1
|
Wang C, Zhao R, Yang W, Jiang W, Tang H, Du S, Chen X. Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Bacillus Species. Int J Mol Sci 2025; 26:621. [PMID: 39859334 PMCID: PMC11765539 DOI: 10.3390/ijms26020621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. Bacillus subtilis, a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites. In this study, we characterize a novel method of plasmid transfer, termed Cell-to-Cell Natural Transformation for Plasmid Transfer (CTCNT-P), which efficiently facilitates plasmid transfer between naturally competent B. subtilis strains. This method involves co-culturing donor and recipient cells under antibiotic stress and achieves significantly higher efficiency compared to traditional methods such as Spizizen medium or electroporation-mediated transformation. Importantly, we demonstrate that CTCNT-P is applicable for plasmid transformation in wild B. subtilis isolates from natural environments and other Bacillus species, including Bacillus amyloliquefaciens, Bacillus licheniformis, and Bacillus thuringiensis. The simplicity and efficiency of CTCNT-P highlight its strong potential for industrial applications, including genetic modification of wild Bacillus strains for synthetic biology and the development of biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.W.)
| |
Collapse
|
2
|
Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023; 12:foods12051063. [PMID: 36900581 PMCID: PMC10000435 DOI: 10.3390/foods12051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.
Collapse
|
3
|
Frelet-Barrand A. Lactococcus lactis, an Attractive Cell Factory for the Expression of Functional Membrane Proteins. Biomolecules 2022; 12:180. [PMID: 35204681 PMCID: PMC8961550 DOI: 10.3390/biom12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Membrane proteins play key roles in most crucial cellular processes, ranging from cell-to-cell communication to signaling processes. Despite recent improvements, the expression of functionally folded membrane proteins in sufficient amounts for functional and structural characterization remains a challenge. Indeed, it is still difficult to predict whether a protein can be overproduced in a functional state in some expression system(s), though studies of high-throughput screens have been published in recent years. Prokaryotic expression systems present several advantages over eukaryotic ones. Among them, Lactococcus lactis (L. lactis) has emerged in the last two decades as a good alternative expression system to E. coli. The purpose of this chapter is to describe L. lactis and its tightly inducible system, NICE, for the effective expression of membrane proteins from both prokaryotic and eukaryotic origins.
Collapse
Affiliation(s)
- Annie Frelet-Barrand
- FEMTO-ST Institute, UMR 6174, CNRS, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, CEDEX, 25030 Besançon, France
| |
Collapse
|
4
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Portable CRISPR-Cas9 N System for Flexible Genome Engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei. Appl Environ Microbiol 2021; 87:AEM.02669-20. [PMID: 33397707 DOI: 10.1128/aem.02669-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Diverse Lactobacillus strains are widely used as probiotic cultures in the dairy and dietary supplement industries, and specific strains, such as Lactobacillus acidophilus NCFM, have been engineered for the development of biotherapeutics. To expand the Lactobacillus manipulation toolbox with enhanced efficiency and ease, we present here a CRISPR (clustered regularly interspaced palindromic repeats)-SpyCas9D10A nickase (Cas9N)-based system for programmable engineering of L. acidophilus NCFM, a model probiotic bacterium. Successful single-plasmid delivery system was achieved with the engineered pLbCas9N vector harboring cas9 N under the regulation of a Lactobacillus promoter and a cloning region for a customized single guide RNA (sgRNA) and editing template. The functionality of the pLbCas9N system was validated in NCFM with targeted chromosomal deletions ranging between 300 bp and 1.9 kb at various loci (rafE, lacS, and ltaS), yielding 35 to 100% mutant recovery rates. Genome analysis of the mutants confirmed precision and specificity of the pLbCas9N system. To showcase the versatility of this system, we also inserted an mCherry fluorescent-protein gene downstream of the pgm gene to create a polycistronic transcript. The pLbCas9N system was further deployed in other species to generate a concurrent single-base substitution and gene deletion in Lactobacillus gasseri ATCC 33323 and an in-frame gene deletion in Lactobacillus paracasei Lpc-37, highlighting the portability of the system in phylogenetically distant Lactobacillus species, where its targeting activity was not interfered with by endogenous CRISPR-Cas systems. Collectively, these editing outcomes illustrate the robustness and versatility of the pLbCas9N system for genome manipulations in diverse lactobacilli and open new avenues for the engineering of health-promoting lactic acid bacteria.IMPORTANCE This work describes the development of a lactobacillus CRISPR-based editing system for genome manipulations in three Lactobacillus species belonging to the lactic acid bacteria (LAB), which are commonly known for their long history of use in food fermentations and as indigenous members of healthy microbiotas and for their emerging roles in human and animal commercial health-promoting applications. We exploited the established CRISPR-SpyCas9 nickase for flexible and precise genome editing applications in Lactobacillus acidophilus and further demonstrated the efficacy of this universal system in two distantly related Lactobacillus species. This versatile Cas9-based system facilitates genome engineering compared to conventional gene replacement systems and represents a valuable gene editing modality in species that do not possess native CRISPR-Cas systems. Overall, this portable tool contributes to expanding the genome editing toolbox of LAB for studying their health-promoting mechanisms and engineering of these beneficial microbes as next-generation vaccines and designer probiotics.
