1
|
Jeon D. Infection Source and Epidemiology of Nontuberculous Mycobacterial Lung Disease. Tuberc Respir Dis (Seoul) 2018; 82:94-101. [PMID: 30302953 PMCID: PMC6435933 DOI: 10.4046/trd.2018.0026] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous organisms that are generally found not only in the natural environment but also in the human engineered environment, including water, soil, and dust. These organisms can form biofilms and can be readily aerosolized because they are hydrophobic owing to the presence of the lipid-rich outer membrane. Aerosolization and subsequent inhalation were the major route of NTM lung disease. Water distribution systems and household plumbing are ideal habit for NTM and the main transmission route from natural water to household. NTM have been isolated from drinking water, faucets, pipelines, and water tanks. Studies that used genotyping have shown that NTM isolates from patients are identical to those in the environment, that is, from shower water, showerheads, tap water, and gardening soil. Humans are likely to be exposed to NTM in their homes through simple and daily activities, such as drinking, showering, or gardening. In addition to environmental factors, host factors play an important role in the development of NTM lung disease. The incidence and prevalence of NTM lung disease are increasing worldwide, and this disease is rapidly becoming a major public health problem. NTM lung disease is associated with substantially impaired quality of life, increased morbidity and mortality, and high medical costs. A more comprehensive understanding of the infection source and epidemiology of NTM is essential for the development of new strategies that can prevent and control NTM infection.
Collapse
Affiliation(s)
- Doosoo Jeon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea.
| |
Collapse
|
2
|
Hamilton KA, Weir MH, Haas CN. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. WATER RESEARCH 2017; 109:310-326. [PMID: 27915187 DOI: 10.1016/j.watres.2016.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Mycobacterium avium complex (MAC) is a group of environmentally-transmitted pathogens of great public health importance. This group is known to be harbored, amplified, and selected for more human-virulent characteristics by amoeba species in aquatic biofilms. However, a quantitative microbial risk assessment (QMRA) has not been performed due to the lack of dose response models resulting from significant heterogeneity within even a single species or subspecies of MAC, as well as the range of human susceptibilities to mycobacterial disease. The primary human-relevant species and subspecies responsible for the majority of the human disease burden and present in drinking water, biofilms, and soil are M. avium subsp. hominissuis, M. intracellulare, and M. chimaera. A critical review of the published literature identified important health endpoints, exposure routes, and susceptible populations for MAC risk assessment. In addition, data sets for quantitative dose-response functions were extracted from published in vivo animal dosing experiments. As a result, seven new exponential dose response models for human-relevant species of MAC with endpoints of lung lesions, death, disseminated infection, liver infection, and lymph node lesions are proposed. Although current physical and biochemical tests used in clinical settings do not differentiate between M. avium and M. intracellulare, differentiating between environmental species and subspecies of the MAC can aid in the assessment of health risks and control of MAC sources. A framework is proposed for incorporating the proposed dose response models into susceptible population- and exposure route-specific QMRA models.
Collapse
Affiliation(s)
- Kerry A Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Mark H Weir
- Division of Environmental Health Sciences and Department of Civil Environmental and Geodetic Engineering, The Ohio State University, USA
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Hamilton KA, Ahmed W, Palmer A, Sidhu JPS, Hodgers L, Toze S, Haas CN. Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks. ENVIRONMENTAL RESEARCH 2016; 150:320-327. [PMID: 27336236 DOI: 10.1016/j.envres.2016.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
A study of six potential opportunistic pathogens (Acanthamoeba spp., Legionella spp., Legionella longbeachae, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) and an accidental human pathogen (Legionella pneumophila) in 134 roof-harvested rainwater (RHRW) tank samples was conducted using quantitative PCR (qPCR). All five opportunistic pathogens and accidental pathogen L. pneumophila were detected in rainwater tanks except Legionella longbeachae. Concentrations ranged up to 3.1×10(6) gene copies per L rainwater for Legionella spp., 9.6×10(5) gene copies per L for P. aeruginosa, 6.8×10(5) gene copies per L for M. intracellulare, 6.6×10(5) gene copies per L for Acanthamoeba spp., 1.1×10(5) gene copies per L for M. avium, and 9.8×10(3) gene copies per L for L. pneumophila. Among the organisms tested, Legionella spp. (99% tanks) were the most prevalent followed by M. intracellulare (78%). A survey of tank-owners provided data on rainwater end-uses. Fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp. were enumerated using culture-based methods, and assessed for correlations with opportunistic pathogens and L. pneumophila tested in this study. Opportunistic pathogens did not correlate well with FIB except E. coli vs. Legionella spp. (tau=0.151, P=0.009) and E. coli vs. M. intracellulare (tau=0.14, P=0.015). However, M. avium weakly correlated with both L. pneumophila (Kendall's tau=0.017, P=0.006) and M. intracellulare (tau=0.088, P=0.027), and Legionella spp. also weakly correlated with M. intracellulare (tau=0.128, P=0.028). The presence of these potential opportunistic pathogens in tank water may present health risks from both the potable and non-potable uses documented from the current survey data.
