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 01/12/2023] Open
Abstract
Picoeukaryotes play an important role in the biogenic element cycle and energy flow in oligotrophic ecosystems. However, their biodiversity and activity are poorly studied in open ocean systems, such as the northwestern Pacific Ocean, which is characterized by a complex hydrological setting. Here, we investigated the diversity and activity of picoeukaryotes in the northwestern Pacific Ocean using high-throughput sequencing targeting the V9 region of 18S rDNA and rRNA. Our results showed that the DNA picoeukaryotic communities were mainly represented by Mamiellophyceae, MAST, MALV-II, Spirotrichea, Prymnesiophyceae, and MALV-I (69.33% of the total DNA reads), and the RNA communities were dominated by Spirotrichea, Mamiellophyceae, MAST, Pelagophyceae, and MALV-II (67.46% of the total RNA reads). The number of operational taxonomic units (OTUs) was significantly affected by temperature and salinity, and was decreased with the increasing nutrient concentration both in the DNA and RNA surveys. Significant differences were observed in the community composition between DNA-based and RNA-based molecular approaches, and these differences were mainly attributed to Mamiellophyceae, Spirotrichea, and Pelagophyceae. The RNA: DNA ratio was used as a proxy for relative metabolic activity of the individual OTUs. We found that the relative metabolic activities of Mamiellophyceae, Spirotrichea, and Pelagophyceae species in the northwestern Pacific Ocean were highly affected by the nutrient concentration, i.e., the NO3 + NO2 and SiO3 concentration. Overall, our study shed light on picoeukaryotic diversity and distribution in the northwestern Pacific Ocean and revealed the correlation between the diversity, relative metabolic activities of marine picoeukaryotes, and the environmental factors.
Collapse
Affiliation(s)
- Feipeng Wang
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yuyuan Xie
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wenxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Ping Sun
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Lei Wang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Bangqin Huang
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Modelling plankton ecosystems in the meta-omics era. Are we ready? Mar Genomics 2017; 32:1-17. [DOI: 10.1016/j.margen.2017.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/30/2022]
|
14
|
Moon E, Nam SW, Shin W, Park MG, Coats DW. Do All Dinoflagellates have an Extranuclear Spindle? Protist 2015; 166:569-84. [PMID: 26491972 DOI: 10.1016/j.protis.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/01/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023]
Abstract
The syndinean dinoflagellates are a diverse assemblage of alveolate endoparasites that branch basal to the core dinoflagellates. Because of their phylogenetic position, the syndineans are considered key model microorganisms in understanding early evolution in the dinoflagellates. Closed mitosis with an extranuclear spindle that traverses the nucleus in cytoplasmic grooves or tunnels is viewed as one of the morphological features shared by syndinean and core dinoflagellates. Here we describe nuclear morphology and mitosis in the syndinean dinoflagellate Amoebophrya sp. from Akashiwo sanguinea, a member of the A. ceratii complex, as revealed by protargol silver impregnation, DNA specific fluorochromes, and transmission electron microscopy. Our observations show that not all species classified as dinoflagellates have an extranuclear spindle. In Amoebophrya sp. from A. sanguinea, an extranuclear microtubule cylinder located in a depression in the nuclear surface during interphase moves into the nucleoplasm via sequential membrane fusion events and develops into an entirely intranuclear spindle. Results suggest that the intranuclear spindle of Amoebophrya spp. may have evolved from an ancestral extranuclear spindle and indicate the need for taxonomic revision of the Amoebophryidae.
