1
|
Stutt ROJH, Castle MD, Markwell P, Baker R, Gilligan CA. An integrated model for pre- and post-harvest aflatoxin contamination in maize. NPJ Sci Food 2023; 7:60. [PMID: 37980424 PMCID: PMC10657429 DOI: 10.1038/s41538-023-00238-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Aflatoxin contamination caused by colonization of maize by Aspergillus flavus continues to pose a major human and livestock health hazard in the food chain. Increasing attention has been focused on the development of models to predict risk and to identify effective intervention strategies. Most risk prediction models have focused on elucidating weather and site variables on the pre-harvest dynamics of A. flavus growth and aflatoxin production. However fungal growth and toxin accumulation continue to occur after harvest, especially in countries where storage conditions are limited by logistical and cost constraints. In this paper, building on previous work, we introduce and test an integrated meteorology-driven epidemiological model that covers the entire supply chain from planting to delivery. We parameterise the model using approximate Bayesian computation with monthly time-series data over six years for contamination levels of aflatoxin in daily shipments received from up to three sourcing regions at a high-volume maize processing plant in South Central India. The time series for aflatoxin levels from the parameterised model successfully replicated the overall profile, scale and variance of the historical aflatoxin datasets used for fitting and validation. We use the model to illustrate the dynamics of A. flavus growth and aflatoxin production during the pre- and post-harvest phases in different sourcing regions, in short-term predictions to inform decision making about sourcing supplies and to compare intervention strategies to reduce the risks of aflatoxin contamination.
Collapse
Affiliation(s)
- Richard O J H Stutt
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Matthew D Castle
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Cambridge Centre for Data-Driven Discovery, Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Peter Markwell
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing, China
| | - Robert Baker
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing, China
| | - Christopher A Gilligan
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
2
|
Yu J, Yang M, Han J, Pang X. Fungal and mycotoxin occurrence, affecting factors, and prevention in herbal medicines: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1925696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jingsheng Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianping Han
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Xiaohui Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Sweany RR, Damann KE. Influence of Neighboring Clonal-Colonies on Aflatoxin Production by Aspergillus flavus. Front Microbiol 2020; 10:3038. [PMID: 32010096 PMCID: PMC6974465 DOI: 10.3389/fmicb.2019.03038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is an ascomycete fungus that infects and contaminates corn, peanuts, cottonseed, and treenuts with acutely toxic and carcinogenic aflatoxins. The ecological function of aflatoxin production is not well understood; though not phytotoxic, aflatoxin may be involved in resisting oxidative stress responses from infection or drought stress in plants. Observation of aflatoxin stimulation in 48-well plates in response to increasing inoculated wells sparked an investigation to determine if A. flavus volatiles influence aflatoxin production in neighboring colonies. Experiments controlling several culture conditions demonstrated a stimulation of aflatoxin production with increased well occupancy independent of pH buffer, moisture, or isolate. However, even with all wells inoculated, aflatoxin production was less in interior wells. Only one isolate stimulated aflatoxin production in a large Petri-dish format containing eight small Petri dishes with shared headspace. Other isolates consistently inhibited aflatoxin production when all eight Petri dishes were inoculated with A. flavus. No contact between cultures and only shared headspace implied the fungus produced inhibitory and stimulatory gases. Adding activated charcoal between wells and dishes prevented inhibition but not stimulation indicating stimulatory and inhibitory gases are different and/or gas is inhibitory at high concentration and stimulatory at lower concentrations. Characterizing stimulatory and inhibitory effects of gases in A. flavus headspace as well as the apparently opposing results in the two systems deserves further investigation. Determining how gases contribute to quorum sensing and communication could facilitate managing or using the gases in modified atmospheres during grain storage to minimize aflatoxin contamination.