Collapse
|
6
|
Plasmid Replicons for the Production of Pharmaceutical-Grade pDNA, Proteins and Antigens by Lactococcus lactis Cell Factories. Int J Mol Sci 2021; 22:ijms22031379. [PMID: 33573129 PMCID: PMC7866527 DOI: 10.3390/ijms22031379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Lactococcus lactis bacterium found in different natural environments is traditionally associated with the fermented food industry. But recently, its applications have been spreading to the pharmaceutical industry, which has exploited its probiotic characteristics and is moving towards its use as cell factories for the production of added-value recombinant proteins and plasmid DNA (pDNA) for DNA vaccination, as a safer and industrially profitable alternative to the traditional Escherichia coli host. Additionally, due to its food-grade and generally recognized safe status, there have been an increasing number of studies about its use in live mucosal vaccination. In this review, we critically systematize the plasmid replicons available for the production of pharmaceutical-grade pDNA and recombinant proteins by L. lactis. A plasmid vector is an easily customized component when the goal is to engineer bacteria in order to produce a heterologous compound in industrially significant amounts, as an alternative to genomic DNA modifications. The additional burden to the cell depends on plasmid copy number and on the expression level, targeting location and type of protein expressed. For live mucosal vaccination applications, besides the presence of the necessary regulatory sequences, it is imperative that cells produce the antigen of interest in sufficient yields. The cell wall anchored antigens had shown more promising results in live mucosal vaccination studies, when compared with intracellular or secreted antigens. On the other side, engineering L. lactis to express membrane proteins, especially if they have a eukaryotic background, increases the overall cellular burden. The different alternative replicons for live mucosal vaccination, using L. lactis as the DNA vaccine carrier or the antigen producer, are critically reviewed, as a starting platform to choose or engineer the best vector for each application.
Collapse
|
7
|
|
8
|
Bernal-Cabas M, Miethke M, Antelo-Varela M, Aguilar Suárez R, Neef J, Schön L, Gabarrini G, Otto A, Becher D, Wolf D, van Dijl JM. Functional association of the stress-responsive LiaH protein and the minimal TatAyCy protein translocase in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118719. [DOI: 10.1016/j.bbamcr.2020.118719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/07/2023]
|
9
|
Cho SW, Yim J, Seo SW. Engineering Tools for the Development of Recombinant Lactic Acid Bacteria. Biotechnol J 2020; 15:e1900344. [DOI: 10.1002/biot.201900344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sung Won Cho
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jaewoo Yim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
10
|
Welker DL, Coburn BM, McClatchy JH, Broadbent JR. Multiple pulse electroporation of lactic acid bacteria Lactococcus lactis and Lactobacillus casei. J Microbiol Methods 2019; 166:105741. [PMID: 31634499 DOI: 10.1016/j.mimet.2019.105741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022]
Abstract
Genetic manipulation of lactic acid bacteria is often difficult due to the inability to transform them with high efficiency. Multi-pulse electroporation offers a simple approach to increase transformation efficiencies. Using cells grown with 1% glycine and pretreated with lithium acetate and dithiothreitol, multi-pulse electroporation (five pulses of 12.5 kV cm-1) of Lactococcus lactis JB704 cells resulted in a transformation efficiency of up to 1.2 × 106 colony forming units (CFU) μg-1 pGK13, an 8-fold increase in the transformation efficiency compared to single pulse electroporation. Other cell growth and pretreatment conditions with JB704 resulted in lower transformation efficiencies but had 4-fold to 27-fold higher transformation efficiencies with the five pulse electroporations. With similarly grown and pretreated Lactobacillus casei 32G cells, multi-pulse electroporation (five pulses of 7.5 kV cm-1) resulted in a mean transformation efficiency of 7.3 × 103 CFU μg-1 pTRKH2, a 4-fold increase in the transformation efficiency compared to single pulse electroporation.
Collapse
Affiliation(s)
- Dennis L Welker
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States.
| | - Bryan M Coburn
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States
| | - John H McClatchy
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States
| | - Jeff R Broadbent
- Department of Nutrition, Dietetics and Food Science, Utah State University, 8700 Old Main Hill, Logan, UT 84322-8700, United States
| |
Collapse
|
11
|
Shin SK, Ko YJ, Hyeon JE, Han SO. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. BIORESOURCE TECHNOLOGY 2019; 289:121728. [PMID: 31277889 DOI: 10.1016/j.biortech.2019.121728] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Lignin is a robust material that is considered useless because it has an inhibitory effect on microbes and acts as a physical barrier for cellulose degradation. Therefore, it has been removed from cellulosic biomass to produce high-value materials. However, lignin monomers can be converted to value-added chemicals such as biodegradable plastics and food additives by appropriately engineered microbes. Lignin degradation through peroxidase, laccase and other proteins with auxiliary activity is the first step in lignin valorization. Metabolic engineering of microorganisms for increased tolerance and production yield is the second step for lignin valorization. Here, this review offers a summary of current biotechnologies using various enzymatic activities, synergistic enzyme mixtures and metabolic engineering for lignin valorization in biorefinery.