Collapse
Affiliation(s)
- Eunyoung Moon
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Won Nam
- Department of Biological Science, Chungnam National University, Daejeon 306-764, Republic of Korea
| | - Woongghi Shin
- Department of Biological Science, Chungnam National University, Daejeon 306-764, Republic of Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | - D Wayne Coats
- Smithsonian Environmental Research Center, P.O. Box 28, 647 Contees Wharf Rd., Edgewater, MD 21037, USA
| |
Collapse
|
15
|
Bass D, Stentiford GD, Littlewood D, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends Parasitol 2015; 31:499-513. [DOI: 10.1016/j.pt.2015.06.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 01/05/2023]
|
16
|
Jung JH, Choi JM, Coats DW, Kim YO. Euduboscquella costata n. sp. (Dinoflagellata, Syndinea), an Intracellular Parasite of the Ciliate Schmidingerella arcuata: Morphology, Molecular Phylogeny, Life Cycle, Prevalence, and Infection Intensity. J Eukaryot Microbiol 2015; 63:3-15. [PMID: 25963420 DOI: 10.1111/jeu.12231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
The syndinean dinoflagellate Euduboscquella costata n. sp., an intracellular parasite of the tintinnid ciliate Schmidingerella arcuata, was discovered from Korean coastal water in November of 2013. Euduboscquella costata parasitized in about 62% of the host population, with infection intensity (= number of trophonts in a single host cell) ranging from 1 to 8. Based on morphology and nuclear 18S ribosomal RNA gene sequences, the parasite is new to science. Euduboscquella costata n. sp. had an infection cycle typical of the genus, but had morphological and developmental features that distinguished it from congeneric species. These features include: (1) episome of the trophont with 25-40 grooves converging toward the center of the shield; (2) a narrow, funnel-shaped lamina pharyngea extending from the margin of the episomal shield to the nucleus; (3) persistence of grooves during extracellular development (sporogenesis); (4) a single food vacuole during sporogenesis; (5) separation of sporocytes early in sporogenesis, regardless of type of spore formed; and (6) dinospore size (ca. 14 μm in length) and shape (bulbous episome with narrower, tapering hyposome). After sporogenesis, E. costata produced four different types of spore that showed completely identical 18S rRNA gene sequences. The gene sequence was completely identical with a previously reported population, Euduboscquella sp. ex S. arcuata, from Assawoman Bay, USA, indicating that the two populations are likely conspecific. Favella ehrenbergii, a widely recorded tintinnid known to host Euduboscquella spp., co-occurred with S. arcuata, but was not infected by E. costata in field samples or during short-term, cross-infection experiments.
Collapse
Affiliation(s)
- Jae-Ho Jung
- Korea Institute of Ocean Science & Technology (KIOST), 41 Jangmok-1, Jangmok-Myon, Geoje, 656-834, South Korea
| | - Jung Min Choi
- Korea Institute of Ocean Science & Technology (KIOST), 41 Jangmok-1, Jangmok-Myon, Geoje, 656-834, South Korea
| | - D Wayne Coats
- Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, Maryland, 21037, USA
| | - Young-Ok Kim
- Korea Institute of Ocean Science & Technology (KIOST), 41 Jangmok-1, Jangmok-Myon, Geoje, 656-834, South Korea
| |
Collapse
|
17
|
Alves-de-Souza C, Pecqueur D, Le Floc’h E, Mas S, Roques C, Mostajir B, Vidussi F, Velo-Suárez L, Sourisseau M, Fouilland E, Guillou L. Significance of plankton community structure and nutrient availability for the control of dinoflagellate blooms by parasites: a modeling approach. PLoS One 2015; 10:e0127623. [PMID: 26030411 PMCID: PMC4452582 DOI: 10.1371/journal.pone.0127623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/16/2015] [Indexed: 11/18/2022] Open
Abstract
Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole.