Collapse
Affiliation(s)
- Rebecca R. Sweany
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | | |
Collapse
|
4
|
Fountain JC, Yang L, Pandey MK, Bajaj P, Alexander D, Chen S, Kemerait RC, Varshney RK, Guo B. Carbohydrate, glutathione, and polyamine metabolism are central to Aspergillus flavus oxidative stress responses over time. BMC Microbiol 2019; 19:209. [PMID: 31488075 PMCID: PMC6727485 DOI: 10.1186/s12866-019-1580-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/25/2019] [Indexed: 01/08/2023] Open
Abstract
Background The primary and secondary metabolites of fungi are critical for adaptation to environmental stresses, host pathogenicity, competition with other microbes, and reproductive fitness. Drought-derived reactive oxygen species (ROS) have been shown to stimulate aflatoxin production and regulate in Aspergillus flavus, and may function in signaling with host plants. Here, we have performed global, untargeted metabolomics to better understand the role of aflatoxin production in oxidative stress responses, and also explore isolate-specific oxidative stress responses over time. Results Two field isolates of A. flavus, AF13 and NRRL3357, possessing high and moderate aflatoxin production, respectively, were cultured in medium with and without supplementation with 15 mM H2O2, and mycelia were collected following 4 and 7 days in culture for global metabolomics. Overall, 389 compounds were described in the analysis which encompassed 9 biological super-pathways and 47 sub-pathways. These metabolites were examined for differential accumulation. Significant differences were observed in both isolates in response to oxidative stress and when comparing sampling time points. Conclusions The moderately high aflatoxin-producing isolate, NRRL3357, showed extensive stimulation of antioxidant mechanisms and pathways including polyamines metabolism, glutathione metabolism, TCA cycle, and lipid metabolism while the highly aflatoxigenic isolate, AF13, showed a less vigorous response to stress. Carbohydrate pathway levels also imply that carbohydrate repression and starvation may influence metabolite accumulation at the later timepoint. Higher conidial oxidative stress tolerance and antioxidant capacity in AF13 compared to NRRL3357, inferred from their metabolomic profiles and growth curves over time, may be connected to aflatoxin production capability and aflatoxin-related antioxidant accumulation. The coincidence of several of the detected metabolites in H2O2-stressed A. flavus and drought-stressed hosts also suggests their potential role in the interaction between these organisms and their use as markers/targets to enhance host resistance through biomarker selection or genetic engineering. Electronic supplementary material The online version of this article (10.1186/s12866-019-1580-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jake C Fountain
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, 31793, USA.,Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Liming Yang
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.,College of Biology and Environmental Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Manish K Pandey
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | - Prasad Bajaj
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | | | - Sixue Chen
- Department of Biology, Genetics Institute, and Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Rajeev K Varshney
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | - Baozhu Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, 31793, USA.
| |
Collapse
|
5
|
Pandey MK, Kumar R, Pandey AK, Soni P, Gangurde SS, Sudini HK, Fountain JC, Liao B, Desmae H, Okori P, Chen X, Jiang H, Mendu V, Falalou H, Njoroge S, Mwololo J, Guo B, Zhuang W, Wang X, Liang X, Varshney RK. Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins (Basel) 2019; 11:E315. [PMID: 31163657 PMCID: PMC6628460 DOI: 10.3390/toxins11060315] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Aflatoxin is considered a "hidden poison" due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer's fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern "omics" approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Arun K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Jake C Fountain
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Boshou Liao
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Haile Desmae
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako BP 320, Mali.
| | - Patrick Okori
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Xiaoping Chen
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Huifang Jiang
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Venugopal Mendu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger.
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - James Mwololo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
| | - Weijian Zhuang
- Institute of Oil Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xingjun Wang
- Shandong Academy of Agricultural Sciences, Jinan 250108, China.
| | - Xuanqiang Liang
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| |
Collapse
|
6
|
Role of oxidative stress in Sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl Environ Microbiol 2014; 80:5561-71. [PMID: 25002424 DOI: 10.1128/aem.01282-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.