Collapse
Affiliation(s)
- Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Spangler JR, Caruana JC, Phillips DA, Walper SA. Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth Biol (Oxf) 2019; 4:ysz012. [PMID: 32995537 DOI: 10.1093/synbio/ysz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
As the field of synthetic biology grows, efforts to deploy complex genetic circuits in nonlaboratory strains of bacteria will continue to be a focus of research laboratories. Members of the Lactobacillus genus are good targets for synthetic biology research as several species are already used in many foods and as probiotics. Additionally, Lactobacilli offer a relatively safe vehicle for microbiological treatment of various health issues considering these commensals are often minor constituents of the gut microbial community and maintain allochthonous behavior. In order to generate a foundation for engineering, we developed a shuttle vector for subcloning in Escherichia coli and used it to characterize the transcriptional and translational activities of a number of promoters native to Lactobacillus plantarum WCFS1. Additionally, we demonstrated the use of this vector system in multiple Lactobacillus species, and provided examples of non-native promoter recognition by both L. plantarum and E. coli strains that might allow a shortcut assessment of circuit outputs. A variety of promoter activities were observed covering a range of protein expression levels peaking at various times throughout growth, and subsequent directed mutations were demonstrated and suggested to further increase the degree of output tuning. We believe these data show the potential for L. plantarum WCFS1 to be used as a nontraditional synthetic biology chassis and provide evidence that our system can be transitioned to other probiotic Lactobacillus species as well.
Collapse
Affiliation(s)
| | - Julie C Caruana
- American Society for Engineering Education, Washington, DC, United States
| | - Daniel A Phillips
- American Society for Engineering Education, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Overlook Avenue, Washington, DC, USA
| |
Collapse
|
13
|
Tagliavia M, Nicosia A. Advanced Strategies for Food-Grade Protein Production: A New E. coli/Lactic Acid Bacteria Shuttle Vector for Improved Cloning and Food-Grade Expression. Microorganisms 2019; 7:microorganisms7050116. [PMID: 31035573 PMCID: PMC6560424 DOI: 10.3390/microorganisms7050116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Food-grade production of recombinant proteins in Gram-positive bacteria, especially in LAB (i.e., Lactococcus, Lactobacillus, and Streptococcus), is of great interest in the areas of recombinant enzyme production, industrial food fermentation, gene and metabolic engineering, as well as antigen delivery for oral vaccination. Food-grade expression relies on hosts generally considered as safe organisms and on clone selection not dependent on antibiotic markers, which limit the overall DNA manipulation workflow, as it can be carried out only in the expression host and not in E. coli. Moreover, many commercial expression vectors lack useful elements for protein purification. We constructed a “shuttle” vector containing a removable selective marker, which allows feasible cloning steps in E. coli and subsequent protein expression in LAB. In fact, the cassette can be easily excised from the selected recombinant plasmid, and the resulting marker-free vector transformed into the final LAB host. Further useful elements, as improved MCS, 6xHis-Tag, and thrombin cleavage site sequences were introduced. The resulting vector allows easy cloning in E. coli, can be quickly converted in a food-grade expression vector and harbors additional elements for improved recombinant protein purification. Overall, such features make the new vector an improved tool for food-grade expression.
Collapse
Affiliation(s)
- Marcello Tagliavia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| | - Aldo Nicosia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| |
Collapse
|
14
|
Synthetic gutomics: Deciphering the microbial code for futuristic diagnosis and personalized medicine. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Askelson TE, McMullin AB, Duong T. Targeted gene inactivation in Lactobacillus gallinarum ATCC 33199 using chromosomal integration. Poult Sci 2019; 98:398-403. [PMID: 30124967 DOI: 10.3382/ps/pey363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Although Lactobacillus species have been administered widely as probiotics in poultry production, the mechanisms responsible for their functionality are not well understood. The genetic tools available for use in lactobacilli are advanced but have not been applied widely to investigate their probiotic functionality in poultry. The genome sequence of Lactobacillus gallinarum ATCC 33199, originally isolated from the chicken crop, has recently been made available suggesting this organism as a potentially important model organism for probiotic research in poultry. In this study, we demonstrated the functionality of the pORI28 system for construction of isogenic knockout mutants in L. gallinarum ATCC 33199 using insertional inactivation of lacL as proof-of-principle. The establishment of an effective chromosomal integration system for use in L. gallinarum ATCC 33199 will provide a platform for functional genomic analyses to investigate the functionality of this model organism in the gastrointestinal tract of poultry.
Collapse
Affiliation(s)
- T E Askelson
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - A B McMullin
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - T Duong
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| |
Collapse
|
16
|
Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection. Front Microbiol 2018; 9:2080. [PMID: 30233548 PMCID: PMC6134020 DOI: 10.3389/fmicb.2018.02080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.
Collapse
Affiliation(s)
- Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Joshua Kochanowsky
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Michael Mallozzi
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Chelsea Adamson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Andrew Clark
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rebecca McQuade
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Ross Calvin Monasky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Bryan Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
17
|
Stout EA, Sanozky-Dawes R, Goh YJ, Crawley AB, Klaenhammer TR, Barrangou R. Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri. Microbiology (Reading) 2018; 164:1098-1111. [DOI: 10.1099/mic.0.000689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emily A. Stout
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rosemary Sanozky-Dawes
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yong Jun Goh
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexandra B. Crawley
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Todd R. Klaenhammer
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
18
|
de Castro CP, Drumond MM, Batista VL, Nunes A, Mancha-Agresti P, Azevedo V. Vector Development Timeline for Mucosal Vaccination and Treatment of Disease Using Lactococcus lactis and Design Approaches of Next Generation Food Grade Plasmids. Front Microbiol 2018; 9:1805. [PMID: 30154762 PMCID: PMC6102412 DOI: 10.3389/fmicb.2018.01805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Lactococcus lactis has been used historically in fermentation and food preservation processes as it is considered safe for human consumption (GRAS—Generally Recognized As Safe). Nowadays, in addition to its wide use in the food industry, L. lactis has been used as a bioreactor for the production of molecules of medical interest, as well as vectors for DNA delivery. These applications are possible due to the development of promising genetic tools over the past few decades, such as gene expression, protein targeting systems, and vaccine plasmids. Thus, this review presents some of these genetic tools and their evolution, which allow us to envision new biotechnological and therapeutic uses of L. lactis. Constitutive and inductive expression systems will be discussed, many of which have been used successfully for heterologous production of different proteins, tested on animal models. In addition, advances in the construction of new plasmids to be used as potential DNA vaccines, delivered by this microorganism, will also be viewed. Finally, we will focus on the scene of gene expression systems known as “food-grade systems” based on inducing compounds and safe selection markers, which eliminate the need for the use of compounds harmful to humans or animal health and potential future prospects for their applications.