Collapse
Affiliation(s)
- Catharina Alves-de-Souza
- Laboratório de Ficologia, Departamento de Botânica, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista S/N, São Cristóvão, Rio de Janeiro, RJ, Brasil
| | - David Pecqueur
- UMR 9190 MARBEC Center of Marine Biodiversity, Exploitation & Conservation, CNRS, UM, IRD, IFREMER, Université Montpellier, Place E. Bataillon, CC 093, Montpellier, France
| | - Emilie Le Floc’h
- UMR 9190 MARBEC Center of Marine Biodiversity, Exploitation & Conservation, CNRS, UM, IRD, IFREMER, Université Montpellier, Place E. Bataillon, CC 093, Montpellier, France
- UMS 3282 OSU OREME-MEDIMEER, IRD, UM, CNRS, SMEL, 2 rue des Chantiers, Sète, France
- UMR 9190 MARBEC Center of Marine Biodiversity, Exploitation & Conservation, CNRS, UM, IRD, IFREMER, SMEL, Sète, France
| | - Sébastien Mas
- UMS 3282 OSU OREME-MEDIMEER, IRD, UM, CNRS, SMEL, 2 rue des Chantiers, Sète, France
| | - Cécile Roques
- UMR 9190 MARBEC Center of Marine Biodiversity, Exploitation & Conservation, CNRS, UM, IRD, IFREMER, Université Montpellier, Place E. Bataillon, CC 093, Montpellier, France
| | - Behzad Mostajir
- UMR 9190 MARBEC Center of Marine Biodiversity, Exploitation & Conservation, CNRS, UM, IRD, IFREMER, Université Montpellier, Place E. Bataillon, CC 093, Montpellier, France
| | - Franscesca Vidussi
- UMR 9190 MARBEC Center of Marine Biodiversity, Exploitation & Conservation, CNRS, UM, IRD, IFREMER, Université Montpellier, Place E. Bataillon, CC 093, Montpellier, France
| | | | | | - Eric Fouilland
- UMR 9190 MARBEC Center of Marine Biodiversity, Exploitation & Conservation, CNRS, UM, IRD, IFREMER, SMEL, Sète, France
| | - Laure Guillou
- CNRS, UMR 7144 & Université Pierre et Marie Curie, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| |
Collapse
|
18
|
de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Luke J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D. Eukaryotic plankton diversity in the sunlit ocean. Science 2015; 348:1261605. [DOI: 10.1126/science.1261605] [Citation(s) in RCA: 1138] [Impact Index Per Article: 126.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 2015; 347:1257594. [DOI: 10.1126/science.1257594] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Bazin P, Jouenne F, Friedl T, Deton-Cabanillas AF, Le Roy B, Véron B. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: combined morphological and molecular approaches. PLoS One 2014; 9:e94110. [PMID: 24718653 PMCID: PMC3981767 DOI: 10.1371/journal.pone.0094110] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 03/12/2014] [Indexed: 11/19/2022] Open
Abstract
Microscopical and molecular analyses were used to investigate the diversity and spatial community structure of spring phytoplankton all along the estuarine gradient in a macrotidal ecosystem, the Baie des Veys (eastern English Channel). Taxa distribution at high tide in the water column appeared to be mainly driven by the tidal force which superimposed on the natural salinity gradient, resulting in a two-layer flow within the channel. Lowest taxa richness and abundance were found in the bay where Teleaulax-like cryptophytes dominated. A shift in species composition occurred towards the mouth of the river, with the diatom Asterionellopsis glacialis dramatically accumulating in the bottom waters of the upstream brackish reach. Small thalassiosiroid diatoms dominated the upper layer river community, where taxa richness was higher. Through the construction of partial 18S rDNA clone libraries, the microeukaryotic diversity was further explored for three samples selected along the surface salinity gradient (freshwater - brackish - marine). Clone libraries revealed a high diversity among heterotrophic and/or small-sized protists which were undetected by microscopy. Among them, a rich variety of Chrysophyceae and other lineages (e.g. novel marine stramenopiles) are reported here for the first time in this transition area. However, conventional microscopy remains more efficient in revealing the high diversity of phototrophic taxa, low in abundances but morphologically distinct, that is overlooked by the molecular approach. The differences between microscopical and molecular analyses and their limitations are discussed here, pointing out the complementarities of both approaches, for a thorough phytoplankton community description.