Collapse
|
7
|
Yan S, Liang Y, Zhang J, Liu CM. Aspergillus flavus grown in peptone as the carbon source exhibits spore density- and peptone concentration-dependent aflatoxin biosynthesis. BMC Microbiol 2012; 12:106. [PMID: 22694821 PMCID: PMC3412747 DOI: 10.1186/1471-2180-12-106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/13/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Aflatoxins (AFs) are highly carcinogenic compounds produced by Aspergillus species in seeds with high lipid and protein contents. It has been known for over 30 years that peptone is not conducive for AF productions, although reasons for this remain unknown. RESULTS In this study, we showed that when Aspergillus flavus was grown in peptone-containing media, higher initial spore densities inhibited AF biosynthesis, but promoted mycelial growth; while in glucose-containing media, more AFs were produced when initial spore densities were increased. This phenomenon was also observed in other AF-producing strains including A. parasiticus and A. nomius. Higher peptone concentrations led to inhibited AF production, even in culture with a low spore density. High peptone concentrations did however promote mycelial growth. Spent medium experiments showed that the inhibited AF production in peptone media was regulated in a cell-autonomous manner. mRNA expression analyses showed that both regulatory and AF biosynthesis genes were repressed in mycelia cultured with high initial spore densities. Metabolomic studies revealed that, in addition to inhibited AF biosynthesis, mycelia grown in peptone media with a high initial spore density showed suppressed fatty acid biosynthesis, reduced tricarboxylic acid (TCA) cycle intermediates, and increased pentose phosphate pathway products. Additions of TCA cycle intermediates had no effect on AF biosynthesis, suggesting the inhibited AF biosynthesis was not caused by depleted TCA cycle intermediates. CONCLUSIONS We here demonstrate that Aspergillus species grown in media with peptone as the sole carbon source are able to sense their own population densities and peptone concentrations to switch between rapid growth and AF production. This switching ability may offer Aspergillus species a competition advantage in natural ecosystems, producing AFs only when self-population is low and food is scarce.
Collapse
Affiliation(s)
- Shijuan Yan
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Yating Liang
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215000, China
| | - Jindan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| |
Collapse
|
8
|
Georgianna DR, Payne GA. Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 2008; 46:113-25. [PMID: 19010433 DOI: 10.1016/j.fgb.2008.10.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/12/2023]
Abstract
Aflatoxins are notorious toxic secondary metabolites known for their impacts on human and animal health, and their effects on the marketability of key grain and nut crops. Understanding aflatoxin biosynthesis is the focus of a large and diverse research community. Concerted efforts by this community have led not only to a well-characterized biosynthetic pathway, but also to the discovery of novel regulatory mechanisms. Common to secondary metabolism is the clustering of biosynthetic genes and their regulation by pathway specific as well as global regulators. Recent data show that arrangement of secondary metabolite genes in clusters may allow for an important global regulation of secondary metabolism based on physical location along the chromosome. Available genomic and proteomic tools are now allowing us to examine aflatoxin biosynthesis more broadly and to put its regulation in context with fungal development and fungal ecology. This review covers our current understanding of the biosynthesis and regulation of aflatoxin and highlights new and emerging information garnered from structural and functional genomics. The focus of this review will be on studies in Aspergillus flavus and Aspergillus parasiticus, the two agronomically important species that produce aflatoxin. Also covered will be the important contributions gained by studies on production of the aflatoxin precursor sterigmatocystin in Aspergillus nidulans.