Collapse
Affiliation(s)
- Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Nunes
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
20
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
21
|
Ortiz-Velez L, Britton R. Genetic Tools for the Enhancement of Probiotic Properties. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0018-2016. [PMID: 28936946 PMCID: PMC11687542 DOI: 10.1128/microbiolspec.bad-0018-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 12/29/2022] Open
Abstract
The Lactobacillus genus is a diverse group of microorganisms, many of which are of industrial and medical relevance. Several Lactobacillus species have been used as probiotics, organisms that when present in sufficient quantities confer a health benefit to the host. A significant limitation to the mechanistic understanding of how these microbes provide health benefits to their hosts and how they can be used as therapeutic delivery systems has been the lack of genetic strategies to efficiently manipulate their genomes. This article will review the development and employment of traditional genetic tools in lactobacilli and highlight the latest methodologies that are allowing for precision genome engineering of these probiotic organisms. The application of these tools will be key in providing mechanistic insights into probiotics as well as maximizing the value of lactobacilli as either a traditional probiotic or as a platform for the delivery of therapeutic proteins. Finally, we will discuss concepts that we consider relevant for the delivery of engineered therapeutics to the human gut.
Collapse
Affiliation(s)
- Laura Ortiz-Velez
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Robert Britton
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
22
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
23
|
Bakari S, Lembrouk M, Sourd L, Ousalem F, André F, Orlowski S, Delaforge M, Frelet-Barrand A. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1. Mol Biotechnol 2016; 58:299-310. [PMID: 26961909 DOI: 10.1007/s12033-016-9928-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.
Collapse
Affiliation(s)
- Sana Bakari
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Mehdi Lembrouk
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Laura Sourd
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Fares Ousalem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - François André
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Stéphane Orlowski
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Marcel Delaforge
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Annie Frelet-Barrand
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France. .,Institute FEMTO-ST, UMR6174 CNRS-Université de Franche-Comté, 25044, Besançon Cedex, France.
| |
Collapse
|
24
|
Tarazanova M, Beerthuyzen M, Siezen R, Fernandez-Gutierrez MM, de Jong A, van der Meulen S, Kok J, Bachmann H. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster. PLoS One 2016; 11:e0167970. [PMID: 27941999 PMCID: PMC5152845 DOI: 10.1371/journal.pone.0167970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Marke Beerthuyzen
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Roland Siezen
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud UMC, Nijmegen, The Netherlands
- Microbial Bioinformatics, Ede, The Netherlands
| | - Marcela M. Fernandez-Gutierrez
- TI Food and Nutrition, Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anne de Jong
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Sjoerd van der Meulen
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Herwig Bachmann
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Fernandes S, São-José C. More than a hole: the holin lethal function may be required to fully sensitize bacteria to the lytic action of canonical endolysins. Mol Microbiol 2016; 102:92-106. [DOI: 10.1111/mmi.13448] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Sofia Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa, Av. Prof. Gama Pinto; Lisboa 1649-003 Portugal
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa, Av. Prof. Gama Pinto; Lisboa 1649-003 Portugal
| |
Collapse
|
26
|
Aubry C, Michon C, Chain F, Chvatchenko Y, Goffin L, Zimmerli SC, Leguin S, Langella P, Bermudez-Humaran L, Chatel JM. Protective effect of TSLP delivered at the gut mucosa level by recombinant lactic acid bacteria in DSS-induced colitis mouse model. Microb Cell Fact 2015; 14:176. [PMID: 26546058 PMCID: PMC4636794 DOI: 10.1186/s12934-015-0367-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is a cytokine known to mature dendritics cells, lower pro-inflammatory IL-12 secretion, induce differentiation of anti-inflammatory FoxP3+ regulatory T cells (Treg). Moreover, Crohn's disease patients have shown a reduction of intestinal TSLP expression. To understand the role of TSLP in inflammation, we constructed Lactococcus lactis strain producing TSLP (LL-TSLP) and investigated the effect of its administration on dextran sulfate sodium (DSS)-induced colitis model in mice. RESULTS LL-TSLP secrete an active molecule which lowers secretion of IL-12 by dendritic cells. Treatment with LL-TSLP, increases the amount of TGF-β secreted by T cells in Mesenteric Lymph Node in healthy mice. In acute DSS-induced colitis, LL-TSLP delayed the Disease Activity Index and lowered histological score and colonic INF-γ production. In a DSS-recovery model, LL-TSLP induced a better protective effect if the strain was administered at the beginning of the colitis. At Day 4 of colitis we observed an induction of Treg by LL-TSLP. CONCLUSIONS TSLP showed an anti-inflammatory protective role in DSS-induced colitis. We have demonstrated that a short and early administration of LL-TSLP is more efficient than a long lasting treatment.
