1
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Zhang JD, Han L, Yan S, Liu CM. The non-metabolizable glucose analog D-glucal inhibits aflatoxin biosynthesis and promotes kojic acid production in Aspergillus flavus. BMC Microbiol 2014; 14:95. [PMID: 24742119 PMCID: PMC4021404 DOI: 10.1186/1471-2180-14-95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/09/2014] [Indexed: 01/17/2023] Open
Abstract
Background Aflatoxins (AFs) are potent carcinogenic compounds produced by several Aspergillus species, which pose serious threats to human health. As sugar is a preferred carbohydrate source for AF production, we examined the possibility of using sugar analogs to inhibit AF biosynthesis. Results We showed that although D-glucal cannot be utilized by A. flavus as the sole carbohydrate source, it inhibited AF biosynthesis and promoted kojic acid production without affecting mycelial growth when applied to a glucose-containing medium. The inhibition occurred before the production of the first stable intermediate, norsolorinic acid, suggesting a complete inhibition of the AF biosynthetic pathway. Further studies showed that exogenous D-glucal in culture led to reduced accumulation of tricarboxylic acid (TCA) cycle intermediates and reduced glucose consumption, indicating that glycolysis is inhibited. Expression analyses revealed that D-glucal suppressed the expression of AF biosynthetic genes but promoted the expression of kojic acid biosynthetic genes. Conclusions D-glucal as a non-metabolizable glucose analog inhibits the AF biosynthesis pathway by suppressing the expression of AF biosynthetic genes. The inhibition may occur either directly through interfering with glycolysis, or indirectly through reduced oxidative stresses from kojic acid biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China.
| |
Collapse
|
3
|
Yan S, Liang Y, Zhang J, Liu CM. Aspergillus flavus grown in peptone as the carbon source exhibits spore density- and peptone concentration-dependent aflatoxin biosynthesis. BMC Microbiol 2012; 12:106. [PMID: 22694821 PMCID: PMC3412747 DOI: 10.1186/1471-2180-12-106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/13/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Aflatoxins (AFs) are highly carcinogenic compounds produced by Aspergillus species in seeds with high lipid and protein contents. It has been known for over 30 years that peptone is not conducive for AF productions, although reasons for this remain unknown. RESULTS In this study, we showed that when Aspergillus flavus was grown in peptone-containing media, higher initial spore densities inhibited AF biosynthesis, but promoted mycelial growth; while in glucose-containing media, more AFs were produced when initial spore densities were increased. This phenomenon was also observed in other AF-producing strains including A. parasiticus and A. nomius. Higher peptone concentrations led to inhibited AF production, even in culture with a low spore density. High peptone concentrations did however promote mycelial growth. Spent medium experiments showed that the inhibited AF production in peptone media was regulated in a cell-autonomous manner. mRNA expression analyses showed that both regulatory and AF biosynthesis genes were repressed in mycelia cultured with high initial spore densities. Metabolomic studies revealed that, in addition to inhibited AF biosynthesis, mycelia grown in peptone media with a high initial spore density showed suppressed fatty acid biosynthesis, reduced tricarboxylic acid (TCA) cycle intermediates, and increased pentose phosphate pathway products. Additions of TCA cycle intermediates had no effect on AF biosynthesis, suggesting the inhibited AF biosynthesis was not caused by depleted TCA cycle intermediates. CONCLUSIONS We here demonstrate that Aspergillus species grown in media with peptone as the sole carbon source are able to sense their own population densities and peptone concentrations to switch between rapid growth and AF production. This switching ability may offer Aspergillus species a competition advantage in natural ecosystems, producing AFs only when self-population is low and food is scarce.