Collapse
Affiliation(s)
- D Ryan Georgianna
- Department of Plant Pathology, North Carolina State University, 851 Main Campus, Dr. Partners III Suite 267, Raleigh, NC 27606, Campus Box 7244, USA
| | | |
Collapse
|
9
|
Roze LV, Beaudry RM, Arthur AE, Calvo AM, Linz JE. Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in Aspergillus parasiticus. Appl Environ Microbiol 2007; 73:7268-76. [PMID: 17890344 PMCID: PMC2168228 DOI: 10.1128/aem.00801-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus parasiticus is one primary source of aflatoxin contamination in economically important crops. To prevent the potential health and economic impacts of aflatoxin contamination, our goal is to develop practical strategies to reduce aflatoxin synthesis on susceptible crops. One focus is to identify biological and environmental factors that regulate aflatoxin synthesis and to manipulate these factors to control aflatoxin biosynthesis in the field or during crop storage. In the current study, we analyzed the effects of aspergillus volatiles on growth, development, aflatoxin biosynthesis, and promoter activity in the filamentous fungus A. parasiticus. When colonies of Aspergillus nidulans and A. parasiticus were incubated in the same growth chamber, we observed a significant reduction in aflatoxin synthesis and asexual sporulation by A. parasiticus. Analysis of the headspace gases demonstrated that A. nidulans produced much larger quantities of 2-buten-1-ol (CA) and 2-ethyl-1-hexanol (EH) than A. parasiticus. In its pure form, EH inhibited growth and increased aflatoxin accumulation in A. parasiticus at all doses tested; EH also stimulated aflatoxin transcript accumulation. In contrast, CA exerted dose-dependent up-regulatory or down-regulatory effects on aflatoxin accumulation, conidiation, and aflatoxin transcript accumulation. Experiments with reporter strains carrying nor-1 promoter deletions and mutations suggested that the differential effects of CA were mediated through separate regulatory regions in the nor-1 promoter. The potential efficacy of CA as a tool for analysis of transcriptional regulation of aflatoxin biosynthesis is discussed. We also identify a novel, rapid, and reliable method to assess norsolorinic acid accumulation in solid culture using a Chroma Meter CR-300 apparatus.
Collapse
Affiliation(s)
- Ludmila V Roze
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
10
|
Gunterus A, Roze L, Beaudry R, Linz JE. Ethylene inhibits aflatoxin biosynthesis in Aspergillus parasiticus grown on peanuts. Food Microbiol 2007; 24:658-63. [PMID: 17418318 PMCID: PMC1950303 DOI: 10.1016/j.fm.2006.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/22/2006] [Accepted: 12/29/2006] [Indexed: 11/23/2022]
Abstract
The filamentous fungi Aspergillus parasiticus and Aspergillus flavus synthesize aflatoxins when they grow on a variety of susceptible food and feed crops. These mycotoxins are among the most carcinogenic naturally occurring compounds known and they pose significant health risks to humans and animals. We previously demonstrated that ethylene and CO2 act alone and together to reduce aflatoxin synthesis by A. parasiticus grown on laboratory media. To demonstrate the potential efficacy of treatment of stored seeds and grains with these gases, we tested ethylene and CO2 for ability to inhibit aflatoxin accumulation on Georgia Green peanuts stored for up to 5 days. We demonstrated an inverse relationship between A. parasiticus spore inoculum size and the level of toxin accumulation. We showed that ethylene inhibits aflatoxin synthesis in a dose-dependent manner on peanuts; CO2 also inhibits aflatoxin synthesis over a narrow dose range. Treatments had no discernable effect on mold growth. These observations support further exploration of this technology to reduce aflatoxin contamination of susceptible crops in the field and during storage.
Collapse
Affiliation(s)
- A. Gunterus
- Department of Food Science and Human Nutrition, Michigan State University (MSU), E. Lansing, MI 48824
| | - L.V. Roze
- Department of Food Science and Human Nutrition, Michigan State University (MSU), E. Lansing, MI 48824
| | | | - J. E. Linz
- Department of Food Science and Human Nutrition, Michigan State University (MSU), E. Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, MSU
- National Food Safety and Toxicology Center, MSU
- Center for Integrative Toxicology, MSU
| |
Collapse
|
11
|
Roze LV, Calvo AM, Gunterus A, Beaudry R, Kall M, Linz JE. Ethylene modulates development and toxin biosynthesis in aspergillus possibly via an ethylene sensor-mediated signaling pathway. J Food Prot 2004; 67:438-47. [PMID: 15035355 DOI: 10.4315/0362-028x-67.3.438] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ethylene, a biologically active natural compound, inhibited aflatoxin accumulation by Aspergillus parasiticus on a solid growth medium in a dose-dependent manner at concentrations of 0.1 to 150 ppm. The activity of the nor-1 promoter (an early aflatoxin gene) was reduced to nondetectable levels by similar quantities of ethylene, suggesting that the inhibitory effect on toxin synthesis occurred, at least in part, at the level of transcription. The inhibitory effect of ethylene on aflatoxin accumulation was also observed when A. parasiticus was grown on raw peanuts. Under similar growth conditions and doses, ethylene strongly inhibited development of asci and ascospores in Aspergillus nidulans, with no detectable effect on Hülle cell formation, conidiation, or sterigmatocystin accumulation. During early growth, A. parasiticus and A. nidulans produced ethylene with approximately twofold higher quantities measured in continuous light than in the dark. 1-Methylcyclopropene (an inhibitor of ethylene receptors in plants), light, CO2, temperature, and growth medium composition altered the effect of ethylene on A. nidulans and A. parasiticus. These observations are consistent with the existence of an ethylene sensor molecule that mediates the function of an ethylene-responsive signaling pathway(s) in Aspergillus.