Collapse
Affiliation(s)
- Camille Aubry
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Christophe Michon
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Florian Chain
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | | | | | | | - Sylvia Leguin
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Philippe Langella
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Luis Bermudez-Humaran
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| | - Jean-Marc Chatel
- INRA, UMR1319 Micalis, 78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, 78350, Jouy-en-Josas, France.
| |
Collapse
|
27
|
Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans. Appl Microbiol Biotechnol 2015; 99:10001-10. [DOI: 10.1007/s00253-015-6854-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 02/03/2023]
|
28
|
Sanozky-Dawes R, Selle K, O'Flaherty S, Klaenhammer T, Barrangou R. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri. MICROBIOLOGY-SGM 2015; 161:1752-1761. [PMID: 26297561 DOI: 10.1099/mic.0.000129] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.
Collapse
Affiliation(s)
- Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kurt Selle
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.,Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Todd Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.,Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- Functional Genomics Program, North Carolina State University, Raleigh, NC, USA.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
29
|
Abstract
Wei et al. found that Cas9, previously identified as the nuclease responsible for ultimate invader destruction, is also essential for adaptation in Streptococcus thermophilus. Cas9 nuclease activity is dispensable for adaptation. Wei et al. also revealed extensive, unbiased acquisition of the self-targeting host genome sequence by the CRISPR–Cas system that is masked in the presence of active target destruction. To acquire the ability to recognize and destroy virus and plasmid invaders, prokaryotic CRISPR–Cas systems capture fragments of DNA within the host CRISPR locus. Our results indicate that the process of adaptation by a Type II-A CRISPR–Cas system in Streptococcus thermophilus requires Cas1, Cas2, and Csn2. Surprisingly, we found that Cas9, previously identified as the nuclease responsible for ultimate invader destruction, is also essential for adaptation. Cas9 nuclease activity is dispensable for adaptation. In addition, our studies revealed extensive, unbiased acquisition of the self-targeting host genome sequence by the CRISPR–Cas system that is masked in the presence of active target destruction.
Collapse
Affiliation(s)
- Yunzhou Wei
- Department of Biochemistry and Molecular Biology
| | | | - Michael P Terns
- Department of Biochemistry and Molecular Biology, Department of Genetics, Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
30
|
Wyszyńska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 2015; 99:2967-77. [PMID: 25750046 PMCID: PMC4365182 DOI: 10.1007/s00253-015-6498-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/20/2022]
Abstract
Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented.
Collapse
Affiliation(s)
- Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | |
Collapse
|
31
|
Nishiyama K, Nakamata K, Ueno S, Terao A, Aryantini NPD, Sujaya IN, Fukuda K, Urashima T, Yamamoto Y, Mukai T. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins. Biosci Biotechnol Biochem 2014; 79:271-9. [PMID: 25351253 DOI: 10.1080/09168451.2014.972325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.
Collapse
Affiliation(s)
- Keita Nishiyama
- a Department of Animal Science, School of Veterinary Medicine , Kitasato University , Towada, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Song L, Cui H, Tang L, Qiao X, Liu M, Jiang Y, Cui W, Li Y. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid. J Microbiol Methods 2014; 102:37-44. [DOI: 10.1016/j.mimet.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/19/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
33
|
Wu CM, Lin CF, Chang YC, Chung TC. Construction and Characterization of Nisin-Controlled Expression Vectors for Use inLactobacillus reuteri. Biosci Biotechnol Biochem 2014; 70:757-67. [PMID: 16636439 DOI: 10.1271/bbb.70.757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Nisin-controlled gene expression (NICE) system, which was discovered in Lactococcus lactis, was adapted to Lactobacillus reuteri by ligating nisA promoter (PnisA) and nisRK DNA fragments into the Escherichia coli-Lb. reuteri shuttle vector pSTE32. This chimerical plasmid (pNICE) was capable of expressing the heterologous amylase gene (amyL) under nisin induction. Optimization of induction factors for this Lb. reuteri/pNICE system, including nisin concentration (viz. 50 ng/ml), growth phase of culture at which nisin be added (viz. at the early exponential phase), and the best time for analyzing the gene product after inoculation (viz. at the 3rd h), allowed the amylase product to be expressed in high amounts, constituting up to about 18% of the total intracellular protein. Furthermore, the signal peptide (SP) of amyL gene (SPamyL) from Bacillus licheniformis was ligated to the downstream of PnisA in pNICE, upgrading this vector to a NICE-secretion (NIES) level, which was then designated pNIES (Sec+, secretion positive). Characterization of pNIES using an amyL-SPDelta gene (amyL gene lacking its SP) as a reporter revealed the 3rd h after induction as the secretion peak of this system, at which the secretion efficiency and the amount of alpha-amylase being secreted into the culture supernatant were estimated to reach 77.6% and 27.75 mg/l. Expression and secretion of AmyL products by pNIES in Lb. reuteri was also confirmed by SDS-PAGE and immunoblotting analysis.
Collapse
Affiliation(s)
- Chi-Ming Wu
- Graduate Institute of Veterinary Microbiology, National Chung-Hsing University, Taiwan, ROC
| | | | | | | |
Collapse
|
34
|
Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle. Enzyme Microb Technol 2013; 53:97-103. [DOI: 10.1016/j.enzmictec.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/20/2022]
|
35
|
Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis. PLoS One 2012; 7:e51663. [PMID: 23240053 PMCID: PMC3519859 DOI: 10.1371/journal.pone.0051663] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/06/2012] [Indexed: 12/26/2022] Open
Abstract
Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins), which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB), none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II) in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes.