Collapse
Affiliation(s)
- Pauline Bazin
- Université de Caen Basse-Normandie, UMR BOREA “Biologie des Organismes et Ecosystèmes Aquatiques,” Caen, France
- Centre National de la Recherche Scientifique (CNRS), Institut Ecologie et Environnement (INEE), UMR BOREA, Caen, France
| | - Fabien Jouenne
- Algobank-Caen, Université de Caen Basse-Normandie, Caen, France
| | - Thomas Friedl
- Department Experimentelle Phykologie und Sammlung für Algenkulturen (EPSAG), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anne-Flore Deton-Cabanillas
- Université de Caen Basse-Normandie, UMR BOREA “Biologie des Organismes et Ecosystèmes Aquatiques,” Caen, France
- Centre National de la Recherche Scientifique (CNRS), Institut Ecologie et Environnement (INEE), UMR BOREA, Caen, France
| | - Bertrand Le Roy
- Université de Caen Basse-Normandie, UMR BOREA “Biologie des Organismes et Ecosystèmes Aquatiques,” Caen, France
- Centre National de la Recherche Scientifique (CNRS), Institut Ecologie et Environnement (INEE), UMR BOREA, Caen, France
| | - Benoît Véron
- Université de Caen Basse-Normandie, UMR BOREA “Biologie des Organismes et Ecosystèmes Aquatiques,” Caen, France
- Centre National de la Recherche Scientifique (CNRS), Institut Ecologie et Environnement (INEE), UMR BOREA, Caen, France
- Algobank-Caen, Université de Caen Basse-Normandie, Caen, France
- * E-mail:
| |
Collapse
|
21
|
Dolan JR, Pierce RW, Bachy C. Cyttarocylis ampulla, a polymorphic tintinnid ciliate of the marine plankton. Protist 2014; 165:66-80. [PMID: 24394564 DOI: 10.1016/j.protis.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 11/16/2022]
Abstract
Tintinnid species are traditionally distinguished via lorica features. Recently, sequencing has revealed polymorphism, i.e., genetically identical individuals with distinct lorica morphologies. One such polymorphic species is Cyttarocylis ampulla; individuals can display lorica morphologies of formally different species of Cyttarocylis and Petalotricha, well-represented in the literature. We compiled and analysed a global database of species records to determine if there is a main form and if different morphotypes have distinct temporal or spatial distributions. The two genera show very similar widespread distributions but with some statistical evidence of spatial segregation. Examining co-occurrence among the common 'species' we found most were rarely found alone, only 6-14% of the records for all species except for 2 forms: C. eucecryphalus and P. ampulla reported alone in 34% and 43%, respectively, of their records. We identify them as the main forms and analysed data of global distributions, spatial distribution across the Mediterranean in summer and winter and temporal distributions from a site in the Adriatic. The two main forms show frequent co-occurrence, similar lack of strong seasonality and widespread geographic distributions. We tentatively conclude that the different lorica morphologies may only reflect conditions of high temporally variability such as quantities and composition of prey. Directions for further research are suggested.
Collapse
Affiliation(s)
- John R Dolan
- Université Pierre et Marie Curie and Centre National de la Recherche Scientifique (CNRS), UMR 7093, Laboratoire d'Océanographie de Villefranche, Marine Microbial Ecology, Station Zoologique, B.P. 28, 06230 Villefranche-sur-Mer, France.