Collapse
Affiliation(s)
- K A Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - A Palmer
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - L Hodgers
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - S Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - C N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Halstrom S, Price P, Thomson R. Review: Environmental mycobacteria as a cause of human infection. Int J Mycobacteriol 2015; 4:81-91. [PMID: 26972876 DOI: 10.1016/j.ijmyco.2015.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
Pulmonary infections with nontuberculous mycobacteria (NTM) are recognized as a problem in immunodeficient individuals and are increasingly common in older people with no known immune defects. NTM are found in soil and water, but factors influencing transmission from the environment to humans are mostly unknown. Studies of the epidemiology of NTM disease have matched some clinical isolates of NTM with isolates from the patient's local environment. Definitive matching requires strain level differentiation based on molecular analyses, including partial sequencing, PCR-restriction fragment length polymorphism (RFLP) analysis, random amplified polymorphic DNA (RAPD) PCR, repetitive element (rep-) PCR and pulsed field gel electrophoresis (PFGE) of large restriction fragments. These approaches have identified hospital and residential showers and faucets, hot-tubs and garden soil as sources of transmissible pathogenic NTM. However, gaps exist in the literature, with many clinical isolates remaining unidentified within environments that have been tested, and few studies investigating NTM transmission in developing countries. To understand the environmental reservoirs and transmission routes of pathogenic NTM, different environments, countries and climates must be investigated.
Collapse
Affiliation(s)
- Samuel Halstrom
- School of Medicine, University of Queensland, Room 513, Level 5, Mayne Medical Building, Herston Campus, Herston, Brisbane, QLD 4006, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Newdegate Street, Greenslopes, Brisbane, QLD 4120, Australia.
| | - Patricia Price
- School of Biomedical Science, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia.
| | - Rachel Thomson
- School of Medicine, University of Queensland, Room 513, Level 5, Mayne Medical Building, Herston Campus, Herston, Brisbane, QLD 4006, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Newdegate Street, Greenslopes, Brisbane, QLD 4120, Australia.
| |
Collapse
|
5
|
Ulmann V, Kracalikova A, Dziedzinska R. Mycobacteria in water used for personal hygiene in heavy industry and collieries: a potential risk for employees. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:2870-7. [PMID: 25749321 PMCID: PMC4377937 DOI: 10.3390/ijerph120302870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/24/2014] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
Environmental mycobacteria (EM) constitute a health risk, particularly for immunocompromised people. Workers in heavy industry and in collieries represent an at-risk group of people as their immunity is often weakened by long-term employment in dusty environments, frequent smoking and an increased occurrence of pulmonary diseases. This study was concerned with the presence of EM in non-drinking water used for the hygiene of employees in six large industrial companies and collieries. Over a period of ten years, 1096 samples of surface water treated for hygiene purposes (treated surface water) and treated surface water diluted with mining water were examined. EM were detected in 63.4 and 41.5% samples of treated surface water and treated surface water diluted with mining water, respectively. Mycobacterium gordonae, M. avium-intracellulare and M. kansasii were the most frequently detected species. Adoption of suitable precautions should be enforced to reduce the incidence of mycobacteria in shower water and to decrease the infectious pressure on employees belonging to an at-risk group of people.