Collapse
|
36
|
Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J Bacteriol 2012; 194:3774-80. [PMID: 22609913 DOI: 10.1128/jb.00337-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans develops competence for genetic transformation in response to regulatory circuits that sense at least two peptide pheromones. One peptide, known as CSP, is sensed by a two-component signal transduction system through a membrane receptor, ComD. The other, derived from the primary translation product ComS, is thought to be sensed by an intracellular receptor, ComR, after uptake by oligopeptide permease. To allow study of this process in a medium that does not itself contain peptides, development of competence was examined in the chemically defined medium (CDM) described by van de Rijn and Kessler (Infect. Immun. 27:444, 1980). We confirmed a previous report that in this medium comS mutants of strain UA159 respond to a synthetic peptide comprising the seven C-terminal residues of ComS (ComS(11-17)) by increasing expression of the alternative sigma factor SigX, which in turn allows expression of competence effector genes. This response provided the basis for a bioassay for the ComS pheromone in the 100 to 1,000 nM range. It was further observed that comS(+) (but not comS mutant) cultures developed a high level of competence in the late log and transition phases of growth in this CDM without the introduction of any synthetic stimulatory peptide. This endogenous competence development was accompanied by extracellular release of one or more signals that complemented a comS mutation at levels equivalent to 1 μM synthetic ComS(11-17).
Collapse
|
37
|
Lytic activity of LysH5 endolysin secreted by Lactococcus lactis using the secretion signal sequence of bacteriocin Lcn972. Appl Environ Microbiol 2012; 78:3469-72. [PMID: 22344638 DOI: 10.1128/aem.00018-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage endolysins have an interesting potential as antimicrobials. The endolysin LysH5, encoded by Staphylococcus aureus phage vB_SauS-phi-IPLA88, was expressed and secreted in Lactococcus lactis using the signal peptide of bacteriocin lactococcin 972 and lactococcal constitutive and inducible promoters. Up to 80 U/mg of extracellular active endolysin was detected in culture supernatants, but most of the protein (up to 323 U/mg) remained in the cell extracts.
Collapse
|
38
|
Wang Q, Chen T, Zhao X, Chamu J. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng 2012; 109:1610-21. [DOI: 10.1002/bit.24427] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/16/2011] [Accepted: 12/22/2011] [Indexed: 11/06/2022]
|
39
|
Wang Q, Ingram LO, Shanmugam KT. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. Proc Natl Acad Sci U S A 2011; 108:18920-5. [PMID: 22065761 PMCID: PMC3223474 DOI: 10.1073/pnas.1111085108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.
Collapse
Affiliation(s)
- Qingzhao Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Lonnie O. Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - K. T. Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
40
|
Cauchard S, Bermúdez-Humarán LG, Blugeon S, Laugier C, Langella P, Cauchard J. Mucosal co-immunization of mice with recombinant lactococci secreting VapA antigen and leptin elicits a protective immune response against Rhodococcus equi infection. Vaccine 2011; 30:95-102. [PMID: 22019740 DOI: 10.1016/j.vaccine.2011.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 01/31/2023]
Abstract
Rhodococcus equi causes severe pneumonia in foals and has recently gained attention as a significant opportunistic pathogen in immunocompromised humans. However, no effective vaccine to prevent rhodococcosis is currently available. In this study, we have engineered the food-grade bacterium Lactococcus lactis to secrete the virulence-associated protein A from R. equi (LL-VapA). The immunogenic potential of LL-VapA strain was then evaluated after either intragastric or intranasal immunization in mice either alone or in combination with LL-Lep, a recombinant strain of L. lactis secreting biologically active leptin, a pleiotropic hormone with significant immunomodulatory properties. Intragastric administration of LL-VapA led to the highest VapA-specific mucosal response whereas intranasal administration led to the highest systemic immune responses. Cytokines released from in vitro-stimulated spleen cells show both a strong IFN-γ response and an increase of IL-4 level in all immunized groups, except for the group intranasally co-administered with both LL-VapA and LL-Lep. Strikingly, a significant reduction in R. equi viable counts in liver and spleen was observed four days after intravenous challenge with a virulent strain of R. equi in all immunized groups except for the group vaccinated by intragastric route with LL-VapA. Altogether, our results demonstrate that LL-VapA can evoke a T(H)1-based protective immune response in intranasally immunized mice. This response is enhanced when co-administered with LL-Lep strain, whereas only co-administration of LL-VapA and LL-Lep can induce a protective immune response in intragastric vaccinated mice, associated with a T(H)1/T(H)2 cytokine response.