Collapse
Affiliation(s)
- Shijuan Yan
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Yating Liang
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215000, China
| | - Jindan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| |
Collapse
|
4
|
Georgianna DR, Payne GA. Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 2008; 46:113-25. [PMID: 19010433 DOI: 10.1016/j.fgb.2008.10.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/12/2023]
Abstract
Aflatoxins are notorious toxic secondary metabolites known for their impacts on human and animal health, and their effects on the marketability of key grain and nut crops. Understanding aflatoxin biosynthesis is the focus of a large and diverse research community. Concerted efforts by this community have led not only to a well-characterized biosynthetic pathway, but also to the discovery of novel regulatory mechanisms. Common to secondary metabolism is the clustering of biosynthetic genes and their regulation by pathway specific as well as global regulators. Recent data show that arrangement of secondary metabolite genes in clusters may allow for an important global regulation of secondary metabolism based on physical location along the chromosome. Available genomic and proteomic tools are now allowing us to examine aflatoxin biosynthesis more broadly and to put its regulation in context with fungal development and fungal ecology. This review covers our current understanding of the biosynthesis and regulation of aflatoxin and highlights new and emerging information garnered from structural and functional genomics. The focus of this review will be on studies in Aspergillus flavus and Aspergillus parasiticus, the two agronomically important species that produce aflatoxin. Also covered will be the important contributions gained by studies on production of the aflatoxin precursor sterigmatocystin in Aspergillus nidulans.
Collapse
Affiliation(s)
- D Ryan Georgianna
- Department of Plant Pathology, North Carolina State University, 851 Main Campus, Dr. Partners III Suite 267, Raleigh, NC 27606, Campus Box 7244, USA
| | | |
Collapse
|
5
|
Allameh A, Razzaghi Abyane M, Shams M, Rezaee MB, Jaimand K. Effects of neem leaf extract on production of aflatoxins and activities of fatty acid synthetase, isocitrate dehydrogenase and glutathione S-transferase in Aspergillus parasiticus. Mycopathologia 2002; 154:79-84. [PMID: 12086104 DOI: 10.1023/a:1015550323749] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The relationship between the activities of 3 cytosolic enzymes with aflatoxin biosynthesis in Aspergillus parasiticus cultured under different conditions has been investigated in order to find out the role of each enzyme in aflatoxin biosynthesis. Basically the activity of isocitrate dehydrogenase (IDH) was higher in non-toxigenic strains as compared to its counterpart toxigenic fungi (p < 0.05). In contrast, the activities of fatty acid synthase (FAS) as well as glutathione S-transferase (GST) were higher (P < 0.05) in toxigenic strains than that of the non-toxigenic fungi. Aflatoxin production was inhibited in fungi grown in presence of various concentrations of neem leaf extract. Aflatoxin was at its lowest level (>90% inhibition) when the concentration of neem extract was adjusted to 50% (v/v). No significant changes in FAS and IDH activities were observed when aflatoxin synthesis was under restraints by neem (Azadirachta indica) leaf extract. During a certain period of time of culture growth, when aflatoxin production reached to its maximum level, the activity of FAS was slightly induced in the toxigenic strains fed with a low concentration (1.56% v/v) of the neem leaf extract. At the time (96 h) when aflatoxin concentration reached to its maximum levels, the activity of GST in the toxigenic fungi was significantly higher (i.e., 7-11 folds) than that of non-toxigenic strains. The difference was highest in mycelial samples collected after 120 h. However unlike FAS and IDH, GST was readily inhibited (approximately 67%) in mycelia fed with 1.56% v/v of the neem extract. The inhibition reached to maximum of 80% in samples exposed to 6.25-12.5% of the extract. These results further substantiate previous finding that there is a positive correlation between GST activity and aflatoxin production in fungi.
Collapse
Affiliation(s)
- A Allameh
- Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, I.R. Iran.
| | | | | | | | | |
Collapse
|
6
|
Tzatzarakis MN, Tsatsakis AM, Lotter MM, Shtilman MI, Vakalounakis DJ. Effect of novel water-soluble polymeric forms of sorbic acid against Fusarium oxysporum f.sp. radicis-cucumerinum. FOOD ADDITIVES AND CONTAMINANTS 2000; 17:965-71. [PMID: 11271842 DOI: 10.1080/02652030010002289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
New controlled release water-soluble formulations of sorbic (2,4-hexadienoic) acid were prepared and their inhibitory activity on mycelium growth of Fusarium oxysporum f.sp. radicis-cucumerinum was evaluated. The new products are epoxidized polymers of polyvinylpyrrolidone (PVP) containing covalently bonded sorbic acid (polymeric esters of sorbic acid) and complexes of PVP with hydrogen bonded sorbic acid, characterized by controlled release of sorbic acid. It was shown that the polymeric complexes of sorbic acid with PVP were more effective fungicidal agents than sorbic acid polymeric esters. In all cases the activity of polymeric derivatives (esters and complexes) was increased by lowering the molecular weight of the polymeric carriers. Controlled release formulations of these polymeric derivatives are new promising products due to their low toxicity, wide range of efficient concentrations for application and ability to regulate lyophilicity. Our data contribute to the understanding of the action mechanism of various polymeric sorbic acid formulations and can result in products which are particularly suitable for food and feed protection applications.