Collapse
Affiliation(s)
- Vit Ulmann
- Institute of Public Health, Partyzanske namesti 7, 702 00 Ostrava, Czech Republic.
| | - Anna Kracalikova
- Institute of Public Health, Partyzanske namesti 7, 702 00 Ostrava, Czech Republic.
| | - Radka Dziedzinska
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
6
|
The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs. Curr Microbiol 2013; 67:725-31. [PMID: 23900570 DOI: 10.1007/s00284-013-0427-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Mycobacteria are widely present in diverse aquatic habitats, where they can survive for months or years while some species can even proliferate. The resistance of different mycobacterial species to disinfection methods like chlorination or ozonation could result in their presence in the final tap water of consumers. In this study, the culture method, Mycobacterium tuberculosis complex conventional duplex PCR for detection of non-tuberculous mycobacteria (NTM) and quantitative real-time PCR (qPCR) to detect three subspecies of M. avium species (M. a. avium, M. a. hominissuis, and M. a. paratuberculosis) were used to trace their possible path of transmission from the watershed through the reservoir and drinking water plant to raw drinking water and finally to households. A total of 124 samples from four drinking water supply systems in the Czech Republic, 52 dam sediments, 34 water treatment plant sludge samples, and 38 tap water household sediments, were analyzed. NTM of 11 different species were isolated by culture from 42 (33.9 %) samples; the most prevalent were M. gordonae (16.7 %), M. triplex (14.3 %), M. lentiflavum (9.5 %), M. a. avium (7.1 %), M. montefiorenase (7.1 %), and M. nonchromogenicum (7.1 %). NTM DNA was detected in 92 (76.7 %) samples. By qPCR analysis a statistically significant decrease (P < 0.01) was observed along the route from the reservoir (dam sediments), through water treatment sludge and finally to household sediments. The concentrations ranged from 10(0) to 10(4) DNA cells/g. It was confirmed that drinking water supply systems (watershed-reservoir-drinking water treatment plant-household) might be a potential transmission route for mycobacteria.
Collapse
|
7
|
Franco MMJ, Paes AC, Ribeiro MG, de Figueiredo Pantoja JC, Santos ACB, Miyata M, Leite CQF, Motta RG, Listoni FJP. Occurrence of mycobacteria in bovine milk samples from both individual and collective bulk tanks at farms and informal markets in the southeast region of Sao Paulo, Brazil. BMC Vet Res 2013; 9:85. [PMID: 23618368 PMCID: PMC3650655 DOI: 10.1186/1746-6148-9-85] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/13/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mycobacterium spp. is one of the most important species of zoonotic pathogens that can be transmitted from cattle to humans. The presence of these opportunistic, pathogenic bacteria in bovine milk has emerged as a public-health concern, especially among individuals who consume raw milk and related dairy products. To address this concern, the Brazilian control and eradication program focusing on bovine tuberculosis, was established in 2001. However, bovine tuberculosis continues to afflict approximately 1,3 percent of the cattle in Brazil. In the present study, 300 samples of milk from bovine herds, obtained from both individual and collective bulk tanks and informal points of sale, were cultured on Löwenstein-Jensen and Stonebrink media. Polymerase chain reaction (PCR)-based tests and restriction-enzyme pattern analysis were then performed on the colonies exhibiting phenotypes suggestive of Mycobacterium spp., which were characterized as acid-fast bacilli. RESULTS Of the 300 bovine milk samples that were processed, 24 were positively identified as Mycobacterium spp.Molecular identification detected 15 unique mycobacterial species: Mycobacterium bovis, M. gordonae, M. fortuitum, M. intracellulare, M. flavescens, M. duvalii, M. haemophilum, M. immunogenum, M. lentiflavum, M. mucogenicum, M. novocastrense, M. parafortuitum, M. smegmatis, M. terrae and M. vaccae. The isolation of bacteria from the various locations occurred in the following proportions: 9 percent of the individual bulk-tank samples, 7 percent of the collective bulk-tank samples and 8 percent of the informal-trade samples. No statistically significant difference was observed between the presence of Mycobacterium spp. in the three types of samples collected, the milk production profiles, the presence of veterinary assistance and the reported concerns about bovine tuberculosis prevention in the herds. CONCLUSION The microbiological cultures associated with PCR-based identification tests are possible tools for the investigation of the presence of Mycobacterium spp. in milk samples. Using these methods, we found that the Brazilian population may be regularly exposed to mycobacteria by consuming raw bovine milk and related dairy products. These evidences reinforces the need to optimize quality programs of dairy products, to intensify the sanitary inspection of these products and the necessity of further studies on the presence of Mycobacterium spp. in milk and milk-based products.