Collapse
Affiliation(s)
- L V Roze
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, Michigan, USA
| | | | | | | | | | | |
Collapse
|
12
|
Garcia ME, Blanco JL, Suarez G. Influence of inoculum size on aflatoxin production in home-made yoghurt. Mycotoxin Res 1995; 11:62-8. [PMID: 23606112 DOI: 10.1007/bf03192066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/1995] [Accepted: 09/28/1995] [Indexed: 09/29/2022]
Abstract
In previous works we have studied the influence of different factors on the aflatoxin production in yoghurt. In the present paper we complete our investigations with the study of the influence of the inoculum size.The inoculum sizes used by us were from 4 × 10(1) to 4 × 10(6). As can be expected, the fungal growth, expressed as dry mycelium weight, was lower in 4 × 10(1) and higher in 4 × 10(6).The amount of aflatoxin in the mycelium was stable, or increased slightly with the inoculum size. In the substrate, the amount of aflatoxin was stable with little fluctuations, with a higher level of toxin in 4 × 10(3) and lower one in 4 × 10(6). We detected a higher aflatoxin level in the mycelium than in the substrate.
Collapse
Affiliation(s)
- M E Garcia
- Departamento Patología Animal I (Sanidad Animal). Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | | | | |
Collapse
|
13
|
Control of growth and aflatoxin production of Aspergillus flavus under modified atmosphere packaging (MAP) conditions. Food Microbiol 1993. [DOI: 10.1006/fmic.1993.1002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
|
15
|
Clevström G, Möller T, Göransson B, Liljensjöö A, Ljunggren H. Influence of formic acid on fungal flora of barley and on aflatoxin production in Aspergillus flavus link. Mycopathologia 1989; 107:101-9. [PMID: 2515436 DOI: 10.1007/bf00707545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years Aspergillus flavus and aflatoxin production have been noted on several occasions in grain preserved with formic acid. Samples of mouldy barley treated with formic acid and stored in an open bin were investigated for the presence of fungi. In the lower part of the bin there was a clear dominance of Fusarium sporotrichioides, and deoxynivalenol and neosolaniol were detected. A. flavus and A. fumigatus were also present. Paecilomyces variotii occurred, almost as a pure culture, in the upper part of the bin, but no patulin was found. Cultivation of four fungal isolates from these genera on laboratory substrates containing formic acid showed P. variotii to be the most tolerant to formic acid, withstanding 150 mM, but still without patulin production. F. sporotrichioides and A. fumigatus tolerated only 6 mM formic acid. The growth of A. flavus was reduced and atypical at 60 mM formic acid. Pretreatment of A. flavus spores with formic acid increased aflatoxin production about 800 times.