Collapse
Affiliation(s)
- M N Tzatzarakis
- Laboratory of Toxicology, Department of Medicine, University of Crete, Voutes 71409 Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
7
|
Liu BH, Chu FS. Regulation of aflR and its product, AflR, associated with aflatoxin biosynthesis. Appl Environ Microbiol 1998; 64:3718-23. [PMID: 9758790 PMCID: PMC106529 DOI: 10.1128/aem.64.10.3718-3723.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the role of the regulatory gene aflR and its product, AflR, in the biosynthesis of aflatoxin in Aspergillus. Western blot and enzyme-linked immunosorbent assay analyses revealed that aflatoxin B1 accumulation was directly related to AflR expression and was regulated by various environmental and nutritional conditions, including temperature, air supply, carbon source, nitrogen source, and zinc availability. Expression of an aflatoxin biosynthetic pathway structural gene, omtA, was regulated by the presence of AflR. Induction patterns for aflR mRNA and AflR were correlated with that for omtA mRNA in an aflatoxin-producing strain of Aspergillus parasiticus. Analysis of non-aflatoxin-producing strains of A. flavus, A. sojae, and A. oryzae grown in medium suitable for aflatoxin B1 production showed that both aflR mRNA and AflR production were present; however, omtA mRNA production was not detected in any of these examined strains. AflR in the A. oryzae strain was regulated by carbon source and temperature in a manner similar to that seen with A. parasiticus.
Collapse
Affiliation(s)
- B H Liu
- Department of Food Microbiology and Toxicology, Food Research Institute, and Environmental Toxicology Center, University of Wisconsin- Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
8
|
Luchese RH, Harrigan WF. Biosynthesis of aflatoxin--the role of nutritional factors. THE JOURNAL OF APPLIED BACTERIOLOGY 1993; 74:5-14. [PMID: 8420918 DOI: 10.1111/j.1365-2672.1993.tb02989.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R H Luchese
- Department of Food Science and Technology, University of Reading, Whiteknights, UK
| | | |
Collapse
|
9
|
|
10
|
Buchanan RL, Jones SB, Stahl HG. Effect of miconazole on growth and aflatoxin production by Aspergillus parasiticus. Mycopathologia 1987; 100:135-44. [PMID: 3696192 DOI: 10.1007/bf00437039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
At 5 microM, miconazole prevented the growth of Aspergillus parasiticus Speare in a number of media. Sensitivity to miconazole was increased approximately 10-fold in a medium containing glycerol. At sub-inhibitory concentrations, miconazole stimulated aflatoxin synthesis on media which normally support toxin formation. Miconazole inhibited respiration and altered mitochondrial ultrastructure, suggesting that miconazole inhibits growth and stimulates aflatoxin production by depressing mitochondrial activity.
Collapse
Affiliation(s)
- R L Buchanan
- Eastern Regional Research Center, USDA, Philadelphia, PA 19118
| | | | | |
Collapse
|
11
|
Cleveland TE, Lax AR, Lee LS, Bhatnagar D. Appearance of enzyme activities catalyzing conversion of sterigmatocystin to aflatoxin B1 in late-growth-phase Aspergillus parasiticus cultures. Appl Environ Microbiol 1987; 53:1711-3. [PMID: 3116930 PMCID: PMC203939 DOI: 10.1128/aem.53.7.1711-1713.1987] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two activities involved in terminal pathway conversion of sterigmatocystin to aflatoxin B1 were isolated from an aflatoxin-nonproducing mutant of Aspergillus parasiticus (avn-1), and the time course of appearance of the activities in culture was determined. Subcellular fractionation of fungal mycelia resolved the two activities into a postmicrosomal activity which catalyzed conversion of sterigmatocystin to O-methylsterigmatocystin and a microsomal activity which converted O-methylsterigmatocystin to aflatoxin B1. The two activities were absent in 24-h-old cells, increased to optimum levels during the stationary phase, and then declined.