Collapse
Affiliation(s)
- Marília Masello Junqueira Franco
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP – Univ Estadual Paulista, Box 56018618-970, Botucatu, State of Sao Paulo, Brazil
| | - Antonio Carlos Paes
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP – Univ Estadual Paulista, Box 56018618-970, Botucatu, State of Sao Paulo, Brazil
| | - Márcio Garcia Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP – Univ Estadual Paulista, Box 56018618-970, Botucatu, State of Sao Paulo, Brazil
| | - José Carlos de Figueiredo Pantoja
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP – Univ Estadual Paulista, Box 56018618-970, Botucatu, State of Sao Paulo, Brazil
| | - Adolfo Carlos Barreto Santos
- Laboratory of Micobacteriology, School of Pharmacy Sciences, UNESP – Univ Estadual Paulista, 14800-901, Araraquara, State of Sao Paulo, Brazil
| | - Marcelo Miyata
- Laboratory of Micobacteriology, School of Pharmacy Sciences, UNESP – Univ Estadual Paulista, 14800-901, Araraquara, State of Sao Paulo, Brazil
| | - Clarice Queico Fujimura Leite
- Laboratory of Micobacteriology, School of Pharmacy Sciences, UNESP – Univ Estadual Paulista, 14800-901, Araraquara, State of Sao Paulo, Brazil
| | - Rodrigo Garcia Motta
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP – Univ Estadual Paulista, Box 56018618-970, Botucatu, State of Sao Paulo, Brazil
| | - Fernando José Paganini Listoni
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP – Univ Estadual Paulista, Box 56018618-970, Botucatu, State of Sao Paulo, Brazil
| |
Collapse
|
8
|
Thomson RM, Carter R, Tolson C, Coulter C, Huygens F, Hargreaves M. Factors associated with the isolation of Nontuberculous mycobacteria (NTM) from a large municipal water system in Brisbane, Australia. BMC Microbiol 2013; 13:89. [PMID: 23601969 PMCID: PMC3651865 DOI: 10.1186/1471-2180-13-89] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 04/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are normal inhabitants of a variety of environmental reservoirs including natural and municipal water. The aim of this study was to document the variety of species of NTM in potable water in Brisbane, QLD, with a specific interest in the main pathogens responsible for disease in this region and to explore factors associated with the isolation of NTM. One-litre water samples were collected from 189 routine collection sites in summer and 195 sites in winter. Samples were split, with half decontaminated with CPC 0.005%, then concentrated by filtration and cultured on 7H11 plates in MGIT tubes (winter only). RESULTS Mycobacteria were grown from 40.21% sites in Summer (76/189) and 82.05% sites in winter (160/195). The winter samples yielded the greatest number and variety of mycobacteria as there was a high degree of subculture overgrowth and contamination in summer. Of those samples that did yield mycobacteria in summer, the variety of species differed from those isolated in winter. The inclusion of liquid media increased the yield for some species of NTM. Species that have been documented to cause disease in humans residing in Brisbane that were also found in water include M. gordonae, M. kansasii, M. abscessus, M. chelonae, M. fortuitum complex, M. intracellulare, M. avium complex, M. flavescens, M. interjectum, M. lentiflavum, M. mucogenicum, M. simiae, M. szulgai, M. terrae. M. kansasii was frequently isolated, but M. avium and M. intracellulare (the main pathogens responsible for disease is QLD) were isolated infrequently. Distance of sampling site from treatment plant in summer was associated with isolation of NTM. Pathogenic NTM (defined as those known to cause disease in QLD) were more likely to be identified from sites with narrower diameter pipes, predominantly distribution sample points, and from sites with asbestos cement or modified PVC pipes. CONCLUSIONS NTM responsible for human disease can be found in large urban water distribution systems in Australia. Based on our findings, additional point chlorination, maintenance of more constant pressure gradients in the system, and the utilisation of particular pipe materials should be considered.