Collapse
Affiliation(s)
- S Cauchard
- Anses, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, Goustranville, 14430 Dozulé, France
| | | | | | | | | | | |
Collapse
|
41
|
Eggers CH, Caimano MJ, Malizia RA, Kariu T, Cusack B, Desrosiers DC, Hazlett KRO, Claiborne A, Pal U, Radolf JD. The coenzyme A disulphide reductase of Borrelia burgdorferi is important for rapid growth throughout the enzootic cycle and essential for infection of the mammalian host. Mol Microbiol 2011; 82:679-97. [PMID: 21923763 DOI: 10.1111/j.1365-2958.2011.07845.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In a microarray analysis of the RpoS regulon in mammalian host-adapted Borrelia burgdorferi, bb0728 (cdr) was found to be dually transcribed by the sigma factors σ(70) and RpoS. The cdr gene encodes a coenzyme A disulphide reductase (CoADR) that reduces CoA-disulphides to CoA in an NADH-dependent manner. Based on the abundance of CoA in B. burgdorferi and the biochemistry of the enzyme, CoADR has been proposed to play a role in the spirochaete's response to reactive oxygen species. To better understand the physiologic function(s) of BbCoADR, we generated a B. burgdorferi mutant in which the cdr gene was disrupted. RT-PCR and 5'-RACE analysis revealed that cdr and bb0729 are co-transcribed from a single transcriptional start site upstream of the bb0729 coding sequence; a shuttle vector containing the bb0729-cdr operon and upstream promoter element was used to complement the cdr mutant. Although the mutant was no more sensitive to hydrogen peroxide than its parent, it did exhibit increased sensitivity to high concentrations of t-butyl-hydroperoxide, an oxidizing compound that damages spirochetal membranes. Characterization of the mutant during standard (15% oxygen, 6% CO(2)) and anaerobic (< 1% O(2) , 9-13% CO(2)) cultivation at 37°C revealed a growth defect under both conditions that was particularly striking during anaerobiosis. The mutant was avirulent by needle inoculation and showed decreased survival in feeding nymphs, but displayed no survival defect in unfed flat nymphs. Based on these results, we propose that BbCoADR is necessary to maintain optimal redox ratios for CoA/CoA-disulphide and NAD(+) /NADH during periods of rapid replication throughout the enzootic cycle, to support thiol-disulphide homeostasis, and to indirectly protect the spirochaete against peroxide-mediated membrane damage; one or more of these functions are essential for infection of the mammalian host by B. burgdorferi.
Collapse
Affiliation(s)
- Christian H Eggers
- Department of Biomedical Sciences, Quinnipiac University, Hamden, CT 06518, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.
Collapse
Affiliation(s)
- Willem M de Vos
- Laboratory of Microbiology, Wageningen University, The Netherlands.
| |
Collapse
|
43
|
Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2011; 77:7365-71. [PMID: 21873486 DOI: 10.1128/aem.06028-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus acidophilus NCFM is a probiotic microbe that survives passage through the human gastrointestinal tract and interacts with the host epithelium and mucosal immune cells. The potential for L. acidophilus to express antigens at mucosal surfaces has been investigated with various antigens and plasmid expression vectors. Plasmid instability and antibiotic selection complicate the possibility of testing these constructs in human clinical trials. Integrating antigen encoding genes into the chromosome for expression is expected to eliminate selection requirements and provide genetic stability. In this work, a reporter gene encoding a β-glucuronidase (GusA3) was integrated into four intergenic chromosomal locations. The integrants were tested for genetic stability and GusA3 activity. Two locations were selected for insertion downstream of constitutively highly expressed genes, one downstream of slpA (LBA0169), encoding a highly expressed surface-layer protein, and one downstream of phosphopyruvate hydratase (LBA0889), a highly expressed gene with homologs in other lactic acid bacteria. An inducible location was selected downstream of lacZ (LBA1462), encoding a β-galactosidase. A fourth location was selected in a low-expression region. The expression of gusA3 was evaluated from each location by measuring GusA3 activity on 4-methyl-umbelliferyl-β-d-glucuronide (MUG). GusA3 activity from both highly expressed loci was more than three logs higher than the gusA3-negative parent, L. acidophilus NCK1909. GusA3 activity from the lacZ locus was one log higher in cells grown in lactose than in glucose. The differences in expression levels between integration locations highlights the importance of rational targeting with gene cassettes intended for chromosomal expression.
Collapse
|
44
|
Pontes DS, de Azevedo MSP, Chatel JM, Langella P, Azevedo V, Miyoshi A. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 2011; 79:165-75. [PMID: 21704169 DOI: 10.1016/j.pep.2011.06.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/30/2022]
Abstract
Lactic acid bacteria (LAB), widely used in the food industry, are present in the intestine of most animals, including humans. The potential use of these bacteria as mucosal delivery vehicles for vaccinal, medical or technological use has been extensively investigated. Lactococcus lactis, a LAB species, is a potential candidate for the production of biologically useful proteins and for plasmid DNA delivery to eukaryotic cells. Several delivery systems have been developed to target heterologous proteins to a specific cell location (i.e., cytoplasm, cell wall or extracellular medium) and more recently to efficiently transfer DNA to eukaryotic cells. A promising application of L. lactis is its use for the development of live mucosal vaccines. Here, we have reviewed the expression of heterologous protein and the various delivery systems developed for L. lactis, as well as its use as an oral vaccine carrier.
Collapse
Affiliation(s)
- Daniela Santos Pontes
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Characterization and electrotransformation of Lactobacillus plantarum and Lactobacillus paraplantarum isolated from fermented vegetables. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-010-0468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Palomino MM, Allievi MC, Prado-Acosta M, Sanchez-Rivas C, Ruzal SM. New method for electroporation of Lactobacillus species grown in high salt. J Microbiol Methods 2010; 83:164-7. [DOI: 10.1016/j.mimet.2010.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022]
|
47
|
Bryksin AV, Matsumura I. Rational design of a plasmid origin that replicates efficiently in both gram-positive and gram-negative bacteria. PLoS One 2010; 5:e13244. [PMID: 20949038 PMCID: PMC2951906 DOI: 10.1371/journal.pone.0013244] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 09/08/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Most plasmids replicate only within a particular genus or family. METHODOLOGY/PRINCIPAL FINDINGS Here we describe an engineered high copy number expression vector, pBAV1K-T5, that produces varying quantities of active reporter proteins in Escherichia coli, Acinetobacter baylyi ADP1, Agrobacterium tumefaciens, (all gram-negative), Streptococcus pneumoniae, Leifsonia shinshuensis, Peanibacillus sp. S18-36 and Bacillus subtilis (gram-positive). CONCLUSIONS/SIGNIFICANCE Our results demonstrate the efficiency of pBAV1K-T5 replication in different bacterial species, thereby facilitating the study of proteins that don't fold well in E. coli and pathogens not amenable to existing genetic tools.