Collapse
Affiliation(s)
- G Clevström
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala
| | | | | | | | | |
Collapse
|
16
|
Blanco JL, Domínguez L, Gómez-Lucía E, Garayzábal JF, Goyache J, Suárez G. Experimental aflatoxin production in commercial yoghurt. ZEITSCHRIFT FUR LEBENSMITTEL-UNTERSUCHUNG UND -FORSCHUNG 1988; 186:218-22. [PMID: 3369242 DOI: 10.1007/bf01043315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The production of aflatoxins in commercial yoghurt inoculated with Aspergillus parasiticus NRRL 2999 was studied, using different incubation conditions. In all of the experiments, the level of aflatoxins was higher at 28 degrees C than at 15 degrees C and higher in a "damaged" container than in an "intact" container (related to microaerophilic conditions). No fungal growth or aflatoxin production was seen at 10 degrees C. Both fungal growth and aflatoxin concentration vary throughout the incubation period instead of progressively increasing. The ratio of aflatoxin B and G (B:G) at 28 degrees C was almost 1:1, but generally more aflatoxin G was detected at 15 degrees C. The distribution in mycelium/substrate was approximately 1:1 at both 28 degrees C and 15 degrees C.
Collapse
Affiliation(s)
- J L Blanco
- Departamento de Patología Animal I, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Blanco JL, Domínguez L, Gómez-Lucía E, Garayzabal JF, Goyache J, Suárez G. Experimental aflatoxin production in Manchego-type cheese. THE JOURNAL OF APPLIED BACTERIOLOGY 1988; 64:17-26. [PMID: 3350782 DOI: 10.1111/j.1365-2672.1988.tb02425.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Manchego-type cheese, a typical Spanish cheese, was inoculated in various ways with an aflatoxigenic organism, Aspergillus parasiticus NRRL 2999, to study the production of aflatoxin. When the original milk was contaminated with a spore suspension, aflatoxin was not detected in paraffin-covered cheeses although it was present in the top layer of non-paraffin-covered cheeses after ripening at 15 degrees C for 60 d. When the cheese surface was inoculated, no aflatoxins were detected in paraffin-covered cheeses after ripening for 60 d although they were found when the cheeses were ripened for 30 d. In non-paraffin-covered cheeses aflatoxins were detected only in the top layer and in the second 10 mm layer when cheeses were incubated after the normal ripening at 28 degrees C for 30 d. When the centre of the cheese was inoculated, no aflatoxins were detected although Aspergillus grew slightly along the inoculation area. When cheese portions were inoculated, fungal growth was evident after incubation at 28 degrees and 15 degrees C for 6 d but there was no growth at 10 degrees C after 50 d. At 28 degrees C aflatoxins were detected at a concentration of 132 micrograms/g after 13 d, the highest level obtained. In cheese paste at 28 degrees and 15 degrees C, growth was intense, but the level of aflatoxins detected was lower than in cheese portions. At 10 degrees C the growth was heavy, but aflatoxins were not detected.
Collapse
Affiliation(s)
- J L Blanco
- Departamento de Patología Animal I, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Clevström G, Ljunggren H. Aflatoxin formation and the dual phenomenon in Aspergillus flavus Link. Mycopathologia 1985; 92:129-39. [PMID: 3937056 DOI: 10.1007/bf00437624] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trials were performed with three aflatoxin-forming isolates of Aspergillus flavus from formic acid-treated materials containing aflatoxin, one A. flavus strain isolated from mouldy barley kept for two months in an anaerobic jar and one non-toxic A. flavus strain from the culture collection at our Department. The non-toxic strain and one aflatoxin producer were cultured in salts-sugar-asparagine substrate (SLM) for aflatoxin production and in a specially prepared grass substrate (GS). Formic acid and ammonium formate were added to both substrates, and sucrose in a low amount was added to the grass substrate. The aflatoxin-forming isolate segregated on the grass substrate into two different lines, one with high aflatoxin production and one with very low aflatoxin-forming ability, higher growth rate and reduced sporulation, on the SLM substrate. When exposed to sucrose in grass substrate and ammonium formate in SLM, one toxic and one non-toxic strain were provoked to increased aflatoxin formation. The A. flavus isolate from the anaerobic jar also segregated on the grass substrate, and these segregants were more sensitive to a high dose of formic acid. In these A. flavus strains three seems to be a continuous variation between different lines, depending on cultivation conditions. In the two aflatoxin-forming isolates left, such segregation tendencies were not very marked on any substrate.
Collapse
|