Collapse
Affiliation(s)
- Rachel M Thomson
- Gallipoli Medical Research Centre, Greenslopes Private Hospital, Brisbane, QLD, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Whiley H, Keegan A, Giglio S, Bentham R. Mycobacterium avium complex--the role of potable water in disease transmission. J Appl Microbiol 2012; 113:223-32. [PMID: 22471411 DOI: 10.1111/j.1365-2672.2012.05298.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mycobacterium avium complex (MAC) is a group of opportunistic pathogens of major public health concern. It is responsible for a wide spectrum of disease dependent on subspecies, route of infection and patients pre-existing conditions. Presently, there is limited research on the incidence of MAC infection that considers both pulmonary and other clinical manifestations. MAC has been isolated from various terrestrial and aquatic environments including natural waters, engineered water systems and soils. Identifying the specific environmental sources responsible for human infection is essential in minimizing disease prevalence. This paper reviews current literature and case studies regarding the wide spectrum of disease caused by MAC and the role of potable water in disease transmission. Potable water was recognized as a putative pathway for MAC infection. Contaminated potable water sources associated with human infection included warm water distribution systems, showers, faucets, household drinking water, swimming pools and hot tub spas. MAC can maintain long-term contamination of potable water sources through its high resistance to disinfectants, association with biofilms and intracellular parasitism of free-living protozoa. Further research is required to investigate the efficiency of water treatment processes against MAC and into construction and maintenance of warm water distribution systems and the role they play in MAC proliferation.
Collapse
Affiliation(s)
- H Whiley
- School of the Environment, Health and the Environment, Flinders University, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
10
|
Clinical significance of Mycobacterium asiaticum isolates in Queensland, Australia. J Clin Microbiol 2009; 48:162-7. [PMID: 19864478 DOI: 10.1128/jcm.01602-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium asiaticum was first reported as a cause of human disease in 1982, with only a few cases in the literature to date. This study aims to review the clinical significance of M. asiaticum isolates in Queensland, Australia. A retrospective review (1989 to 2008) of patients with M. asiaticum isolates was conducted. Data were collected through the Queensland TB Control Centre database. Disease was defined in accordance with the American Thoracic Society criteria. Twenty-four patients (13 female) had a positive culture of M. asiaticum, many residing around the Tropic of Capricorn. M. asiaticum was responsible for pulmonary disease (n = 2), childhood lymphadenitis (n = 1), olecranon bursitis (n = 1), 6 cases of possible pulmonary disease, and 2 possible wound infections. Chronic lung disease was a risk factor for pulmonary infection, and wounds/lacerations were a risk factor for extrapulmonary disease. Extrapulmonary disease responded to local measures. Pulmonary disease responded to ethambutol-isoniazid-rifampin plus pyrazinamide for the first 2 months in one patient, and amikacin-azithromycin-minocycline in another patient. While M. asiaticum is rare in Queensland, there appears to be an environmental niche. Although often a colonizer, it can be a cause of pulmonary and extrapulmonary disease. Treatment of pulmonary disease remains challenging. Extrapulmonary disease does not mandate specific nontuberculous mycobacterium (NTM) treatment.