| | | | - Charles Bachy
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
22
|
Bachy C, Moreira D, Dolan JR, López-García P. Seasonal dynamics of free-living tintinnid ciliate communities revealed by environmental sequences from the North-West Mediterranean Sea. FEMS Microbiol Ecol 2013; 87:330-42. [DOI: 10.1111/1574-6941.12224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 01/23/2023] Open
Affiliation(s)
- Charles Bachy
- Unité d'Ecologie; Systématique et Evolution; CNRS UMR 8079; Université Paris-Sud; Orsay Cedex France
| | - David Moreira
- Unité d'Ecologie; Systématique et Evolution; CNRS UMR 8079; Université Paris-Sud; Orsay Cedex France
| | - John R. Dolan
- Laboratoire d'Océanographie de Villefranche, Marine Microbial Ecology; UMR 7093; Université Pierre et Marie Curie and Centre National de la Recherche Scientifique (CNRS); Villefranche-sur-Mer France
| | - Purificación López-García
- Unité d'Ecologie; Systématique et Evolution; CNRS UMR 8079; Université Paris-Sud; Orsay Cedex France
| |
Collapse
|
23
|
Bachvaroff TR, Gornik SG, Concepcion GT, Waller RF, Mendez GS, Lippmeier JC, Delwiche CF. Dinoflagellate phylogeny revisited: using ribosomal proteins to resolve deep branching dinoflagellate clades. Mol Phylogenet Evol 2013; 70:314-22. [PMID: 24135237 DOI: 10.1016/j.ympev.2013.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
The alveolates are composed of three major lineages, the ciliates, dinoflagellates, and apicomplexans. Together these 'protist' taxa play key roles in primary production and ecology, as well as in illness of humans and other animals. The interface between the dinoflagellate and apicomplexan clades has been an area of recent discovery, blurring the distinction between these two clades. Moreover, phylogenetic analysis has yet to determine the position of basal dinoflagellate clades hence the deepest branches of the dinoflagellate tree currently remain unresolved. Large-scale mRNA sequencing was applied to 11 species of dinoflagellates, including strains of the syndinean genera Hematodinium and Amoebophrya, parasites of crustaceans and dinoflagellates, respectively, to optimize and update the dinoflagellate tree. From the transcriptome-scale data a total of 73 ribosomal protein-coding genes were selected for phylogeny. After individual gene orthology assessment, the genes were concatenated into a >15,000 amino acid alignment with 76 taxa from dinoflagellates, apicomplexans, ciliates, and the outgroup heterokonts. Overall the tree was well resolved and supported, when the data was subsampled with gblocks or constraint trees were tested with the approximately unbiased test. The deepest branches of the dinoflagellate tree can now be resolved with strong support, and provides a clearer view of the evolution of the distinctive traits of dinoflagellates.
Collapse
Affiliation(s)
- Tsvetan R Bachvaroff
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States.
| | | | | | | | | | | | | |
Collapse
|
24
|
Xu D, Sun P, Warren A, Noh JH, Choi DL, Shin MK, Kim YO. Phylogenetic investigations on ten genera of tintinnid ciliates (Ciliophora: Spirotrichea: Tintinnida), based on small subunit ribosomal RNA gene sequences. J Eukaryot Microbiol 2013; 60:192-202. [PMID: 23346918 DOI: 10.1111/jeu.12023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
Tintinnida is a diverse taxon that accommodates over 1,500 morphospecies, which is an important component of marine planktonic food webs. However, evolutionary relationships of tintinnids are poorly known because molecular data of most groups within this order are lacking. In our study, the small subunit (SSU) rRNA genes representing 10 genera, 5 families of Tintinnida were sequenced, including the first SSU rRNA gene sequences for Coxliella, Dadayiella, Epiplocyloides, and Protorhabdonella, and phylogenetic trees were constructed to assess their intergeneric relationships. Phylogenies inferred from different methods showed that (1) Three newly sequenced Eutintinnus species fell into Eutintinnus clade forming a sister group to the clade containing Amphorides, Steenstrupiella, Amphorellopsis, and Salpingella; (2) Surprisingly, the genetic distances between Amphorides amphora and Amphorellopsis acuta population 1 was even smaller than that between the two populations of Amphorellopsis acuta, casting doubt on the validity of Amphorides and Amphorellopsis as presently defined; (3) The SSU rRNA sequences of Dadayiella ganymedes and Parundella aculeata were almost identical. Therefore, Parundella ganymedes novel combination is proposed; (4) Coxliella, which is currently assigned within Metacylididae, branched instead with some Tintinnopsis species. Furthermore, the validation of Coxliella, which was considered to be a "questionable" genus, was confirmed based on evidences from morphology, ecology, and molecular data; (5) Protorhabdonella and Rhabdonella showed rather low intergeneric distance and grouped together with strong support suggesting that Rhabdonellidae is a well-defined taxon; and (6) Epiplocyloides branched with species in Cyttarocylididae indicating their close relationship.
Collapse
Affiliation(s)
- Dapeng Xu
- South Sea Institute, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 656-834, Korea
| | | | | | | | | | | | | |
Collapse
|