Collapse
Affiliation(s)
- Anton V. Bryksin
- Center for Fundamental and Applied Molecular Evolution, Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
| | - Ichiro Matsumura
- Center for Fundamental and Applied Molecular Evolution, Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Duong T, Miller MJ, Barrangou R, Azcarate-Peril MA, Klaenhammer TR. Construction of vectors for inducible and constitutive gene expression in Lactobacillus. Microb Biotechnol 2010; 4:357-67. [PMID: 21375708 PMCID: PMC3818994 DOI: 10.1111/j.1751-7915.2010.00200.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microarray analysis of the genome of Lactobacillus acidophilus identified a number of operons that were differentially expressed in response to carbohydrate source or constitutively expressed regardless of carbohydrate source. These included operons implicated in the transport and catabolism of fructooligosaccharides (FOS), lactose (lac), trehalose (tre) and genes directing glycolysis. Analysis of these operons identified a number of putative promoter and repressor elements, which were used to construct a series of expression vectors for use in lactobacilli, based on the broad host range pWV01 replicon. A β‐glucuronidase (GusA3) reporter gene was cloned into each vector to characterize expression from each promoter. GUS reporter assays showed FOS, lac and tre based vectors to be highly inducible by their specific carbohydrate and repressed by glucose. Additionally, a construct based on the phosphoglycerate mutase (pgm) promoter was constitutively highly expressed. To demonstrate the potential utility of these vectors, we constructed a plasmid for the overexpression of the oxalate degradation pathway (Frc and Oxc) of L. acidophilus NCFM. This construct was able to improve oxalate degradation by L. gasseri ATCC 33323 and compliment a L. acidophilus oxalate‐deficient mutant. Development of these expression vectors could support several novel applications, including the expression of enzymes, proteins, vaccines and biotherapeutics by intestinal lactobacilli.
Collapse
Affiliation(s)
- Tri Duong
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
49
|
Shareck J, Choi Y, Lee B, Miguez CB. Cloning Vectors Based on Cryptic Plasmids Isolated from Lactic Acid Bacteria:Their Characteristics and Potential Applications in Biotechnology. Crit Rev Biotechnol 2010; 24:155-208. [PMID: 15707158 DOI: 10.1080/07388550490904288] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria, widely distributed in nature, and industrially important as they are used in a variety of industrial food fermentations. The use of genetic engineering techniques is an effective means of enhancing the industrial applicability of LAB. However, when using genetic engineering technology, safety becomes an essential factor for the application of improved LAB to the food industry. Cloning and expression systems should be derived preferably from LAB cryptic plasmids that generally encode genes for which functions can be proposed, but no phenotypes can be observed. However, some plasmid-encoded functions have been discovered in cryptic plasmids originating from Lactobacillus, Streptococcus thermophilus, and Pediococcus spp. and can be used as selective marker systems in vector construction. This article presents information concerning LAB cryptic plasmids, and their structures, functions, and applications. A total of 134 cryptic plasmids collated are discussed.
Collapse
Affiliation(s)
- Julie Shareck
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | | | | |
Collapse
|
50
|
Hayes F, Daly C, Fitzgerald GF. Identification of the Minimal Replicon of Lactococcus lactis subsp. lactis UC317 Plasmid pCI305. Appl Environ Microbiol 2010; 56:202-9. [PMID: 16348092 PMCID: PMC183273 DOI: 10.1128/aem.56.1.202-209.1990] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication functions of the stable, cryptic 8.7-kilobase (kb) plasmid pCI305 from multi-plasmid-containing Lactococcus lactis subsp. lactis UC317 were studied. Analysis of this replicon was facilitated by the construction of replication probe vectors that consisted of the pBR322 replication region, a pUC18-derived multiple cloning site, and either the cat gene of pC194 (pCI341; 3.1 kb) or the erm gene of pAMbeta1 (pCI3330; 4.0 kb). Plasmid pCI305 was introduced into plasmid-free L. lactis subsp. lactis MG1363Sm, a streptomycin-resistant derivative of MG1363, by a transformation procedure with the 75-kb lactose-proteinase plasmid pCI301 of UC317 as a marker plasmid. A combination of transposon Tn5 mutagenesis and subcloning in pCI341 and pCI3330 with individual Tn5 insertions around the replication region facilitated the identification of a 1.6-kb minimal replicon on pCI305. This region was separable into two domains: (i) a 1.3-kb region (repB) encoding a trans-acting function (in vitro transcription-translation studies suggested the involvement of a 48-kilodalton protein); and (ii) a 0.3-kb region (repA) sufficient to direct replication when provided with repB in trans and thus probably containing the origin of replication. Lactococcus-Escherichia coli shuttle vectors based on the pCI305 replication region were constructed.
Collapse
Affiliation(s)
- F Hayes
- Department of Food Microbiology and National Food Biotechnology Centre, University College, Cork, Ireland
| | | | | |
Collapse
|