Collapse
|
11
|
Abstract
It is likely that the incidence of infection by environmental opportunistic mycobacteria will continue to rise. Part of the rise will be caused by the increased awareness of these microbes as human pathogens and improvements in methods of detection and culture. Clinicians and microbiologists will continue to be challenged by the introduction of new species to the already long list of mycobacterial opportunists (see Table 3). The incidence of infection will also rise because an increasing proportion of the population is aging or subject to some type of immunosuppression. A second reason for an increase in the incidence of environmental mycobacterial infection is that these microbes are everywhere. They are present in water, biofilms, soil, and aerosols. They are natural inhabitants of the human environment, especially drinking water distribution systems. Thus, it is likely that everyone is exposed on a daily basis. It is likely that certain human activities can lead to selection of mycobacteria. Important lessons have been taught by study of cases of hypersensitivity pneumonitis associated with exposure to metalworking fluid. First, the implicated metalworking fluids contained water, the likely source of the mycobacteria. Second, the metalworking fluids contain hydrocarbons (e.g., pine oils) and biocides (e.g., morpholine) both of which are substrates for the growth of mycobacteria [53,193]. Third, outbreak of disease followed disinfection of the metalworking fluid [136,137]. Although the metalworking fluid was contaminated with microorganisms, it was only after disinfection that symptoms developed in the workers. Because mycobacteria are resistant to disinfectants, it is likely that the recovery of the mycobacteria from the metalworking fluid [137] was caused by their selection. Disinfection may also contribute, in part, to the persistence of M avium and M intracellulare in drinking water distribution systems [33,89,240]. M avium and M intracellulare are many times more resistant to chlorine, chloramine, chlorine dioxide, and ozone than are other water-borne microorganisms [141,236]. Consequently, disinfection of drinking water results in selection of mycobacteria. In the absence of competitors, even the slowly growing mycobacteria can grow in the distribution system [33]. It is likely that hypersensitivity pneumonitis in lifeguards and therapy pool attendants [139] is caused by a similar scenario.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biology, Fralin Biotechnology Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0346, USA.
| |
Collapse
|
12
|
Affiliation(s)
- R J Doneley
- Department of Primary Industries, Toowoomba Veterinary Laboratory, Queensland
| | | | | | | |
Collapse
|
13
|
von Reyn CF, Pestel M, Arbeit RD. Clinical and epidemiologic implications of polyclonal infection due to Mycobacterium avium complex. Res Microbiol 1996; 147:24-30. [PMID: 8761718 DOI: 10.1016/0923-2508(96)80199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C F von Reyn
- Infectious Disease Section, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
14
|
Abstract
Mycobacterium avium complex (MAC) disease emerged early in the epidemic of AIDS as one of the common opportunistic infections afflicting human immunodeficiency virus-infected patients. However, only over the past few years has a consensus developed about its significance to the morbidity and mortality of AIDS. M. avium was well known to mycobacteriologists decades before AIDS, and the MAC was known to cause disease, albeit uncommon, in humans and animals. The early interest in the MAC provided a basis for an explosion of studies over the past 10 years largely in response to the role of the MAC in AIDS opportunistic infection. Molecular techniques have been applied to the epidemiology of MAC disease as well as to a better understanding of the genetics of antimicrobial resistance. The interaction of the MAC with the immune system is complex, and putative MAC virulence factors appear to have a direct effect on the components of cellular immunity, including the regulation of cytokine expression and function. There now is compelling evidence that disseminated MAC disease in humans contributes to both a decrease in the quality of life and survival. Disseminated disease most commonly develops late in the course of AIDS as the CD4 cells are depleted below a critical threshold, but new therapies for prophylaxis and treatment offer considerable promise. These new therapeutic modalities are likely to be useful in the treatment of other forms of MAC disease in patients without AIDS. The laboratory diagnosis of MAC disease has focused on the detection of mycobacteria in the blood and tissues, and although the existing methods are largely adequate, there is need for improvement. Indeed, the successful treatment of MAC disease clearly will require an early and rapid detection of the MAC in clinical specimens long before the establishment of the characteristic overwhelming infection of bone marrow, liver, spleen, and other tissue. Also, a standard method of susceptibility testing is of increasing interest and importance as new effective antimicrobial agents are identified and evaluated. Antimicrobial resistance has already emerged as an important problem, and methods for circumventing resistance that use combination therapies are now being studied.