Collapse
Affiliation(s)
- T E Cleveland
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana 70179
| | | | | | | |
Collapse
|
12
|
Bhatnagar D, McCormick SP, Lee LS, Hill RA. Identification of O-methylsterigmatocystin as an aflatoxin B1 and G1 precursor in Aspergillus parasiticus. Appl Environ Microbiol 1987; 53:1028-33. [PMID: 3111363 PMCID: PMC203804 DOI: 10.1128/aem.53.5.1028-1033.1987] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An isolate of Aspergillus parasiticus CP461 (SRRC 2043) produced no detectable aflatoxins, but accumulated O-methylsterigmatocystin (OMST). When sterigmatocystin (ST) was fed to this isolate in a low-sugar medium, there was an increase in the accumulation of OMST, without aflatoxin synthesis. When radiolabeled [14C]OMST was fed to resting mycelia of a non-aflatoxin-, non-ST-, and non-OMST-producing mutant of A. parasiticus AVN-1 (SRRC 163), 14C-labeled aflatoxins B1 and G1 were produced; 10 nmol of OMST produced 7.8 nmol of B1 and 1.0 nmol of G1, while 10 nmol of ST produced 6.4 nmol of B1 and 0.6 nmol of G1. A time course study of aflatoxin synthesis in ST feeding experiments with AVN-1 revealed that OMST is synthesized by the mold during the onset of aflatoxin synthesis. The total amount of aflatoxins recovered from OMST feeding experiments was higher than from experiments in which ST was fed to the resting mycelia. These results suggest that OMST is a true metabolite in the aflatoxin biosynthetic pathway between sterigmatocystin and aflatoxins B1 and G1 and is not a shunt metabolite, as thought previously.
Collapse
|
13
|
Buchanan RL, Federowicz D, Stahl HG. Activities of tricarboxylic acid cycle enzymes in an aflatoxigenic strain of Aspergillus parasiticus after a peptone to glucose carbon source shift. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/s0007-1536(85)80078-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Hänel I, Liebermann B, Brückner B, Tröger R. [Effect of acetate on the formation of the phyoeffector tentoxin by Alternaria alternata (Fr.) Keissler]. J Basic Microbiol 1985; 25:365-71. [PMID: 4045707 DOI: 10.1002/jobm.3620250603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of the cosubstrate acetate on the formation of the phytotoxic substance tentoxin by Alternaria alternata (Fr.) Keissler was investigated. Acetate was taken up and metabolized during growth. The added acetate stimulated considerably the biosynthesis of tentoxin depending on its concentration and time of introduction. There was an increased incorporation of (U-14C)-glucose into the toxin molecule in the presence of acetate in the medium. The results indicate an induction of the biosynthesis of tentoxin by the precursor acetate, probably mediated through the accumulation of the glycolytic intermediates pyruvate and phosphoenolpyruvate.
Collapse
|
15
|
Buchanan RL, Lewis DF. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes. Appl Environ Microbiol 1984; 48:306-10. [PMID: 6091545 PMCID: PMC241508 DOI: 10.1128/aem.48.2.306-310.1984] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.
Collapse
|
16
|
Gareis M, Bauer J, von Montgelas A, Gedek B. Stimulation of aflatoxin B1 and T-2 toxin production by sorbic acid. Appl Environ Microbiol 1984; 47:416-8. [PMID: 6424567 PMCID: PMC239684 DOI: 10.1128/aem.47.2.416-418.1984] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aspergillus flavus grown on yeast extract-sucrose medium produced higher amounts of aflatoxin B1 in the presence of 0.025% sorbic acid than without this chemical with a maximum at 17 days of incubation. Addition of 0.05 to 0.0125% sorbic acid stimulated T-2 toxin production of Fusarium acuminatum cultures grown on maize meal. The highest amounts of the mycotoxin were detected in 14-day-old cultures containing 0.025% sorbic acid. It is assumed that certain amounts of sorbic acid near the minimal inhibitory concentration reduce the activity of the tricarboxylic acid cycle; this may lead to an accumulation of acetyl coenzyme A, which is an essential intermediate in the biosynthesis of aflatoxin B1 and T-2 toxin.
Collapse
|
17
|
Bennett JW, Christensen SB. New perspectives on aflatoxin biosynthesis. ADVANCES IN APPLIED MICROBIOLOGY 1983; 29:53-92. [PMID: 6650265 DOI: 10.1016/s0065-2164(08)70354-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|