Collapse
Affiliation(s)
- C B Inderlied
- Department of Pathology and Laboratory Medicine, Childrens Hospital, Los Angeles, California 90027
| | | | | |
Collapse
|
15
|
Schulze-Röbbecke R, Weber A, Fischeder R. Comparison of decontamination methods for the isolation of mycobacteria from drinking water samples. J Microbiol Methods 1991. [DOI: 10.1016/0167-7012(91)90021-h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Ikawa H, Oka S, Murakami H, Hayashi A, Yano I. Rapid identification of serotypes of Mycobacterium avium-M. intracellulare complex by using infected swine sera and reference antigenic glycolipids. J Clin Microbiol 1989; 27:2552-8. [PMID: 2808677 PMCID: PMC267075 DOI: 10.1128/jcm.27.11.2552-2558.1989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The species of 136 strains of acid-fast bacteria isolated from swine with mycobacteriosis were identified by numerical taxonomy and chemotaxonomy on the basis of mycolic acid subclass composition as members of the Mycobacterium avium-M. intracellulare (MAI) complex. The isolates were further classified by using both thin-layer chromatography of the antigenic glycopeptidolipids (GPL) obtained from the bacteria by the method of Tsang et al. (A. Y. Tsang, I. Drupa, M. Goldberg, J. K. McClatchy, and P. J. Brennan, Int. J. Syst. Bacteriol. 33:285-292, 1983) and the seroagglutination test devised by W. B. Schaefer (Am. Rev. Respir. Dis. 92[Suppl.]:85-93, 1965). For the reference standard, purified antigenic GPL of serotypes 4, 8, and 9 were isolated and their structures were analyzed by negative fast-atom bombardment-mass spectrometry. The fast-atom bombardment-mass spectrometric spectra of the intact GPL antigens of serotypes 4, 8, and 9 agreed with the structures reported earlier by Brennan et al. (P. J. Brennan and M. B. Goren, J. Biol. Chem. 254:4205-4211, 1979; P. J. Brennan, G. O. Aspinall, and J. E. Nam Shin, J. Biol. Chem. 256:6817-6822, 1981). With these antigenic GPL, the thin-layer chromatographic behaviors of the alkali-stable lipids of the above-described isolates were examined. These MAI complex isolates fell into the serotype 8 (85 strains), 4 (33 strains), and 9 (7 strains) and untypeable (11 strains) categories. Furthermore, an enzyme-linked immunosorbent assay (ELISA) based on type-specific glycolipid antigens and infected swine sera was used to diagnose the serological types of the MAI complex isolates. Of 14 cases typed by both the seroagglutination reaction and thin-layer chromatography, 13 showed clear agreement with the ELISA results. The results demonstrated that ELISA using infected sera was especially useful, and it can be recommended on the basis of simplicity, sensitivity, and specificity as an adjunct to the seroaggulutination test and thin-layer chromatography for identification of mycobacteria belonging to the MAI complex.
Collapse
Affiliation(s)
- H Ikawa
- Department of Bacteriology, Osaka City University Medical School, Japan
| | | | | | | | | |
Collapse
|
17
|
Ichiyama S, Shimokata K, Tsukamura M. The isolation of Mycobacterium avium complex from soil, water, and dusts. Microbiol Immunol 1988; 32:733-9. [PMID: 3057333 DOI: 10.1111/j.1348-0421.1988.tb01434.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previously, it was difficult to isolate the Mycobacterium avium complex from soil, water, and dusts, because rapidly growing mycobacteria always overgrew slowly growing ones. We used Ogawa egg medium containing both ethambutol and ofloxacin, which inhibit the nonpathogenic slowly growing mycobacteria and most rapidly growing mycobacteria, respectively, as an aid to screen for pathogenic slowly growing mycobacteria; we could thereby isolate a number of the M. avium complex and M. scrofulaceum strains from soil, water, and dusts in this country.
Collapse
Affiliation(s)
- S Ichiyama
- First Department of Internal Medicine, Nagoya University School of Medicine, Aichi
| | | | | |
Collapse
|